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Abstract
Articulation and phonation is affected in 70 % to 90 % of

patients with Parkinson’s disease (PD). This study focuses on
the question whether speech carries information about 1. PD
being present at a speaker or not, and 2. estimating the sever-
ity of PD (if present). We first perform classification experi-
ments focusing on the automatic detection of PD as a 2-class
problem (PD vs. healthy speakers). The detection of severity
is described as a 3-class task based on the Unified Parkinson’s
Disease Rating Scale (UPDRS) ratings. We employ acous-
tic, prosodic and glottal features on different kinds of speech
tests: various syllable repetition tasks, read sentences and texts,
and monologues. Classification is performed in either case by
SVMs. We report recognition results of 81.9 % when trying to
differentiate between normally speaking persons and speakers
with PD. With system fusion we achieved a recognition results
of 59.1 % on the task of UPDRS classification.
Index Terms: Parkinson’s Disease, pathologic speech, speech
analysis

1. Introduction
Parkinson’s disease (PD) is a degenerative disorder of the cen-
tral nervous system. It results from the death of dopamine-
containing cells in the substantia nigra, a region of the midbrain
and is the second most common neurodegenerative disorder af-
ter Alzheimer’s disease [1]. PD accounts for a variety of motor
(shaking, rigidity, movement difficulties, and communication)
and non-motor deficits (effects on the sensory system, sleep,
and emotion) with speech being affected in between 70 % and
90 % of all PD patients [2]. Medical treatment alleviates certain
symptoms, but there is no causal cure now available, and early
diagnosis is critical for maximizing the effect of treatment and
improving the quality of the patient’s life [3].

Several speaking tasks have been developed for the evalua-
tion of PD speech and voice. The most traditional of them are
sustained phonation, rapid syllable repetition, variable reading
of short sentences, longer passages and freely spoken sponta-
neous speech [4].

In a previous work [5] we focused on an automatic detec-
tion of PD speakers in early stages based on a small dataset of
Czech speakers [6]. We used systems based on different lev-
els of voice and speech (phonation, articulation and prosody) in
order to evaluate which speech levels and speech tests are the
most discriminative ones for an automatic detection (classifica-
tion task with two classes) of PD speakers in early stages.

In this work we made use of a larger German dataset of

88 speakers with PD and 88 control speakers performing var-
ious PD-related speech tests. Additionally, the dataset con-
tains labels of the Unified Parkinson’s Disease Rating Scale
III (UPDRS-III). UPDRS is a long-term questionnaire with 14
questions that evaluates Motor Symptoms of PD patients. The
results of the questionnaire results in an integer scale ranging
from 0 (no impairment) to 56 (high impairment). One of the
questions focuses on the patient’s speech, the UPDRS-III in
general shows weak correlations with basic (prosodic) features
derived from speech [7]. In the long term, this research should
lead to an easy-to-use screening (does the person develeop PD)
and surveillance (did the disease of a PD person get worse) sys-
tem. Thus, we focused on a detection of PD speakers with vari-
ous systems and applied a system- and test-based fusion in order
to improve these 2-class results as well as on a classification of
the UPDRS scale, treating the UPDRS scale as three classes.

Four differently motivated systems are used in this work:
Phonation is modeled by a glottal excitation system based on
two-mass vocal fold modeling, articulation is modeled by spec-
tral features followed by statistical modeling, and the prosody
of a speaker is evaluated by a language-independent prosodic
analysis based on voiced/unvoiced (VUV) decision [8]. Addi-
tionally, openSMILE, an all-purpose system containing features
of all three levels, is used.

The outline of this paper is as follows: The data and the
different speech tasks are described in Sec. 2. The different
modeling approaches are presented in Sec. 3. Classification and
experimental results are presented in Sec. 4, followed by con-
cluding remarks in Sec. 5. The paper ends with a short summary
(Sec. 6).

2. Data
2.1. Patients

176 German native speakers participated in this study. 88 speak-
ers (44m, 44w) were diagnosed with PD and received medical
treatment. PD symptoms being present since 6.6 years (±5.8).
The patients’ mean age is 66.6 years (±9.0). 88 healthy speak-
ers (45m, 43w) with no history of neurological or communica-
tion disorders act as control group. Their mean age was 58.1
years (±14.2). Age distribution showed no significant differ-
ences between both groups (see Fig. 1).

