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Abstract

Purpose: The intra-procedural tracking of respiratory motion has the potential to substantially20

improve image-guided diagnosis and interventions. We have developed a sparse-to-dense registra-

tion approach that is capable of recovering the patient’s external 3-D body surface and estimating

a 4-D (3-D+time) surface motion field from sparse sampling data and patient-specific prior shape

knowledge.

Methods: The system utilizes an emerging marker-less and laser-based active triangulation25

(AT) sensor that delivers sparse but highly accurate 3-D measurements in real-time. These sparse

position measurements are registered with a dense reference surface extracted from planning data.

Thereby a dense displacement field is recovered, which describes the spatio-temporal 4-D deforma-

tion of the complete patient body surface, depending on the type and state of respiration. It yields

both a reconstruction of the instantaneous patient shape and a high-dimensional respiratory sur-30

rogate for respiratory motion tracking. The method is validated on a 4-D CT respiration phantom

and evaluated on both real data from an AT prototype and synthetic data sampled from dense

surface scans acquired with a structured-light scanner.

Results: In the experiments, we estimated surface motion fields with the proposed algorithm

on 256 datasets from 16 subjects and in different respiration states, achieving a mean surface re-35

construction accuracy of ±0.23 mm w.r.t. ground truth data – down from a mean initial surface

mismatch of 5.66 mm. The 95th percentile of the local residual mesh-to-mesh distance after reg-

istration did not exceed 1.17 mm for any subject. On average, the total runtime of our proof of

concept CPU implementation is 2.3 s per frame, outperforming related work substantially.

Conclusions: In external beam radiation therapy (RT), the approach holds potential for pa-40

tient monitoring during treatment using the reconstructed surface, and for motion-compensated

dose delivery using the estimated 4-D surface motion field in combination with external-internal

correlation models.

∗ Interdisciplinary Mathematics Institute, University of South Carolina, Columbia, SC, USA;

benjamin.berkels@ins.uni-bonn.de
† Graduate School of Information Science in Health (GSISH), Technische Universität München, München,

Germany
‡ Erlangen Graduate School of Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität

Erlangen-Nürnberg, Erlangen, Germany

2



I. INTRODUCTION

Respiration-synchronized image-guided radiation therapy (IGRT) techniques aim at con-45

tinuously tracking the moving target over its trajectory and re-position the treatment table

[1] or radiation beam [2, 3] dynamically to follow the tumor’s changing position [3–9]. This

allows to reduce the tumor-motion margin in dose distribution and to increase the accel-

erator’s duty cycle compared to gated RT [10]. Recent hybrid solutions combine episodic

radiographic imaging with continuous monitoring of external breathing surrogates based on50

the premise that the internal tumor position can be accurately predicted from the deforma-

tion of the external body surface in the time interval between image acquisitions – using a

correlation model trained from a series of simultaneously acquired external-internal position

measurements [7, 11], 4-D CT [3, 12, 13] or 4-D MRI planning data [14]. The key issue with

external-internal motion correlation models is the actual level of correlation accounting for55

the accuracy of dose delivery. Clinically available solutions that are in use or potentially

suitable for hybrid tumor-tracking [7, 15, 16] typically measure external motion using a sin-

gle or a few passive markers on the patient’s chest as a low-dimensional (in most cases 1-D)

surrogate. However, in practice, these low-dimensional techniques are incapable of depicting

the full complexity of respiratory motion. Experimental studies by Fayad et al. [17] and Yan60

et al. [18] confirmed that using multiple external surrogates at different anatomical locations

is superior to the conventional approach with a single 1-D respiratory signal for external-

internal correlation modeling. Further drawbacks of marker-based external surrogates are

the fact that they involve extensive patient preparation and require reproducible equipment

and marker placement with a considerable impact on model accuracy.65

Modern IGRT systems that allow to monitor the motion of the complete external patient

surface have the potential to help reducing correlation model uncertainties. In particular,

marker-less optical range imaging (RI) technologies can acquire a dense 3-D surface model

of the patient [19–25] over time. Based on the estimation of a dense displacement field

representing the deformation of the instantaneous torso shape with respect to a reference70

surface, a more reliable and accurate correlation model can be established [17, 26]. However,

available RI-based IGRT solutions that are capable of delivering dense surface information

in a marker-less manner [19–21, 23, 24] focus on patient positioning [25] and do not support

dense sampling in real-time [20, 21] or at the cost of a limited field of view [19, 23, 24]. Fur-
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thermore, none of the commercially available systems feature non-rigid respiratory motion75

tracking.

