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Abstract

One of the most common modalities to examine the human eye is the

eye-fundus photograph. The evaluation of fundus photographs is carried

out by medical experts during time-consuming visual inspection. Our

aim is to accelerate this process using computer aided diagnosis. As a

first step, it is necessary to segment structures in the images for tissue

differentiation. As the eye is the only organ, where the vasculature can be

imaged in an in-vivo and non-interventional way without using expensive

scanners, the vessel tree is one of the most interesting and important

structures to analyze.

The quality and resolution of fundus images is rapidly increasing.

Thus, segmentation methods need to be adapted to the new challanges of

high resolutions. In this paper, we present a method to reduce calculation

time, achieve high accuracy and increase sensitivity compared to the orig-

inal Frangi method. This method contains approaches to avoid potential

problems like specular reflexes of thick vessels.

The proposed method is evaluated using the STARE and DRIVE

databases and we propose a new high resolution fundus database to com-

pare it to the state-of-the-art algorithms. The results show an average

accuracy above 94% and low computational needs. This outperforms

state-of-the-art methods.

Keywords: Eye, Fundus Image, Segmentation, Vessel Tree, Resolution

Hierarchy, Vasculature
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1 Introduction

In ophthalmology the most common way to examine the human eye is to take an
eye-fundus photograph and to analyse it. During this kind of eye examinations
a medical expert acquires a photo of the eye-background through the pupil with
a fundus camera. The analysis of these images is commonly done by visual
inspection. This process can require hours in front of a computer screen, in
particular in case of medical screening. An example fundus image is shown in
Figure 1.
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Figure 1: An example of eye-fundus image: The macula is shown in middle, the
optic disk to the right, and the blood vessels are entering and leaving the eye
through the optic disk.

Our goal is to speed up the diagnosis by processing the images using com-
puter algorithms to find and highlight the most important details. In addition
we aim to automatically identify abnormalities and diseases with minimal hu-
man interaction. Due to the rapidly increasing spatial resolution of fundus im-
ages, the common image processing methods which were developed and tested
using low resolution images have shown drawbacks in clinical use. For this pur-
pose, a new generation of methods needs to be developed. These methods need
to be able to operate on high resolution images with low computational com-
plexity. In this paper, we would like to introduce a novel vessel segmentation
method with low computational needs, and a public available high resolution
fundus database with manually generated gold standards for evaluation of reti-
nal structure segmentation methods. The proposed algorithms include modifi-
cations to the method proposed by Frangi et al. [10] to decrease the running
time, and to segment specular reflexes of thick vessels, which are not visible in
lower resolution fundus images.

The structure of the paper is as follows: We describe the proposed meth-
ods in detail in section 3. In Section 4, we present the evaluation methods and
databases, including our proposed High Resolution Fundus Database, while Sec-
tion 5 presents the quantitative results. In Sections 6 and 7, the computational
complexity and robustness of the proposed algorithm is analyzed. This is fol-
lowed by a Discussion in Section 8 and the Conclusions in Section 9.
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2 Related work

Retinal vessel segmentation is a challenging task and has been in the focus of
researches all over the world for years. During this time many different al-
gorithms were published [21]. The segmentation algorithms can be classified
into two main groups: in unsupervised and supervised methods. Unsupervised
methods classify vessels using heuristics, while supervised methods learn a cri-
teria system automatically using prelabeled data as gold standard. We focus
on heuristic methods, as supervised methods need a large training set for each
camera setup. Heuristic methods instead require a set of parameters, which
need to be adapted to the camera setup. Thus, they are much more indepen-
dent from the test dataset during their development. A more detailed review of
the segmentation and other retinal image processing algorithms can be found
in the articles published by Kirbas et al. [21] and Patton et al. [29].

