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Abstract Proper cloud segmentation can serve as an important precursor
to predicting the output of solar power plants. However, due to the high
variability of cloud appearance, and the high dynamic range between
different sky regions, cloud segmentation is a surprisingly difficult task.
In this paper, we present an approach to cloud segmentation and classi-
fication that is based on representation learning. Texture primitives of
cloud regions are represented within a restricted Boltzmann Machine.
Quantitative results are encouraging. Experimental results yield a rela-
tive improvement of the unweighted average (pixelwise) precision on a
three-class problem by 11% to 94% in comparison to prior work.

1 Introduction

Solar power plants suffer from sudden, sharp drop-offs in the energy output
when a single, thick cloud moves in front of the sun. This forces suppliers to
combine each power plant with expensive batteries for backup. If it is possible
to reliably predict such power drop-offs, slower backup systems can be set up,
which lowers costs considerably. For predicting such sun occlusions, several groups
investigate the exploitation of ground-based camera systems that observe the
sky, e.g. [2, 4, 10]. Such systems aim to track the overall cloud motion in the sky.

However, to assess the impact of an occluding cloud on the generated power
profile, it is very reasonable to setup predictors that incorporate the consistency
and exact shape of the cloud. Towards this goal, we present a vision-based method
that distinguishes sky, thin clouds and dense clouds.

Cloud segmentation is a challenging problem. Its main difficulty lies in the
varying appearance and non-rigidity of clouds, as well as the high brightness close
to the sun. Explicit feature design is difficult: structural features face the fact
that there is barely any distinct “cloud structure”. Using color also yields severe
ambiguities due to the color similarity of denser clouds with non-cloud regions [11]:
no sunlight passes through dense clouds, and these clouds are only illuminated by
the light reflected from the earth’s surface. This leads to a bluish-grey color that
is hard to distinguish from the color of the sky. The opposite situation, blue sky
with the sun clearly visible, is also difficult to segment correctly. Around the sun
lens flares occur, or a large glowing region is visible. Lastly, contextual information
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Figure 1. Part of a sky image showing the difficulties when segmenting or classifying
clouds. The dark parts of clouds (example region dashed) and sky have a similar color.
For scale reference a patch of 40× 40 pixels is marked.

is difficult to incorporate correctly. For less overcast days, one may model dark
clouds to be small dark-blue patches surrounded by white. However, with more
clouds in the sky, the sky itself will only be visible as small dark-blue patches
surrounded by white clouds. We are facing several such ambiguous situations.

We address these challenges by learning a representation of cloud structure
from unlabeled data rather than designing features by hand. As training data,
we use small image patches extracted from sky-images. The learning of the
representation amounts to the training of a Restricted Boltzmann Machine (RBM)
or Deep Belief Network (DBN). Since training is unsupervised, a large number
of image patches can be used, as manual annotation is not required. To classify
the clouds, the learned representation is treated as regular filters, i. e. sky-images
are convolved with the learned ’filters’ and classification is done pixel by pixel
using the result of the convolution combined with the red/blue ratio as features.

The rest of the paper is organized as follows. Section 2 gives an overview over
related work in cloud classification and representation learning. The concept of
representation learning with Restricted Boltzmann Machines and Deep Belief
Networks is introduced in Section 3. For comparison, a classical approach using
handcrafted features is briefly illustrated in Section 4. The proposed use of a
learned representation for cloud classification is evaluated in Section 5 and some
examples of learned representations are shown and discussed in Section 5.1. This
is followed by the evaluation of the actual cloud classification in Section 5.3. A
short conclusion is given in Section 6.

2 Related Work

Recently, cloud segmentation or classification raised attention by meteorologists
and researchers working on the integration of renewable energies into the existing
power grid. The baseline method employs fixed thresholding on the ratio of
the red and the blue color channel [12]. In a more recent work, Chow et al. [4]
expand this approach by using a reference model trained on clear blue sky.
Their model incorporates the effects of aerosols and airmass, which influence
the perceived color of the sky near the horizon. Other approaches, e. g. the one
by Richards et al. [11], investigate the use of texture as an additional feature.
These texture features consist of combinations of the weighted average and
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Figure 2. Restricted Boltzmann Machine: a neural net consisting of n visible and m
hidden units. Connections between nodes are undirected.

basic spot and edge detectors over regions of the size of 3 × 3 pixels. In the
same work, Richards et al. also extended the segmentation of the clouds to a
classification into different cloud types. Unfortunately, the work does not provide
a quantitative performance evaluation. We compare our results to the baseline
method of color thresholding and a combination of color and texture features.
Instead of the texture features used by Richards et al., we are using the slightly
more sophisticated Gabor filters.