In this paper, we propose a marker-less system based on a non-moving active laser tri-

angulation (AT) sensor that delivers sparse but highly accurate measurements in real-time.

Using prior patient shape knowledge from tomographic planning data, a variational model is

introduced to recover a dense and accurate 4-D (3-D+time) displacement field that provides80

a high-dimensional breathing surrogate, and to reconstruct a reliable and complete patient

surface model at the instantaneous respiration phase. Different from our first approach in

[27] we propose here a scheme which much better reflects the underlying projective geometry

and is substantially more efficient.

II. METHODS AND MATERIALS85

Given is a pre-fractional reference shape G ⊂ R3 that can be (1) extracted from planning

tomographic data (CT/MRI), (2) captured with a dense range imaging sensor of low tem-

poral resolution, or (3) acquired by an AT sensor in combination with a steerable treatment

table. During dose delivery, the instantaneous patient body surface denoted by M ⊂ R3

is represented by sparse AT sampling data Y ⊂ R3. In particular, the AT sensor acquires90

a finite set of n measurements Y = {y1, . . . , yn}, yi ∈ R3, arranged in a grid-like structure

(Fig. 1). Note that the intra-fractional grid-like sampling Y is not aligned with G and

depends on the respiration state.

Now, the goal is to estimate the unknown, dense and non-rigid deformation φ : G → R3

that matches the reference shape G to the instantaneous patient body surface M. Ideally,95

φ should be such that M = φ(G), but since our data Y only contains information about a

sparse subset of M, the condition on φ appropriate for our problem setting is Y ⊂ φ(G).

Along the lines of inverse-consistent registration [28, 29], in a joint manner, we estimate φ

together with its inverse ψ. Again, due to the sparse nature of our input data, we do not

try to estimate the inverse everywhere on M but only on the known sparse subset Y . In100

other words, instead of trying to find ψ : M → G with ψ(M) = G, we estimate a sparse

deformation Ψ : Y → R3 such that Ψ(Y ) ⊂ G. Here, dense and sparse deformations are

distinguished by using lower and upper case letters respectively. Let us underline that Ψ is

fully represented by the discrete set {Ψ(y1), . . . ,Ψ(yn)} containing the deformed positions of
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FIG. 1. Geometric configuration for the reconstruction of the dense deformation φ and the ap-

proximate sparse inverse Ψ from sparse sampling data Y = {y1, . . . , yn} and reference shape data

G ⊂ R3. For a better visibility G and Y have been pulled apart. Furthermore, the projection P

onto G is sketched.

the n points acquired by the AT sensor. A geometric sketch that illustrates the deformations105

φ and Ψ is depicted in Fig. 1. Estimating Ψ allows us to establish a correspondence between

the AT measurements and the reference patient surface, whereas the dense deformation φ

can be used as a high-dimensional breathing surrogate and enables the reconstruction of the

complete instantaneous patient surface for intra-fractional monitoring.

To quantify the matching of Ψ(Y ) onto G let us assume that the signed distance110

function (SDF) dG with respect to G is precomputed in a sufficiently large neighborhood

in R3. Using this signed distance function dG(x) := ±dist(x,G), we can construct the

projection P of a point x ∈ R3 in a neighborhood of G onto the closest point on G. Let

us emphasize that, even though P (Y ) ⊂ G holds by construction, we do not expect any

biologically reasonable Ψ to be equal to the projection P .115

A. Definition of the Registration Energy

Now, we define a functional E on on a dense deformation φ and a sparse deformation Ψ

whose minimizer represents a suitable matching of the planning data G and AT measure-

ments Y :

E [φ,Ψ] := Ematch[Ψ] + κ Econ[φ,Ψ] + λ Ereg[φ]

=
1

2n

n∑
i=1

|dG(Ψ(yi))|2 +
κ

2n

n∑
i=1

|φ(P (Ψ(yi)))− yi|2

+
λ

2

∫
|∆(φ− id)|2 dx

(1)
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Here, κ and λ are nonnegative constants controlling the contributions of the individual

terms and id denotes the identity mapping. Ematch is a matching energy that encodes the

condition Ψ(Y ) ⊂ G by measuring closeness of Ψ(Y ) to G. The consistency functional Econ
is responsible for establishing the relation between both displacement fields, constraining120