An early, but one of the most common approaches for fundus images are the
matched-filter approaches. One of the first methods was presented by Chaud-
huri et al. [5]. It fits predefined vessel profiles with different sizes and orien-
tations to the image to enhance vessels. Similar methods and improvements
were published later on by different authors [11, 27, 16, 35]. Early implemen-
tations of these methods were using a simple thresholding step to obtain a
vessel segmentation. Sometimes these methods were combined with other ap-
proaches [14, 40, 19, 42]. For example Zhang et al. [42] combined matched filters
with a method based on the Hessian matrix [10]. The matched filters provide
high quality results, but the main disadvantage of these methods is their re-
quirement for vessel profiles and comparisons of large regions for each pixel in
the image, resulting in long computational time. The quality of the segmenta-
tion results heavily depends on the quality and size of the used vessel profile
database. This can be specific towards ethnicity, camera setup, or even eye- or
vascular diseases, which reduces its applicability.

Some of the algorithms are specialized to segment only one or more objects,
which are marked by a user or in a pre-processing step. These methods are
usually not analyzing the whole image, but the neighborhood of the already
segmented regions. Region growing [17, 8] and tracking algorithms [6, 31, 15, 39]
are good examples for such kind of segmentation methods. The region-growing
approaches are trying to increase the segmented area with nearby pixels based on
similarities and other criteria. These methods are one of the fastest approaches,
while they may have problems at specific regions of the image, where the vessels
have lower contrast compared to the nearby tissues, e.g. vessel endings or thin
vessels. In this case the region growing can segment large unwanted areas.
Vessel tracking algorithms are more robust in those situations. They try to find a
vessel-like structure in the already segmented region and track the given vessels.
These algorithms can recognize vessel endings much easier, but they may have
difficulties at bifurcations and vessel crossings, where the local structures do not
look like usual vessels anymore. Hunter et al. [15] published a post-processing
step to solve some of these situations.

Other common segmentation approaches are model-based methods. The
most known and commonly used ones are active contour-based methods, level-
sets, and the so called snakes [20]. The early snake-based algorithms start with
an initial rough contour of the object, which is iteratively refined driven by
multiple forces. In an optimal case, the forces reach their equilibrium exactly
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on the object boundaries. These methods are sensitive to their parameterization,
while they may have problems if they have to segment thick and thin vessels in
the same time. Thus, the parameters have to be set and refined manually by the
user. The snakes in this form are mostly used in MR [32] or X-ray angiographic
images [12] to segment pathologies and organs. The snake-based retinal vessel
segmentation methods usually apply a vessel tracking framework to find the
edges or the centerline of the vessels and track them using snakes [1, 15, 22].
This way the snakes are used to track only a vessel edge and the algorithm has
less problems with vessel endings and different vessel thicknesses. Thus, their
parameters are easier to optimize, but they inherit the problems of tracking
algorithms with bifurcations and crossings.

Level-set methods provide a more robust solution than snakes. They are
usually used in combination with other vessel enhancement techniques incorpo-
rating a smoothness constraint in their level set functions [7, 2].

For an automated segmentation method used in screening, the most im-
portant properties are robustness, efficiency and the calculation time, because
hundreds or thousands of images have to be processed each day. The state-
of-the-art vessel segmentation methods [42, 1] usually have high computational
needs and achieve an accuracy of 90% to 94% on eye-fundus images, with a sen-
sitivity of 60% to 70% and a specificity above 99% on average [36]. This is due
to the fact, that approximately 85% of an image shows background structures.
The high computational needs are due to multiple analysis of large regions to
detect thick vessels. Thus, the computational needs of an algorithm is increasing
exponentially with the diameter of the expected thickest vessel and the image
resolution.