The speech data was recorded in the Knappschaftskranken-
haus in Bochum, Germany, in a quiet room with a low ambient
noise level using an external condenser microphone. The voice
signals were sampled at 44.1 kHz, with 16-bit resolution. The
severity of Parkinson was evaluated regarding the the Unified
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Figure 1: Distribution of ages between PD speakers (black) and
control speakers (green)

Parkinson’s Disease Rating Scale III (UPDRS-III). UPDRS-III
is a long-term questionnaire with 14 questions that evaluates
Motor Symptoms of PD patients. The results of the question-
naire results in an integer scale ranging from 0 (no impairment)
to 56 (high impairment). One of the questions focuses on the
patient’s speech, The distribution among the PD speakers is
shown in Fig. 2. In order to characterize the detection of UP-
DRS scores as classification problem, we assigned the speakers
to three different UPDRS classes in order to achieve a dataset
balanced regarding the number of speakers. The classes and
number of according speakers are

• UPDRS score 0-15: 27 speakers

• UPDRS score 16-25: 32 speakers

• UPDRS score 26-55: 29 speakers
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Figure 2: Distribution of UPDRS scores among the 88 PD
speakers. The three different classes are shaded in gray.

2.2. Speech Tasks

Similar to the Czech dataset used in our previous work [5, 6],
also the German dataset contains speech of different tasks. We
selected a subset of these tasks in this work. These are:

• T01: spontaneous speech

• T02: read text (phonetically rich)

• T03: reading of Question-Answer-Pairs with stress on
certain words

• T04: read sentences

• T05: read words

• T11: sustained vowel

• T44: repetition of single syllable (pa)

• T77: repetition of 3 syllables (pa-ta-ka)

• T88: repetition of syllable sequence (pa-pe pa-pi pa-po
pa-pu)

3. Features
3.1. Acoustic Modeling

Gaussian Mixture Models (GMMs) model acoustic features,
namely Mel Frequency Cepstrum Coefficients (MFCCs) in a
statistical way. For acoustic feature extraction a Hamming
window with a size of 25 ms and a time shift of 10 ms is ap-
plied to the speech signal. Afterwards the Mel-spectrum with
26 triangular filters is calculated and processed by Discrete
Cosine Transform (DCT). We take the first 13 Mel-frequency
Cepstral coefficients including C0. Cepstral mean subtraction
(CMS) is applied and first- and second order derivatives of
these features are calculated over a context of 5 and 9 con-
secutive frames. In the end a 39-dimensional feature vector is
created. This feature vector is then modeled by GMMs. For
each speaker and speech task, one GMM is created by GMM-
UBM modeling. After extraction of the spectral features a
Universal Background Model (UBM), i.e., a class-independent
GMM with 128 Gaussians, is trained on the whole data set us-
ing the Expectation-Maximization (EM) algorithm. The means
of the UBM are adapted by relevance Maximum A Posteriori
(MAP) adaptation in order to get speaker and speech task spe-
cific GMMs. The means are then used as speaker- and task-
specific features, which form 4992-dimensional (128×39) fea-
ture vectors.

3.2. Prosodic Modeling

The prosodic system is not based on any speech recognition
output or forced time alignments. Thus, the prosodic features
are calculated whenever a voiced speech segment is found. The
voiced-unvoiced (VUV) decision is based on the zero crossing
rate, the normalized energy of the signal and the maximum en-
ergy.
Prosodic base features are calculated on the whole utterance.
These are fundamental frequency (F0), energy, VUV segments,
and pitch periods. The structured prosodic features are calcu-
lated on the voiced segments. Adjacent segments are merged,
when they are separated by less than 50 ms; the correspond-
ing F0 contour is interpolated to make the segmentation more
robust. Context segments, that merge two adjacent segments to-
gether, are used additionally. All in all 73 features are calculated
for each segment. They model F0, energy, duration, pauses,
jitter, and shimmer. Note that the F0 features are normalized
w.r.t. the mean F0 and transformed to semitones in order to be
comparable across gender. A detailed description of the whole
feature set is given in [8]. Finally, we compute mean, minimum,
maximum, and standard deviation of these 73 segment features.
This forms our 292-dimensional prosodic feature vector.