Ψ and φ to be approximately inverse to each other on the sparse set of positions Y where

Ψ is defined. Thereby, it implicitly encodes the condition Y ⊂ φ(G). Finally, Ereg ensures

a regularization of the dense deformation φ. Since Econ only controls φ on a sparse set,

it is necessary to use a higher order regularization here. For a detailed construction and

discussion of these functionals we refer to the appendix ([38], Sect. I).125

B. Discretization and Minimization

To minimize the highly non-convex objective functional E w.r.t. the unknowns φ and Ψ

(Eq. 1), we apply a multi-linear FE discretization in space and use a regularized gradient

descent [30] to guarantee a fast and smooth relaxation. The gradient descent is discretized

explicitly in time, the step size is controlled with the Armijo rule [31]. We stop the gradient130

descent iteration as soon as the energy decay is smaller than a specified threshold value

ε, for practical values we refer to Sect. IV C. By default, both deformations φ and Ψ are

initialized with the identity mapping. In the experiments (Sect. IV C), we further study the

benefit of initializing φ with the estimates from the previous step and initializing Ψ with

Ψ(yj) = P (yj) for j = 1, . . . , n.135

Details on the numerical optimization, including the derivatives of the energy, are given

in the appendix ([38], Sect. II). Note that the numerical evaluation of the projection onto

G is based on the signed distance function dG and the expression P (x) = x− dG(x)∇dG(x).

Thus, the variation of Econ w.r.t. Ψ involves the derivative of P which in turn involves sec-

ond derivatives of dG. To avoid these second derivatives we use a projection approximation140

scheme. Compared to the scheme used in [27], the scheme used here treats the distance

dG implicitly and the direction ∇dG explicitly, while [27] treated both dG and ∇dG explic-

itly. Thus, the improved projection approximation scheme reflects the underlying projective

geometry much better and is substantially more efficient. The appendix ([38], Sect. III)

describes the projection scheme in detail. For a quantitative analysis of the impact of this145

modification on reconstruction accuracy and the convergence speed of the entire algorithm,
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FIG. 2. Left: AT measurement principle for respiratory motion tracking. Top right: AT sensor

and projected laser grid on a phantom. Here, for illustration purposes, both projection units were

activated simultaneously. In practice, projecting a grid would hinder a precise 3-D data generation

at the observed intersection points. Hence, the horizontal and vertical projection units are activated

alternately. Bottom right: Schematic setup of the AT sensor consisting of two orthogonal projection

units and a CCD camera.

respectively, we refer to Sect. IV C.

C. Active Triangulation Prototype

The active triangulation sensor used in this work was recently introduced for interac-

tive reconstruction of dense and accurate 3-D models [32]: A hand-guided sensor is moved150

around an object while continuously capturing camera images of a projected line pattern.

Each camera image delivers sparse 3-D measurements, which are aligned to precedingly ac-

quired data in real-time. The sensors work at their physical limits, hence having minimal

measurement uncertainty for the corresponding measurement volume.

In this work, the AT sensor is rigidly mounted and acquires sparse 3-D data of the155

respiring patient from one static viewpoint [27]. Alternately, sets of 11 horizontal and 10

vertical lines are projected onto the scene observed by a synchronized CCD camera with a

resolution of 1024×768 px and a framerate of 30 Hz [32] (see Fig. 2). Due to the alternating

projection, a fully updated set of horizontal and vertical measurements is available at an160
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effective framerate of 15 Hz. Within the employed measurement volume of 80×80×35 cm3,

the mean measurement uncertainty is σ = 0.39 mm.

III. EXPERIMENTAL SETUP

The experimental evaluation divides into two parts. In Sect. III A, the validation setup

of the proposed model on surface data from a synthetic 4-D CT respiration phantom is165

described. In the second part (Sect. III B), we present a comprehensive study on data from

16 healthy subjects. In particular, we have quantified the accuracy in 4-D deformation

estimation and surface reconstruction, respectively, and analyzed the performance of the

proposed framework w.r.t. relevant system parameters.