We present an algorithm based on the vessel enhancement method published
by Frangi et al. [10] in combination with a multi-resolution framework to de-
crease the computational needs and to increase the sensitivity by using a hystere-
sis thresholding. The method published by Frangi et al. [10] is a mathematical
model-based approach and extracts vesselness features based on measurements
of the eigenvalues of the Hessian matrix. The Hessian matrix contains the sec-
ond order derivatives in a local neighborhood. The method assumes that the
vessels are tubular objects, thus, the ratio of the highest and lowest eigenvalue
should be high, while this ratio is close to one in regions of constant values.
The method was developed for CT angiography images, but it is applied in a
wide variety of vessel segmentation algorithms and detection of tubular objects
in different modalities [10, 33]. One of the disadvantages is the computational
requirement. As Frangi et al. [10] proposed, the method calculates the Hes-
sian matrix and the given measures for increasing neighborhood sizes, until the
neighborhood is bigger than the expected thickest vessel. Given high resolution
images, this can easily increase to 20 to 30 iterations per pixel.

3 Methods

All methods that were used to analyze the images are described in this section.
First, we introduce the method proposed by Frangi et al. [10], which provides the
basis of this work, This is followed by the description of the proposed method:
the pre-processing steps in Section 3.2.1 and the used resolution hierarchy in
Section 3.2.2. After that the vessel enhancement method is described to high-
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light the main differences to the Frangi method. We have chosen the method
published by Frangi et al. [10] as a base for our own work, because it features
some attractive properties:

• High accuracy is expected based on preliminary research [10, 33]. For
further information please see Section 5.1. In comparison, our implemen-
tation of this method achieved a high accuracy.

• No user interaction is required, except for setting a few parameters.

• It is able to segment not-connected objects without complex initialization
steps. This is necessary in case of some abnormalities, and in case of young
patients, where reflections may disconnect vessels.

3.1 Frangi’s Algorithm

To understand the proposed method, the reader should know the method by
Frangi et al. [10]. Thus, in this section, we will introduce the method as it was
published by Frangi [10] in 1998.

The Hessian matrix of an n dimensional continuous function f contains the
second order derivatives. As we are working in a 2 dimensional image, our
Hessian matrix is given as:

H(f) =

(

∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)

(1)

The Hessian matrix H0,s is calculated at each pixel position x0 and scale
s, Frangi used s as the standard deviation (σ) of Gaussians to approximate
the second order derivatives. A vesselness feature V0(s) is calculated at pixel
position x0 from the eigenvalues λ1 < λ2 of the Hessian matrix H0,s using
Equations of ”dissimilarity measure” RB and ”second order structureness” S
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where β and c are constants which control the sensitivity of the filter. RB

accounts for the deviation from blob-like structures, but can not differentiate
background noise from real vessels. Since the background pixels have a small
magnitude of derivatives, and thus, small eigenvalues, S helps to distinguish
between noise and background.

The authors suggest to repeat the same calculations for varying sigma values
from one to the thickest expected vessel thickness with an increment of 1.0
to enhance vessels with different thicknesses. The results are combined by a
weighted maximum projection. In our implementation we added a thresholding
step after the combination and optimized the parameters to reach the highest
accuracy.
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3.2 Proposed method

After the pre-processing steps, we apply the same equations as described by
Frangi et al. [10] for each resolution level with the same predefined sigma value..

Hence, we do not increase the sigma value linearly and apply the filter mul-
tiple times on the image as it was proposed by Frangi et al. [10]. In our case
the sigma is always set to a small constant, while we apply the same method on
copies of the input image with reduced resolutions. Thus, the parameter s of
the original method corresponds to the resolution of the image, instead of the
standard deviation of a Gaussian.

The proposed algorithm of our method is illustrated in Figure 2. Each of
the steps will be discussed in detail in the next sections.
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Figure 2: Pipeline of the proposed segmentation algorithm.