3.3. Glottal Excitation

The approach estimates the parameters of a physical glottis
model. The goal is to find pathology-related changes in the
model parameters that reflect voice-related parameters in order
to detect speakers suffering from PD. Therefore, the used glottis
model should ideally have physically meaningful parameters,
in contrast to just describing the shape of the excitation signal.
The model should be flexible enough to adequately represent
pathology-related changes of the voice.
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Considering these requirements we employed the two-mass
vocal fold model introduced by Ishizaka and Flanagan [9] and
described in Stevens [10] and illustrated in Fig. 3. The model
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Figure 3: Two-mass vocal fold model by Stevens [10].

consists of two pairs of masses, larger ones (M1) representing
the inferior part of the vocal folds, and smaller ones (M2) repre-
senting the superior part of the vocal folds. The model is sym-
metric, i.e., there is no differentiation between the masses of
the left and right side. The mechanism depends on the fact that
the inferior and superior part of the vocal folds do not move
together as a rigid body. There is a certain degree of freedom
to move relatively to each other [11]. This freedom is modeled
with a coupling compliance by springs (Cc, C1, C2). In order to
allow a distinct analysis of the excitation signal, the influence of
the vocal tract has to be omitted from the speech signal. As an
approximation of the excitation signal, the residue of the Lin-
ear Predictive Coding (LPC), an inverse filtering of the speech
signal with the LPC filter, is calculated in a data-driven opti-
mization procedure. The model parameters are now optimized
to match the synthetic excitation signal as close as possible to
the LPC residue. Finally, we compute mean, minimum, maxi-
mum, and standard deviation of the model parameters and use
these values as glottal feature vector.

3.4. openSMILE

We use the openSMILE toolkit as all-purpose toolkit [12] for
feature extraction. We focus on easy to extract acoustic fea-
tures and use the 1582 acoustic features of the INTERSPEECH
2010 Paralinguistic Challenge baseline [13]. This feature set is
obtained by applying a brute-force approach, in which first of
all 38 low-level descriptors and their first derivative are com-
puted on the frame level. In a second step, 21 functionals are
applied in order to obtain a feature vector of constant length for
the whole utterance. Table 1 gives an overview of the low-level
descriptors and associated functionals. 16 zero-information fea-
tures (e. g. the minimum of the fundamental frequency is always
zero) are removed from the set of 1596 possible features, and
two additional features (F0 number of onsets and turn duration)
are added, resulting in a set of 1582 features.

4. Classification and Experimenal Results
For each of the four systems classification was performed by
Support Vector Machines (SVMs) with linear kernel and Se-
quential Minimal Optimization for learning as implemented in
the WEKA toolkit [14]. In preliminary experiments we did
not observe any significant differences for various parameter
settings, so we decided to use a complexity parameter of 1.0.
Evaluation was done in a leave-one-speaker-out (LOO) manner

Descriptors Functionals

PCM loudness position max./min.
MFCC [0-14] arithm. mean, std. deviation
log Mel freq. band [0-7] skewness, kurtosis
LSP frequency [0-7] lin. regression coeff. 1/2
F0 by sub-harmonic sum. lin. regression error Q/A
F0 envelope quartile 1/2/3
voicing probability quartile range 2−1/3−1/3−2
jitter local percentile 1/99
jitter DDP percentile range 99−1
shimmer local up-level time 75/90

Table 1: Description of the acoustic features based on 38 low-
level descriptors and their first derivative and 21 functionals.

separately for each speech task.

Two different sets of experiments were performed with dif-
ferent goals. Detection of PD speakers (Sec. 4.1) is formulated
as a two-class classification task between PD and control speak-
ers. Classification of UPDRS (Sec. 4.2) scores among the 88
PD speakers is formulated as a three-class classification prob-
lem. For each set of experiments we evaluated the speech-
task-dependent recognition results of the stand-alone systems
(see Table 2 and 4). Additionally, all nine speech-tasks of one
speaker were treated as one audio set (see Table 3 and 5). For
each of the four experiments, a system fusion is performed by an
unweighted score-level fusion. Probability estimates for each
system were obtained by fitting regression models to the output
of the SVM [15]. The unweighted mean of these estimates is
then used as final class esimate. We intentionally did not use a
more sophisticated fusion approach, e.g., fusion by logistic re-
gression, like we did in [16]. For a fair evaluation, this would
require a segmentation of the data in order to train the logistic
regression component. For each experiment the percentage of
correctly classified speakers per single class, and the proportion
of unweighted average recall (UA) is given.