All experiments below (Sect. III A, III B) were performed with a parameter setting of170

κ = 0.8, λ = 4 ·10−8. These weighting factors were determined empirically. The convergence

threshold was empirically set to ε = 10−4 (Sect. IV C). To generate AT sampling data from

synthetic datasets, we have developed a virtual simulator that mimics the sampling principle

of the AT sensor by intersecting a given triangulated surface with a set of sampling rays.

These rays are arranged in a grid-like structure and the default grid and sampling density175

of the simulator are set in accordance to the specifications of the actual AT prototype used

in the experiments on real data, see Sect. III B. Due to occlusion constraints in a clinical

RT environment, the simulator’s sampling plane and viewing angle, respectively, is set 30◦

off from an orthogonal camera position w.r.t. the treatment table.

A. Validation on 4-D CT Respiration Phantom Data180

For model validation, we have investigated the reconstruction of respiratory deformation

fields from surface data of an established 4-D CT respiration phantom (NCAT [33]). For

the experiments, we generated dense surface meshesMp for 8 phases within one respiration

cycle, for male and female phantom data. The index p ∈ {1, . . . , 8} denotes the phase. We

considered both scenarios of arms-up and arms-down patient posture. The NCAT param-185

eters were set to default values [33]. The phantom surface at the state of full expiration

M1 (p = 1) was considered as the planning geometry G. The remaining set of surfaces was

used to generate synthetic sampling data Y2, . . . , Y8 using our AT simulator. The accuracy
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of the deformation estimation is assessed by the absolute distance of the points in φp(G)

to Mp, representing the residual mismatch in terms of mesh-to-mesh distance between the190

transformed reference surface φp(G) and the ground truth surface Mp. Here, we exploit

the SDF w.r.t.Mp to establish a correspondence between φp(G) andMp by computing the

distance of a point in the transformed reference surface to the closest point on the ground

truth surface, i. e. computing |dMp | on φp(G). To discard boundary effects at the body-table

transition, the evaluation is performed in the central volume of interest that covers the trunk195

of the phantom.

B. Prototype Study on Healthy Subjects

In order to demonstrate the clinical feasibility of the presented system and to evalu-

ate it under realistic conditions, we have conducted a study on 16 healthy subjects, male

and female. In particular, we have investigated the performance of our modified projection200

approximation compared to [27], the impact of initializing the displacement fields with esti-

mates of the preceding respiration phase, and the influence of the convergence threshold ε.

Using the AT simulator and the measured noise characteristics of our prototype, we per-

formed realistic simulations to study the influence of the AT laser grid density. Along with

quantitative and qualitative results in terms of reconstruction accuracy, we have analyzed205

the performance of our implementation in terms of convergence and runtime.

Using an eye-safe prototype as described in Sect. II C, we acquired 32 datasets from 16

subjects, each performing (i) abdominal and (ii) thoracic breathing. In addition to AT

data, we synchronously acquired surface data with a moderately accurate but rather dense

structured-light (SL) system as dense ground truth data for quantitative evaluation of our210

approach, as detailed in [27]. SL data were pre-processed using edge-preserving bilateral

filtering. From each dataset, we extracted sparse AT measurements Yp and dense SL meshes

Mp for 8 phases within one respiration cycle. This results in a total number of 32×8 = 256

datasets. For the experiments, we considered the reconstruction of the displacement field

φp from a given planning surface G and intra-fractional AT data Yp, p ∈ {2, . . . , 8}. The215

subject’s body surface at full expirationM1 was considered as the planning data surface G.

As with the 4-D phantom study (Sect. III A), the accuracy of the deformation estimation is

assessed by the residual mismatch |dMp | on φp(G) within the central volume of interest.
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In practice, a quantitative evaluation on synchronously acquired real AT and SL data

was unfeasible, as the SL camera exhibited local sampling artifacts due to the underlying220

measurement principle and interferences between the laser grid (AT) and speckle pattern

projections (SL) of the synchronously used modalities, which caused local deviations in the

scale of millimeters. Hence, the evaluation on real AT data is restricted to qualitative results.

For quantitative evaluation, we employed our simulator for the generation of realistic AT

sampling data from dense SL surfacesMp. In order to generate realistic AT data, the noise225

characteristics of our AT sensor prototype were used to augment the synthetic sampling of

dense SL data.