Since Hinton et al. [6] presented an efficient approach for learning repre-
sentations with Deep Belief Networks by pretraining each layer of the network
individually, representation learning has become one of the most active research
topics in image classification. For example, methods from representation learning
have been used to improve the classification rates on several large-scale classifica-
tion problems like MNIST [8]. For a recent survey article over various methods for
representation learning and their applications one may refer to [1]. In our work,
we focus on using Restricted Boltzmann Machines and Deep Belief Networks
for learning representations. Note that Restricted Boltzmann Machines, which
form a building block for DBNs, were originally invented under the name of
“Harmonium” by Smolensky et al. [13] in 1986.

3 Representation Learning

Representation learning aims to learn a suitable representation from large amounts
of unlabeled data. We present two variations of artificial neural networks, the
Restricted Boltzmann Machine and the Deep Belief Network, and the fast training
algorithm Contrastive Divergence introduced by Hinton et al. [6]. These are used
to learn a representation of cloud structure. For a more extensive introduction to
their principles and training, please refer to Hinton et al. [6, 7].

3.1 Restricted Boltzmann Machines (RBM)

RBMs are neural networks, where the neurons form a bipartite graph (cf. Fig. 2)
and connections between nodes are undirected. The two layers of the net are
referred to as visible and hidden, their nodes are denoted as vi and hj , respectively.
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Figure 3. Schematic of the DBN configuration that is used. The two lower levels are
pretrained as an RBM. Afterwards the weights are fixed and the layers are treated as a
regular neural net. The top two layers form an RBM with undirected connections.

The number of visible nodes is determined by the size of the input patch, while
the number of hidden nodes can be chosen freely. We are choosing binary nodes
in the hidden layer, and Gaussian nodes [15] for the visible layer.

The activation probability for the binary hidden nodes is given by:

P (hj = 1|v) = LS
(
bj +

n∑
i=1

wi,jvi
)
, (1)

where n = |v| is the number of visible nodes, LS denotes the logistic sigmoid
function, bj denotes the bias for the visible node hj and wi,j are the individual
weights.

In contrast, Gaussian nodes are linear nodes with an independent Gaussian
noise. Thus, for input patches coming from natural images this type of nodes
is more suitable. Besides the bias ai, each node has a standard deviation σi
associated with it. Instead of learning the standard deviation during training, it
is easier to first normalize the training data to have zero mean and unit variance.
Given the values of the hidden nodes, the value of a Gaussian visible node is then

vi = ai +

m∑
j=1

wi,jhj + n̂i (2)

where m denotes the number of hidden nodes and n̂i is Gaussian noise, i. e.
n̂ ∼ N(0, 1) .

3.2 Contrastive Divergence (CD-k)

Hinton et al. [6] introduced Contrastive Divergence as an efficient learning
algorithm for RBMs and DBNs. The general learning rule for RBMs is

∂ log p(v)

∂wij
= 〈vihj〉data − 〈vihj〉model , (3)



Representation Learning for Cloud Classification 5

where for 〈vihj〉data the values of the visible nodes are clamped to the current
training data, and 〈vihj〉model represents the current learned model of the data.
To compute this value, in theory a Markov chain with the current training sample
needs to be started and then Gibbs sampling (i. e. sampling the hidden nodes and
then reconstructing the visible nodes) is performed until the chain has reached its
equilibrium state. As this is not feasible for training, Hinton et al. [6] introduced
Contrastive Divergence, where 〈vihj〉model is replaced with 〈vihj〉recon. The latter
is calculated by performing k steps of Gibbs sampling, starting from the current
training sample. The calculated updates for the weight matrix are then multiplied
by a factor ε� 1, the learning rate.

We use a slight modification of this algorithm, where the Markov chain is
persistent and is only restarted after each full iteration over all training samples.
Furthermore, we use momentum to speed up the training and we encourage a
sparse activation of the hidden nodes by introducing a penalty term if the average
activation probability of a hidden node is above or below the target activation
probability (sparsity target) of 10%. A comprehensive description of the variants
of the Contrastive Divergence, and practical hints for training RBMs can be
found in the work by Hinton [7].