4.1. Detection of Parkinson Speakers – PD vs. Control
Speakers

The results of the 2-class problem of detecting whether a
speaker is suffering from PD or not are summarized and dis-
cussed in this section. Table 2 shows the task-dependent recog-
nition results. The acoustic system achieved the best result (UA
of 80.7 %) with task T04, which is a reading task of sentences.
However, there was no significant differences between the tasks
T01, T02, T04, T05 and T88 for the acoustic system. The
prosodic system achieved the best result (73.8 % UA) on the
task of repetition of sequences of alternating syllables (T77).
This task is motivated by the fact that PD speakers have dif-
ficulties in repeating different syllables. The energy/loudness
is said to diminish over time and PD speakers tend to speak
repeating syllables with variable speech rate [17]. The glottal
system achieved its best UA (68.8 %) on task T44 (repetition
of syllable /pa/). Different acoustic studies commonly revealed
a higher breathiness and harshness for PD speakers [18]. The
openSMILE system achieves a UA of 73.9 % on task T88. T88
focuses on a more complex repetition of syllable sequences. A
fusion of the different systems did not lead to an improved UA
result.

Table 3 shows the results achieved when all recordings tasks
are used in combination. This leads to a higher number of avail-
able speech data per speaker and results in higher UA results for
each stand-alone system. Again, a system fusion did not lead to
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system task % PD % CONTROL % UA

ACOUSTIC T04 87.5 73.9 80.7
PROS T77 76.1 71.6 73.8

GLOTTAL T44 63.6 73.9 68.8

OS T88 77.3 70.5 73.9

FUSION 90.9 65.9 80.0

Table 2: Task-dependent recognition results of the different
systems (ACOUSTIC,PROSODIC,GLOTTAL EXCITATION,
openSMILE) on the 2-class detection task (PD vs. Control).
The last column shows the result after system fusion.

system % PD % CONTROL % UA

ACOUSTIC 86.4 77.3 81.9
PROS 77.3 70.5 73.9

GLOTTAL 72.7 69.3 71.0

OS 78.4 72.7 75.6

FUSION 94.3 63.6 79.0

Table 3: Recognition results of the different systems (ACOUS-
TIC, PROSODIC, GLOTTAL EXCITATION, openSMILE) on
the 2-class detection task (PD vs. Control). All speech tasks
have been used in combination. The last column shows the re-
sult after system fusion.

improved recognition results.

4.2. Severity of PD: Classification of UPDRS score

The classification of UPDRS scores is addressed as a 3-class
task. Table 4 shows the task dependent recognition results of
the stand-alone systems and a fusion of theses systems. Again,
the best UA result (53.4 %) was achieved by the acoustic sys-
tem on the text-reading task T02. The prosodic system achieved
39.8 % UA on task T03 (reading question-answer-pairs with
stress on certain words). The glottal excitation system achieved
44.4 % UA on the text-reading task. Note that these tasks are
the more-complex task, where the focus lies more on speech
and articulation rather than on phonation. The openSMILE sys-
tem achieves an UA of 52.7 % with a more balanced result on
the three classes. Fusion of the four systems lead to an improve-
ment (59.1 % UA).

Using all recording tasks in combination did not achieve
an improved recognition result (see Table 5). We assume that
some of the speaking tasks are suited to discriminate between
healthy and PD speakers, but do not help (or even diminish) for
a classification of the UPDRS scores.

system task % U1 % U2 % U3 % UA

ACOUSTIC T88 59.3 59.4 41.4 53.4

PROS T03 44.4 40.6 34.5 39.8

GLOTTAL T02 44.4 40.6 48.3 44.4

OS T77 51.9 54.5 51.7 52.7

FUSION 44.4 62.5 69.0 59.1

Table 4: Task-dependent recognition results of the different
systems (ACOUSTIC, PROSODIC, GLOTTAL EXCITATION,
openSMILE) on the 3-class UPDRS task. The last column
shows the result after system fusion.

system % U1 % U2 %U3 % UA

ACOUSTIC 44.4 43.8 51.7 46.6
PROS 37.0 43.8 31.0 37.3

GLOTTAL 29.6 37.5 48.3 38.5

OS 44.4 31.3 34.5 36.7

FUSION 29.6 40.6 51.7 40.9

Table 5: Recognition results of the different systems (ACOUS-
TIC, PROSODIC, GLOTTAL EXCITATION, openSMILE) on
the 3-class UPDRS task. All speech tasks have been used in
combination. The last column shows the result after system fu-
sion.