Let us stress here that the aforementioned interferences do not hinder the practical ap-

plication of the proposed method – which only requires an AT sensor – but the generation

of ground truth data necessary for evaluation.230

C. Parameter Study

First, we investigated the benefits of initializing φ with the estimates from the previous

step and Ψ with Ψ(yi) = P (yj) to reduce the number of iterations needed for the optimization

scheme to convergence. Note that for the first frame we initialize φ = id. Furthermore, to

determine a suitable value for the convergence threshold ε, we studied the impact of ε on235

both reconstruction accuracy and runtime.

Compared to the first formulation in [27], we have improved the approximation scheme

w.r.t. a proper representation of the underlying projective geometry as discussed in the

appendix ([38], Sect. III). In order to study the computational impact of this modification,

we compared the results with the improved projection approximation to previous results240

[27] for ε = 10−7.

With regard to upcoming generations of AT sensors that are expected to feature more

dense laser grids, we further investigated the influence of the grid density on the registration

error. The evaluation was performed on realistic AT simulator data with grids of 11×11,

22×22, 33×33 and 44×44 lines.245
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FIG. 3. Validation of the model on a male (a) and female (b) NCAT phantom. Given are boxplots

of the absolute registration error in [mm] in terms of |dMp | on φp(G) w.r.t. discrete ranges of

respiration amplitude.

IV. RESULTS

A. Validation on 4-D CT Respiration Phantom Data

Quantitative results on NCAT phantom data are given in Fig. 3. The boxplots illustrate

the absolute registration error w.r.t. discrete ranges of respiration amplitude for the male

and female phantom. The results for the arms-up and arms-down datasets are combined per250

gender. Even for instances with a large initial surface mismatch in the scale of 9-12 mm, the

median residual error in terms of |dMp | on φp(G) is substantially smaller than 0.1 mm. The

error scales directly proportional to the respiration amplitude (cf. Sect. IV B). Qualitative

results are depicted in Fig. 4. With the female phantom, the AT coverage of the breast is

limited. This becomes evident with an increased local error around the outer part of the255

female breast. However, the impact is moderate due to the incorporation of prior shape

knowledge and the higher order regularization of φ ([38], Sect. I C). These model priors

are also beneficial in cases of (self-)occlusion. For instance, due to the viewing angle of 30◦

w.r.t. the treatment table plane, the upper part of the female breast in Fig. 4 is self-occluded,
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NCAT Male (arms-up) NCAT Female (arms-down)

p: 2→1 p: 4→1 p: 2→1 p: 4→1

G, Yp and Y1

dG on Mp, Yp

dMp on φp(G), Yp

φp on G

FIG. 4. Qualitative NCAT results for reconstruction of the deformation field for phases p = 2, 4

w.r.t. p = 1 as reference (full expiration), for male arms-up (left) and female arms-down (right)

data. First row: G, Yp (outer contour) and Y1 ⊂ G. Second row: Initial mismatch in terms of

dG on Mp, and Yp. Third row: Residual mismatch after application of the proposed method in

terms of dMp on φp(G), and Yp. Fourth row: Glyph visualization of the displacement field φp on

G, |φp − id| is color coded.

but can be reconstructed in a robust manner.260

B. Prototype Study on Healthy Subjects

Qualitative results of the prototype study on healthy subjects are depicted in Fig. 5.

To facilitate an anatomic interpretation of the deformation, we overlaid the color texture

on G that was acquired with our SL device. Note that an analysis of the deformation φp

allows for a distinct differentiation between abdominal and thoracic respiratory deformation265

patterns and inter-subject variations in the respiration amplitude. For instance, in the case

of thoracic respiration, subject S1 and subject S2 exhibit a similar motion pattern in the

thorax region but substantial differences in the abdominal region.