3.2.1 Pre-processing

The input images are digital color fundus photographs like the one in Fig-
ure 1. During the analysis we restrict ourselves to the green channel. It has the
highest contrast between the vessels and the background, while it is not under-
illuminated or over-saturated like the other two channels, see Figure 3 for an
example. Histogram stretching [30] and bilateral filtering [38] are applied on the
green channel. The histogram stretching increases the contrast to make it easier
for the algorithm to detect small changes and distinguish different tissues. The
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bilateral filtering [28] is a special denoising algorithm, which smooths intensity
changes, while preserving the boundaries of different regions or tissues. This
step reduces false positive detections caused by the texture of the background.
After these modifications of the data, we can apply our resolution hierarchy
described in the next subsection.

(a)

(b) (c) (d)

Figure 3: A fundus image (a) and its RGB decomposition showing the over-
saturated red (b), the well-illuminated green (c), and the under-illuminated
blue (d) channels.

3.2.2 Resolution Hierarchy

In a resolution hierarchy copies of the input image with reduced resolutions are
generated, see Figure 4. By doing so, we calculate the Hessian matrix always for
a small neighborhood which decreases the computational needs. The reduction
is done by a subsampling followed by a low pass filtering to lower high jumps in
intensities. The highest resolution level of the resolution hierarchy contains the
original image, and all additional levels contain the image with a halved width
and height compared to the previous level. For low resolution images, where
the vessel thickness is not more than 5 to 10 pixels, 2 to 3 levels are sufficient,
while images with higher resolutions may require additional levels. Compared
to more than 20 iterations for the Frangi method, this means a speedup of a
factor of 10. The vessel enhancement of the Frangi algorithm is applied on each
resolution level with a standard deviation σ = 1.0.

Sometimes the flash of the camera causes a shining centerline on thick ves-
sels. An additional correction method was developed to remove these specular
reflection artifacts in the reduced resolution levels. The resulting images of the
vessel enhancement are resized again using bilinear interpolation to the same
resolution as the input image. Figure 5 shows the result of this resizing on two
different resolution copies of the same region. Image 5(a) had a high resolution
and the result shows finer details, but the thickest vessels are not enhanced
correctly. Image 5(b) had a much lower resolution. Thus, the fine details dis-
appeared, but the extraction of thick vessels were more accurate.
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Figure 4: Example of a Gaussian resolution hierarchy using only the green
channel of the input image and its three reduced resolution versions

(a) (b)

Figure 5: The resized vesselness images of two different resolution levels. In
the highest resolution level (a) the enhanced image shows more details, while
the result of a lower resolution level (b) shows a more accurate segmentation of
thick vessels

3.2.3 Specular reflex correction

As mentioned before, the flash of the camera may cause a bright specular reflex
in the middle of thick vessels. Because of these reflections, the Hessian-based
filter will have a much lower response. In our algorithm we developed a filter
to be used on the highest level of our resolution pyramid to reduce the effect
of these reflections. In this level only thick vessels are detected. We consider
a 3 × 3 neighborhood for each pixel. If the center pixel has a lower value than
two neighboring pixels in opposite directions in the vessel enhanced image, but
higher value than the same two pixels in the fundus image of the same resolution
level, then the center pixels is effected by specular reflex. In this case the two
neighboring pixel’s value will be interpolated to update the center pixel’s value.

3.2.4 Hysteresis Threshold

After the vessel enhancement is completed in each resolution level and the results
are resized to original resolution, all of them are binarized by a thresholding
algorithm proposed by Canny [4]. The method performs better than a single
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thresholding in cases where the intensity of the objects are at some places high,
but in certain positions the contrast between object and background falls under
noise level. In our case this object is the vessel tree, where thin vessels and
boundary pixel intensities can have extreme low intensity values. This method
uses two thresholding values instead of one to binarize a gray-scale image. Both
threshold values have different roles in the thresholding process:

1. The first threshold is used to determine pixels with high intensities. It is
required that this threshold is chosen in such a way that no background pixel
can reach that value. Thus, we can label all the pixels above the threshold
as ”vessel pixels”.