3.3 Deep Belief Networks (DBN)

An extension of RBMs are DBNs, neural networks consisting of more than
two layers. While the top two layers have undirected connections and can be
interpreted as an RBM, the lower levels function as a regular neural network.
Similar to the RBMs, our DBNs consist of a visible layer of Gaussian nodes, while
all hidden layers use binary nodes. For training, the greedy, layer-wise strategy is
used [6], where starting from the bottom, each pair of layers is seen as an RBM
and is trained using Contrastive Divergence. After the training of such an RBM
has finished, its weights are set fixed. Next, the activation probabilities for the
current hidden nodes for all training samples are calculated and this is used for
training the RBMs of the next two layers.

4 Handcrafted Features using Gabor Filters

For comparison, we briefly describe an algorithm to cloud classification using
handcrafted features. We follow the idea of Richards et al. [11], but use Gabor
filters [5] to describe the cloud texture. With a total of 32 filters, this filter bank
spans over different scales (σx, σy), frequencies (F ) and orientations (θ).

G(x, y) = N · exp

(
x2r
2σ2

x

+
y2r

2σ2
y

)
· cos(2π F xr) (4)

where xr = x sin θ + y cos θ and yr = x cos θ − y sin θ denote rotated coordinates
of x and y. Fig. 4 shows an example of different Gabor filters, generated by using
different orientations and frequencies.
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Figure 4. Gabor Filters in different orientations and frequencies.

Figure 5. Representation of cloud structure, obtained by training a RBM with 200
hidden nodes with CD-1.

5 Evaluation

For representation learning, the usual pattern recognition pipeline of feature
extraction, supervised training and subsequent testing of the classifier has to be
slightly extended. First, the RBM or DBN is trained in an unsupervised manner
(see Sec. 5.1). Then, the weight matrices of the RBM or DBN are interpreted
as filters. The filter output is used as a feature vector within a classical pattern
recognition pipeline. The evaluation protocol and error metrics are presented in
Section 5.2, and quantitative results in Section 5.3.

5.1 Training of Learned Representations

We are considering two learned representations, RBM and DBN. The represen-
tations learned by an RBM with 200 hidden nodes is shown in Fig. 5. Fig. 6
depicts the learned representation using a three layer DBN that extends the
RBM and has 100 hidden nodes in the top layer. The figures show that cloud
structures are well represented and encourage to use these learned representations
as discriminative features for cloud structures.
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Figure 6. Representation of cloud structure, obtained by training a three layer DBN.
The RBM weights shown in Fig. 5 were used for the two lower levels, while the uppermost
layer with 100 hidden nodes was trained with CD-1.

Training Data For training the RBM or DBN, we use small patches of sky
images of 40× 40 pixels (cf. Fig. 1). These are extracted from 320 sky images
that were captured over the course of one day. Out of these images, a total of
about 160 000 non-overlapping patches are extracted and used for training.

Normalization Two normalization steps are applied. Since our aim is to learn a
representation of cloud structure, the absolute brightness is not important. Hence,
we subtract from each patch its mean intensity. As a second step, pixel variation
needs to be normalized. This comes from the fact that Gaussian visible nodes are
required to model patches of natural images (cf. Section 3.1). To avoid learning
the standard deviation of each node during training, each pixel of the patches is
normalized over all training samples to have zero mean and unit variance.

RBM and DBN Parameters The RBM is trained with 200 binary hidden
nodes using the Contrastive Divergence algorithm with one step of Gibbs sampling
(CD-1). The learning rate ε is set to 0.00001, momentum m to 0.9 and the sparsity
target to 0.1 with a penalty factor of 1.0. Training consists of 750 epochs, and
the weight updates are calculated for mini-batches of size 100.

This RBM is also used as the lowest layer of the three layer DBN. For training
the latter, the following parameters are used: ε = 0.001, m = 0.9, sparsity target
0.1 and sparsity penalty 0.01. Mini-batch size is 100, and the training algorithm
runs for 500 epochs.

5.2 Evaluation Protocol and Error Metrics

We treat cloud classification as a three class problem, with the classes sky,
white cloud and thick cloud. This classification task exhibits some particular
characteristics. A large number of training samples is available when classifying
each pixel of the data. However, the distribution of the label occurrences is
strongly skewed among the large number of samples. The number of sky pixels
is several orders of magnitude higher than the number of thick cloud pixels.
For training, it is important that this spread between label occurrences is not
too large, since our goal is a classifier that can safely distinguish between the
individual classes. Thus, we set the maximum spread between the number of
class occurrences for training to two, i. e. the number of samples in one class is
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at most by a factor two higher than the number of the other classes. For the
classes with a higher number of occurrences, samples are randomly drawn from
the total number of samples of the class.