Quantitative results over all subjects on realistic AT data are given in Fig. 6. Fig. 6a
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Abdominal Respiration

p: 2→1

p: 3→1

p: 4→1

Thoracic Respiration

p: 2→1

p: 3→1

p: 4→1

S1 S2 S3 S4

FIG. 5. Results on real AT data from four subjects (left to right), for abdominal (top) and thoracic

(bottom) respiration, for phases p = 2, 3, 4. For each subject, the reference surface G = M1 and

the AT sampling data Yp are shown in the first row (Y2 most inner contour, Y4 most outer contour,

Y3 in between). The following three rows illustrate the estimated displacement fields φ2, φ3, φ4 on

G. For the glyph visualization of φp on G, |φp − id| is color coded in [mm].

depicts boxplots of the initial mismatch |dG| on Mp and residual mismatch |dMp | on φp(G)270

over all 16 subjects. Here, the results for abdominal and thoracic respiration are evaluated

in a common plot. While Fig. 6a gives an impression about the overall performance, Fig. 6b

shows the residual mismatch in a more detailed scale. Figs. 6c,d depict the residual error

for discrete respiration phases over all subjects, for abdominal (Fig. 6c) and thoracic respi-

ration (Fig. 6d). The reconstruction error scales approximately linearly with the respiration275
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FIG. 6. Quantitative results of the prototype study.(a) Results per individual subject, comparing

the initial mismatch(dark gray bars) vs. residual mismatch(light gray bars) as boxplots over both

respiration types (abdominal and thoracic) and all phases. (b) Residual mismatch per subject.

(c,d) Boxplots of the residual mismatch for discrete phases of the respiration cycle, for abdominal

(c) and thoracic (d) respiration, over all subjects.

amplitude observing a peak at the respiration state of fully inhale (phase 4/5). The boxplot

whiskers indicate that >99% of the residual error is < 1 mm.

Over all subjects, respiration types and respiration phases, the mean reconstruction error

in terms of residual mismatch |dMp| on φp(G) was ± 0.21 mm and ± 0.25 mm for abdom-

inal and thoracic respiration, respectively, see Table I. The 95th percentile did not exceed280

0.93 mm for abdominal respiration and 1.17 mm for thoracic respiration, for any subject. For
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TABLE I. Results over all subjects, respiration types and phases. Given are the mean, median

and 95th percentile of the initial and residual mismatch in [mm], for abdominal respiration (A),

thoracic respiration (T) and the entire dataset covering both respiration types (A/T). The last

row states numbers in terms of residual mesh-to-mesh mismatch from related work by Schaerer et

al. [26].

Initial Mismatch [mm] Residual Mismatch [mm]

A T A/T A T A/T

Mean 5.09 6.24 5.66 0.21 0.25 0.23

Median 3.95 4.66 4.23 0.13 0.15 0.14

95th Percentile 14.0 17.1 15.2 0.69 0.82 0.76

[26], 95th Percentile - - 6.1 - - 1.08

a detailed overview of the initial and residual mismatch (95th percentile) for the individual

subjects, separated for abdominal and thoracic respiration, we refer to the appendix ([38],

Sect. IV). We assume the moderately higher reconstruction error for thoracic respiration

to result from the higher initial mismatch of thoracic respiration data (mean: 6.24 mm)285

compared to abdominal data (mean: 5.09 mm).

C. Parameter Study

Reconstruction accuracy and runtime with and without an appropriate initialization of φ

and Ψ are compared in Fig. 7a. The experiments illustrate that initializing φ and Ψ reduces

both the registration error and the number of iterations needed for the optimization scheme290

to convergence. Over all datasets, estimate initialization reduced runtime by 19.2%. The

results for different convergence thresholds (ε = 10−4 and ε = 10−7) are depicted in Fig. 7b.

The boxplots indicate that a reduction of ε by a factor of 103 results in a small improvement

in reconstruction accuracy at the cost of a substantial increase in solver iterations. In an

empirical study, we found that the convergence threshold of ε = 10−4 used in the experiments295

gave the best tradeoff between accuracy and runtime.

Fig. 7c illustrates that both projection approximations result in a comparable reconstruc-

tion accuracy while the new improved approximation reduces runtime substantially (48.2%
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FIG. 7. Parameter Study. Given are the residual mismatch (top row) and the number of iterations

until convergence (bottom row), respectively. (a) Results without (dark gray) and with (light

gray) initialization of φ and Ψ. (b) Impact of the convergence threshold, results for ε = 10−7 are

depicted in dark gray, results for ε = 10−4 in light gray. (c) Impact of the improved projection

approximation (light gray) compared to our previous work [27] (dark gray). To investigate the

impact of different convergence thresholds and projection approximations independent from the

effect of initializing φ and Ψ, the results in (b) and (c) were generated without initialization.

over all subjects). Note that we used ε = 10−7 instead of ε = 10−4 as convergence threshold

to separate the effect of the improved approximation from the influence of the convergence300

threshold.