2. We label all pixels below the second threshold value as ”background pixel”
and all pixels in between the two thresholds are considered ”potential vessel
pixels”. These potential vessel pixels are labeled as vessels only if they are
connected to a pixel labeled ”vessel pixel” through other potential vessel
pixels.

The thresholding values are computed for each image that a given percent of
the pixels is segmented as ”vessel pixels”. Thus, the binarization is more robust
to noise and intensity changes between images. They have to be optimized for
each different protocol and field of view, where the ratio of vessel and background
pixels is different in the resulting image. The binarization is used on each image
separately.

3.2.5 Postprocessing

The final segmented image is generated by applying a pixel-wise OR operator
on the binarized images originated from the different resolution levels. This
way if a vessel was detected in one of the images, then it will be visible in the
combined binary image.

Afterwards a thinning function erodes the segmented region until it reaches
the highest local gradient in the input image. This method avoids the slight
over-segmentation in case that a thin vessel is detected in a higher level of the
hierarchy.

As a last step a small kernel (3 × 3) morphological closing operator is used
to smooth the boundaries and object size analysis algorithms are applied to
fill small holes in the vessel tree and remove small undesired objects. Some
example of input images and the calculated segmentations are presented in
Figures 6 and 7.

4 Evaluation

We applied the original Frangi vesselness extraction and our proposed frame-
work on the commonly used DRIVE [36] and STARE [13] databases, and on
our high resolution public database [3] to compare our framework to the state-
of-the-art methods and to evaluate their effectivity. These databases contain
manual segmentations of experts as gold standard. Based on these gold stan-
dards we calculated the sensitivity (Se), specificity (Sp), and accuracy (Acc)
of each method. Both already existing databases contain an additional manual
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segmentation and the DRIVE database contains some measurements of multiple
algorithms.

We compare the computation time of the proposed algorithm, and an im-
plemented Frangi vesselness algorithm as proposed by Frangi et al. [10]. The
two public databases were used to evaluate the efficiency and for comparison to
other state-of-the-art algorithms. These two databases suffer from containing
only low-resolution images, while the proposed method was developed for high
resolution images. Thus, the benefit of the resolution hierarchy is only slightly
noticeable. Since high resolution images are becoming more common in clinical
use, we evaluated our methods on the high resolution (3504x2336 pixels) images
available[3], which were already used to evaluate other methods [27, 16]. The
database contains 15 images of each healthy, diabetic retinopathy (DR), and
glaucomatous eyes. The results of this evaluation are discussed in Section 5.2.

The technical details of the used image data is shown in Table 1. For each
method, we applied the same parameter optimization process using a small sub-
set of each database to assure that differences are not due to parameter settings.
This algorithm sets the parameters to reach the highest possible accuracy with-
out aiming high sensitivity. Since the parameter optimization is done using a
small subset of the images, the results can be improved using a larger training
set. Optimizing based on a small subset may result in suboptimal settings for
the whole dataset, but it shows the generalization capabilities of the method.

For the evaluation of computation times we always used the same common
notebook equipped with a 2.3GHz processor and 4 GB RAM and a single core
implementation of the algorithms.

Database Images used Resolution
DRIVE [36] 20 565×584
STARE [13] 20 700×605

High Resolution Fundus [3] 45 3504×2336

Table 1: Details of used databases

5 Results

5.1 Accuracy

The metrics calculated on the two public databases to analyze the effectivity
of the algorithms are shown in Table 2 and Table 3. During our development
and in our comparisons we aimed at the highest possible accuracy. Therefore,
we optimized the parameters of both - the proposed and the Frangi - method.
Thus, the parameters of the Frangi method and the proposed method are set to
deliver the highest possible accuracy. This can result in a decreased sensitivity
to gain specificity in order to increase the overall accuracy. This way the pro-
posed method was able to reach the best accuracy using the DRIVE and High
Resolution Fundus databases.