Since we are interested in a performance measure that is independent of the
imbalances in class occurrence, we are using the unweighted average recall (UAR)
and unweighted average precision (UAP). These measures are commonly used in
speech recognition [14]. UAR and UAP are simply the unweighted averages of
the recall and precision values of all classes. Precision and recall are defined as:

PR =
TP

TP + FP
, RE =

TP

TP + FN
, (5)

where TP denotes the number of true positives, FP the number of false positives
and FN the number of false negatives. Precision (PR) relates to the classifier’s
ability to identify positive results, while recall (RE) shows the probability that a
class is identified correctly. Consequently, UAP and UAR are computed as

UAP =
1

K

K∑
k=1

PRk , UAR =
1

K

K∑
k=1

REk , (6)

where K denotes the number of classes, i. e. in our case K = 3.

5.3 Results and Discussion

Overall, we compare four different types of features for cloud classification. As a
baseline method we are using color information as a single feature. This color
information is the ratio of the red and blue channel and widely used in cloud
segmentation [4, 12]. In this ratio, the distinction between white clouds and blue
sky is the greatest. The second feature set is a combination of the color feature
with Gabor filters. This set is closely related to the work of Richards et al. [11],
who also use color and texture features. The third feature set contains the color
feature and in addition the filters learned with an RBM that are shown in Fig. 5.
The last feature set combines the color feature and filters learned with a three
layer DBN.

For the classification a Random ForestTM [3] classifier is used. A total of about
500 000 samples are extracted from several sky images and labelled manually.
350 000 samples are used for training the Random Forest. During training cross-
validation is used to find suitable parameters. The remaining 150 000 unseen
samples are used for the evaluation. Particular care was taken that samples from
one image were taken either for training, validation or testing, to avoid overfitting.
A different set of sky images that was acquired at a different time and place, is
used for learning the representation of cloud structures (i. e. training the RBM).
That ensures that the learned representation is not directly fitted to the occurring
clouds in the test set.

All classification results are summarized in Table 1. The upper part contains
results on the features evaluated individually, the lower part on the combinations
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Table 1. Overall classification results for the three class cloud classification problem
using the unweighted average precision (UAP) and unweighted average recall (UAR)
for the test set. The tables show the results using one single feature set (top) and the
color ratio feature in combination with Gabor filters and the learned representations
(bottom).

Single features UAP UAR

color (baseline) 0.85 0.83
Gabor 0.69 0.63
RBM 0.77 0.75
DBN 0.81 0.80

Feature combinations UAP UAR

color + Gabor 0.89 0.86
color + RBM 0.92 0.88
color + DBN 0.94 0.90

of features. We set color features as a baseline [12]. Gabor features, RBM and
DBN in the top of Table 1 are computed on grayscale images. It turns out, that
the baseline color features yield high UAP and UAR of 85% and 83%, resp.,
justifying its common use for cloud classification. Gabor filters perform worst,
indicating that structural information alone does not solve this task well. RBM
and DBN perform slightly better than Gabor. The slight increase between RBM
and DBN meets the expectation that increasing the number of layers leads to a
more descriptive learned representation.

In Table 1 (bottom) evaluation results are shown on combinations of color
and texture (or structure) features. Interestingly, the combination of color and
Gabor filters only slightly increases the performance over using solely color. This
is in agreement with the texture classification work by Mäenpää et al. [9], who
state that color and texture filters are not able to exploit their complementary
information to full extend. Overall, the best result is obtained by combining the
color feature and the representation learned with a three layer DBN. Both UAP
and UAR are improved considerably. The relative improvement over the baseline
is 11% and 8%, respectively.

6 Conclusion

For local, short-term predictions of solar power production, researchers investigate
ground-based camera systems to monitor cloud movement in the sky. Cloud
segmentation and thickness classification can act as important components in
such monitoring systems.

We propose features from representation learning for a novel method for
cloud segmentation and classification. In contrast to traditional, fixed texture
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filters, the proposed descriptors for cloud structure are learned from unlabeled
sky images. We evaluate these learned features by posing the segmentation of
clouds as a three-class classification problem. Quantitative results demonstrate
that representation learning outperforms classical texture features like Gabor
filters by a large margin. The best performance is achieved using a Deep Belief
Network, which yields a relative improvement over the baseline by 11%.
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