Quantitative results w.r.t. the influence of the AT grid density are depicted in Fig. 8.

Indeed, a denser grid of 22×22 lines compared to the currently used 11×11 lines leads to

a reduction of the reconstruction error by 49.0%. Further refinement does not noticeably

improve the results - probably due to the low-frequent surface geometry of the human torso305
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FIG. 8. Influence of AT grid density on registration accuracy. Given are boxplots for laser grid

resolutions of 11×11, 22×22, 33×33, 44×44 sampling lines (grouped as four adjacent entries colored

from dark to light gray), for increasing ranges of respiration amplitude (from left to right).

D. Runtime Performance

Let us comment on the runtime performance in our volunteer study. The total runtime

per frame was 2.3 s, measured as mean over all datasets of the volunteer study. In detail,

when initializing φ with the estimates from the previous phase and Ψ with Ψ(yj) = P (yj),

the optimization process took 38.2±2.1 iterations to converge for one subject, in average310

over all subjects, respiration types and respiration phases. With our proof of concept imple-

mentation, a single gradient descent step on a single core of a Xeon X5550 2.67GHz CPU

takes ≈ 60 ms. The resulting per-frame runtime of 2.3 s substantially outperforms related

work on dense-to-dense surface registration [26] with runtimes in the scale of minutes (25

iterations, 11.9 s per iteration on comparable CPU and for a surface mesh with a comparable315

number of vertices).

V. DISCUSSION

We have investigated the performance of the proposed method on synthetic, realistic and

real data. On 256 datasets from 16 subjects with an average initial mismatch of 5.66 mm,

the mean reconstruction error was ±0.23 mm and the 95th percentile did not exceed 1.17 mm320

for any subject. In the experiments (Sect. IV C), it was further shown that a proper ini-

tialization of the displacements φ and Ψ and the improved approximation of the projection
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compared to our first approach [27] reduces the runtime by 19.2% and 48.2%, respectively.

Higher framerates are possible for both the line pattern projection systems and the observing

camera. Moreover, denser laser lines can be realized by adapting the setup to the required325

measurement volume.

With regard to the state-of-the-art in non-rigid surface deformation estimation, in par-

ticular in RT, let us compare our results to recent work by Schaerer et al. [26] on motion

tracking with dense surfaces. In their study on five male subjects and dense surface acqui-

sitions from three respiration phases, the authors achieved a residual mismatch of 1.08 mm330

(95th percentile) in terms of mesh-to-mesh surface distance using non-rigid ICP surface reg-

istration [34]. Note that our result of 0.76 mm for the 95th percentile residual mismatch

over all subjects and both respiration types slightly outperform these numbers, see Table I.

In addition, let us remark that compared to to the volunteers from Ref. [26], many of

the subjects in our study exhibited a considerably higher respiration amplitude and initial335

mismatch (15.2 mm vs. 6.1 mm), cf. Table I. Hence, the low residual mismatch indicates

that our method can reliably recover the dense displacement field from a sparse sampling of

the instantaneous patient state using prior shape knowledge, even in the presence of strong

respiration.

Let us further distinguish our approach from commercial RI-based IGRT solutions. First340

and foremost, available solutions do not support dense sampling in real-time [20, 21] or at the

cost of a limited field of view [19, 23, 24]. For instance, note that the Sentinel system (C-RAD

AB, Uppsala, Sweden) [20] and the Galaxy system (LAP GmbH, Lüneburg, Germany) [21]

take several seconds for a complete scan of the torso, and the real-time mode of the VisionRT

stereo system (VisionRT Ltd., London, UK) [23] is limited to interactive framerates of 1.5-345