Both public databases contain a second manual segmentation made by a
human observer, which was included in the comparison. We collected further
results from published papers. For both databases the original method and the
proposed method reached a high accuracy over 95% and 93 %, respectively. As
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shown in Table 2, in case of the DRIVE database, this was enough to reach
the highest accuracy. In case of the STARE database, as shown in Table 3,
the sensitivity improved by 5% along with a slight increase in accuracy. Some
examples of the segmentation results are shown in Figure 6.

Figure 6: Example segmentation results on the DRIVE (upper row) and STARE
(bottom row) public databases. From left to right: input fundus images, seg-
mentation results, and gold standard images
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Algorithm Se Sp Acc

Proposed 0.644 0.987 0.9572

Frangi [10] 0.660 0.985 0.9570

Marin [23] 0.706 0.980 0.945
Human Observer 0.776 0.972 0.947
Dizdaroglu [7] 0.718 0.974 0.941
Soares [34] 0.7283 0.9788 0.9466

Mendonca [25] 0.7344 0.9764 0.9452
Staal [37] 0.7194 0.9773 0.9442

Niemeijer [26] - - 0.9416
Zana [41] - - 0.9377

Martinez-Perez [24] 0.7246 0.9655 0.9344
Odstrcilik [16] 0.7060 0.9693 0.9340

Espona(subpixel accuracy) [9] 0.7313 0.9600 0.9325
Chaudhuri [5] 0.6168 0.9741 0.9284
Al-Diri [1] - - 0.9258

Espona(pixel accuracy) [9] 0.6615 0.9575 0.9223
Jiang [18] - - 0.9212

All background - - 0.8727

Table 2: Comparison of the results using the DRIVE [36] public database. The
proposed methods achieved the best accuracy (Acc) compared to the state of
the art solutions. ”-” indicates that this information was not available.

Algorithm Se Sp Acc

Proposed 0.58 0.982 0.9386
Frangi [10] 0.529 0.986 0.9370

Marin [23] 0.694 0.981 0.952
Staal [37] 0.6970 0.9810 0.9516

Zhang [42] 0.07177 0.9753 0.9484
Soares [34] 0.7165 0.9748 0.9480

Mendonca [25] 0.6996 0.9730 0.9440
Martinez-Perez [24] 0.7506 0.9569 0.9410

Chaudhuri[5] 0.6134 0.9755 0.9384
Human Observer 0.8949 0.9390 0.9354
Odstrcilik [16] 0.7947 0.9512 0.9341
Hoover [14] 0.6751 0.9367 0.9267

Table 3: Sensitivity (Se), specificity (Sp) and accuracy (Acc) of the methods
measured on the STARE [13] database. The proposed modifications improved
both the sensitivity and accuracy of the Frangi method.

The proposed algorithm and the original Frangi method were further tested
on the three datasets of our own public High Resolution Fundus database [3].
Figure 7 shows two examples of input images and segmentation results of this
database. As these images have much higher resolutions, we use more resolution
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levels in the hierarchy and higher σ values in the original Frangi algorithm.
This enables to detect vessels with a higher diameter, but also increases the
computation times. Tables 4 and 5 show the sensitivity, specificity and accuracy
of these methods using the High Resolution Fundus dataset. Each datasets
with manually segmented gold standard images are available online [3] for other
researchers to test and compare their algorithms.

Figure 7: Example segmentation results on high resolution images with different
illumination and background structures.

Algorithm Se Sp Acc

Proposed 0.669 0.985 0.961

Frangi [10] 0.622 0.982 0.954

Odstrcilik [16] 0.774 0.966 0.949

Table 4: Overall Sensitivity (Se), specificity (Sp) and accuracy (Acc) measured
using our high resolution fundus database.
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Dataset Algorithm Se Sp Acc

Healthy Proposed 0.662 0.992 0.961

Healthy Frangi [10] 0.621 0.989 0.955
Healthy Odstrcilik [16] 0.786 0.9750 0.953

Glaucomatous Proposed 0.687 0.986 0.965

Glaucomatous Frangi [10] 0.654 0.984 0.961
Glaucomatous Odstrcilik [16] 0.790 0.964 0.949

Diabetic Retinopathy Proposed 0.658 0.977 0.955

Diabetic Retinopathy Frangi [10] 0.590 0.972 0.946
Diabetic Retinopathy Odstrcilik [16] 0.746 0.961 0.944

Table 5: Sensitivity (Se), specificity (Sp) and accuracy (Acc) measured for the
three datasets separately in our high resolution database.