5. Concluding Remarks

We did not do any feature selection, due to the fact that we do
not have enough data to split into data for feature selection and
for classification. For the same reason the fusion of the systems
performed by an unweighted score-level fusion that does not re-
quire tuning parameters. Thus, our results on system fusion are
not conclusive. For the detection task (PD vs. Control) a in-
crease of speech data lead to small improvements for all stand-
alone systems. The set-up of the data collection (aquiring only
a few minutes of speech) could be used for a cheap screening
task. The results, however, are not yet good enough for applica-
tion in a clinical screening task due to the high number of false
alarms.

The 3-class UPDRS-task is a much more difficult problem.
The score thresholds were mostly motivated by the fact that we
wanted to have a balanced set of classes in terms of number of
speakers. Especially the 3rd class spreads across a large range
of UPDRS scores. This is worsened by the fact that the med-
ication among the patients was not consistent. For the 3-class
UPDRS task an increase of speech data did not lead to recog-
nition improvement. A system fusion of the best stand-alone-
systems achieved a significant improvement. This can be ex-
plained by the fact that the recognition rates of each feature set
across the speech tasks were much less consistent than in the
detection task. Thus, one can argue that in the case of catego-
rization of severity the speech task plays an important role. A
brute force combination does not help. Still, our results indicate
that an appropriate combination of seatures and speech tasks
seems a promising approach. Also one has to keep in mind that
a surveillance system has several recordings of one speaker and
can thus perform a speaker normalization, which should lead to
significant improvements.

6. Summary

In this work we focused on the question whether speech carries
information about PD being present at a speaker and whether
the severity of PD can be classified automatically based on the
speech of persons. Four differently motivated system where
used for this task. We showed that using all speech tasks in com-
bination lead to an improved recognition result (81.9 % UA) for
the detection task (PD present or not). Using the speech data
in combination degraded the results on UPDRS classification.
But a system fusion on score level achieved an improvement.
59.1 % UA could be reached for this 3-class problem.
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[5] T. Bocklet, E. Nöth, G. Stemmer, H. Ruzickova, and J. Rusz, “De-
tection of Persons with Parkinsons Disease by Acoustic, Vocal,
and Prosodic Analysis,” in 2011 IEEE Automatic Speech Recog-
nition and Understanding Workshop (ASRU), I. S. P. Society, Ed.,
2011, pp. 478–483.

[6] J. Rusz, R. Cmejla, H. Ruzickova, and E. Ruzicka, “Quantitative
acoustic measurements for characterization of speech and voice
disorders in early untreated parkinsons disease,” Journal of the
Acoustical Society of America, vol. 129, pp. 350–367, 2011.

[7] A. Tsanas, M. A. Little, P. E. McSharry, and L. O. Ramig, “Accu-
rate telemonitoring of parkinsons disease progression by noninva-
sive speech tests,” IEEE Transactions on Biomedical Engineering,
vol. 57, no. 4, pp. 884–893, 2010.

[8] V. Zeissler, “Robuste Erkennung der prosodischen Phänomene
und der emotionalen Benutzerzustände in einem multimodalen
Dialogsystem,” Ph.D. dissertation, University of Erlangen-
Nuremberg, Erlangen, Germany, 2012.

[9] K. Ishizaka and J. Flanagan, “Synthesis of Voiced Sounds from a
Two-Mass Model of the Vocal Cords,” The Bell System Technical
Journal, Tech. Rep., 1972.

[10] K. N. Stevens, Acoustic Phonetics. Cambridge, MA 02141: The
MIT Press, 1998.

[11] G. Fant, Acoustic Theory of Speech Production. Netherlands:
Mouton, 1960.
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