7.5 Hz, depending on the size of the surface of interest. The temporal resolution of these

solutions may be insufficient to characterize respiratory motion [35]. We expect the low

framerates to result from the underlying measurement technologies. Beside its limitations

in terms of sampling density and speed, respectively, commercially available solutions often

imply high costs in terms of hardware and are subject to measurement uncertainties due350

to the underlying sampling principles e.g. active stereo photogrammetry [19, 23, 24] or

consecutive light-sectioning using mechanically swept lasers [20, 21]. Third and last, the

general focus of these systems is on patient positioning [25] and none of them features dense

and non-rigid respiratory motion tracking.
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In addition to the aforementioned hardware-related benefits of the AT sensor for res-355

piratory motion tracking, the CPU implementation of our surface registration approach

outperforms the non-rigid ICP used by Schaerer et al. substantially in terms of runtime

performance (two orders of magnitude). As our approach exhibits an inherently high degree

of data parallelism we will consider a GPU implementation [36] in future work to achieve

real-time operation required for clinical applications.360

IGRT solutions are typically expected to serve both tasks of patient positioning prior

to treatment and respiratory motion management during dose delivery. RI-based systems

perform patient positioning by acquiring a 3-D sampling of the patient shape and registering

it to a reference surface extracted from planning data. This requires a dense sampling of

the patient’s surface in the treatment position and a statically mounted AT sensor would365

only recover sparse 3-D information along the projection grid. However, note that using the

AT sensor in combination with the steerable treatment couch enables the reconstruction of

dense 3-D sampling data.

VI. CONCLUSIONS AND OUTLOOK

We have introduced a variational approach to marker-less reconstruction of dense non-370

rigid 4-D surface motion fields from sparse but accurate AT sampling data. In a compre-

hensive study on 16 subjects, we demonstrated the capability of the algorithm to precisely

reconstruct the dense respiratory displacement field using prior shape knowledge from plan-

ning data. In the field of RT, the 4-D motion fields can be used as biologically reasonable

high-dimensional respiration surrogates for gated RT, as input for accurate external-internal375

motion correlation models in respiration-synchronized RT, for motion compensated patient

positioning [37], and to reconstruct the intra-fractional body shape for patient setup moni-

toring during dose delivery. Beyond its application in RT, the approach holds potential for

diagnostic and therapeutic applications.
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[24] P. J. Schöffel, W. Harms, G. Sroka-Perez, W. Schlegel, and C. P. Karger, “Accuracy of a

commercial optical 3D surface imaging system for realignment of patients for radiotherapy of

the thorax.,” Phys. Med. Biol., vol. 52, pp. 3949–3963, Jul 2007.

[25] T. Willoughby, J. Lehmann, J. A. Bencomo, S. K. Jani, L. Santanam, A. Sethi, T. D. Solberg,465

W. A. Tome, and T. J. Waldron, “Quality assurance for nonradiographic radiotherapy localiza-

tion and positioning systems: report of task group 147.,” Med. Phys., vol. 39, pp. 1728–1747,

Apr 2012.

[26] J. Schaerer, A. Fassi, M. Riboldi, P. Cerveri, G. Baroni, and D. Sarrut, “Multi-dimensional

respiratory motion tracking from markerless optical surface imaging based on deformable mesh470

registration.,” Phys. Med. Biol., vol. 57, no. 2, pp. 357–373, 2012.

[27] S. Bauer, B. Berkels, S. Ettl, O. Arold, J. Hornegger, and M. Rumpf, “Marker-less reconstruc-

tion of dense 4-D surface motion fields using active laser triangulation for respiratory motion

22



management,” in MICCAI, Part I (N. Ayache, H. Delingette, P. Golland, and K. Mori, eds.),

vol. 7510 of LNCS, pp. 414–421, 2012.475

[28] P. Cachier and D. Rey, “Symmetrization of the non-rigid registration problem using inversion-

invariant energies: Application to multiple sclerosis,” in MICCAI 2000 (S. Delp, A. DiGoia,

and B. Jaramaz, eds.), vol. 1935 of LNCS, pp. 697–708, Springer, 2000.

[29] G. Christensen and H. Johnson, “Consistent image registration,” IEEE Trans. Med. Imaging.,

vol. 20, no. 7, pp. 568–582, 2001.480

[30] G. Sundaramoorthi, A. Yezzi, and A. Mennucci, “Sobolev active contours,” Int. J. Comput.

Vision, vol. 73, no. 3, pp. 345–366, 2007.

[31] L. Armijo, “Minimization of functions having Lipschitz continuous first partial derivatives,”

Pacific J. Math., vol. 16, no. 1, pp. 1–3, 1966.
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