5.2 Performance

Tested on the two public databases, the proposed method has a reduced calcula-
tion time by 18% in case of the STARE database and 16% in case of the DRIVE
database, as shown in Table 6. The computation times were not available for
most of the algorithms used for comparison in Section 5.1. Thus, these methods
are excluded from the performance test. The resolution hierarchy made our
proposed method faster on the low resolution images than the Frangi method.
The speed improvement of the hierarchy is actually higher, but we used addi-
tional time for post-processings and improvements, like filling the holes caused
by central reflexes in the vessels and using a hysteresis thresholding in each
resolution.

Algorithm Runtime(in sec) Accuracy
STARE DRIVE STARE DRIVE

Frangi [10] 1.62 1.27 0.9370 0.9570
Proposed 1.31 1.04 0.9386 0.9572
Espona(subpixel accuracy)* [9] - 31.7 - 0.9325
Medonca* [25] - 150.0 [34] 0.9480 0.9466
Soares* [34] 180.0 180.0 0.9480 0.9466
Staal* [37] - 900.0 [34] 0.9516 0.9442

Table 6: Comparison of average runtime using two public databases. Shows the
effects of the proposed modifications on the calculation time in seconds. Entries
marked by ”*” are results reported in the cited articles.

As the computation times of hysteresis threshold is rapidly increasing with
the resolution, we tested the runtime using high-resolution images to see if the
gain using the resolution hierarchy is higher than the additional requirements
of the thresholding. Table 7 shows the computation times for these images.
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Algorithm Average runtime Accuracy

Proposed method 26.693±0.92 sec 0.961 ± 0.006
Original Frangi 39.288±2.00 sec 0.954 ± 0.008

Odstrcilik [16, 3] 18 minutes 0.949

Table 7: Comparison of average runtime using high resolution (3504×2336)
images.

The results show a calculation time difference of about 33.3%, which was
less than 20% in case of low resolution images. This means, that our proposed
method performs the segmentation in higher resolution images faster in com-
parison to the original Frangi method.

6 Computational Complexity

To see the difference in computational complexity of both methods, we calcu-
lated the mathematical complexity of the Frangi method [10] and our proposed
methods. As all segmentation methods need some pre- and post-processing, we
decided to calculate the mathematical complexity of the main vessel extraction
only, plus our proposed direct modifications.

As a first step, we have to define the necessary parameters: Let n be the
number of pixels in the input image, and define t as the highest expected vessel
thickness we would like to detect. With these two parameters, we can describe
the complexity of the important components used in the algorithms:

• Rescaling: O(n) for each image

• Calculating Hessian matrix: O(t2) for each pixel

• Eigenvalue analysis: after calculating the Hessian matrix, it is independent
of the parameters: O(n) for each image

• Post-processing using mathematical morphology, and other operations:
O(n) for each image

• Maximum image calculation: O(m · n) where m is the number of images

• Binarization by thresholding: O(n) for each image

In case of the original method, calculation of the Hessian matrix is done t

times for each pixel, with increasing σ. After that all the images are summarized
and thresholded. These methods result in a complexity of O(t3×n): t×n pixels,
and O(t2) operations for each pixel, while the complexity of the other parts is
neglectible.

The proposed method uses the rescaling. This results in a maximal pixel
number of 1.5×n to work on instead of t×n, and t is always set to one. Thus, the
Hessian matrix calculation is done with a predefined σ = 1.0, which reduces the
complexity to O(n). After rescaling to the original resolution, post-processing,
and binarization is done in linear complexity. This gives a computational com-
plexity of O(log(t) ∗ n): Independently of the number of resolution levels, the
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maximal number of pixels is 1.5×n, and σ is set to 1.0 results in a computational
complexity of O(n) before fusing the binarized images. With log(t) number of
rescaled images, after the fusion the complexity is O(log(t) ∗n) with neglectible
linear complexity of the post-processing.

7 Robustness

To analyze the robustness and sensitivity of the method regarding changes in
the parameters, we analyze it by further excluding some steps, and changing
the parameters.

Algorithm Accuracy Absolute change

Proposed method 0.9618 ± 0.0065 –
Without pre-processing 0.9558 ± 0.0064 0.62%
Thresholds decreased by 1% 0.9614 ± 0.0061 0.04%
Thresholds increased by 1% 0.9607 ± 0.0062 0.11%
Without post-processing 0.9401 ± 0.0085 2.25%
Doubled morphology kernel size 0.9616 ± 0.0060 0.02%
σ = 2.0 for Hessian 0.9621 ± 0.0062 0.03%
σ = 3.0 for Hessian 0.9621 ± 0.0061 0.03%
σ = 4.0 for Hessian 0.9617 ± 0.0064 0.01%

Table 8: Accuracy comparison of different settings using the High Resolution
Fundus database.

As table 8 shows, the algorithm is robust against changes in the parameters
of pre- or post-processing, except that not all of the processing steps are skipped.
This increases the false positive values due to the appearance of small segmented
noisy regions, and also increases false negatives by not segmenting regions of
vessels with specular reflexes.

The accuracy of the method improved surprisingly by increasing the σ to 2.0
for the vessel enhancement. Our analysis showed, that the optimization using
a small subset of images resulted in a suboptimal parameter set for the whole
dataset. Changing the sigma value to 2.0 increased the sensitivity in multiple
images, reaching an overall sensitivity over 0.7338 and accuracy over 0.9621.

8 Discussion

Our evaluation has shown that the proposed method not only has the highest
accuracy using the high-resolution images for which it was developed for, but
it has decent results using two lower resolution database available online. This
decrease is due to the slightly lower sensitivity caused by the lower image quality
in the online databases. The proposed method has lower computational needs
compared to the method proposed by Frangi [10], as it was shown experimentally
in Section 5.2, and mathematically proven in Section 6.

Furthermore, as shown in Section 7, the method is only slightly sensitive to
the σ parameter of the vessel enhancement and the thresholding parameters.
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Changing σ can result in 5% change in sensitivity, while changing most of the
other parameters resulted in a small variation in both sensitivity and specificity
with an accuracy change under 0.1%.

Based on the results of Table 8, the pre- and post-processing steps applied
in the proposed method increased the overall accuracy of the segmentation by
1 % to 2 % by removing unwanted objects, filling some holes caused by specular
reflexes, and smoothing the vessel edges.

9 Conclusion

In this paper we presented a multi-resolution method for segmenting blood
vessels in fundus photographs. The proposed method and the Frangi method
were evaluated using multiple online available databases with diverging image
resolution. The proposed algorithm shows in each case an increase both in
sensitivity and accuracy to segment vessels compared to the Frangi method
with a decreased computational complexity.

This gain in accuracy is mainly due to easier handling of central reflexes
of thick vessels in lower resolution images, while the computational needs are
significantly reduced by using the resolution hierarchy. This can be further
improved by parallelization and implementation using a GPU.

With the proposed modifications the algorithm is more applicable in com-
plex automatic systems, and the segmentation results can be used as a basis
for other algorithms to analyze abnormalities of the human eye. Additionally
we introduced a new high resolution fundus image database [3] to evaluate seg-
mentation and localization methods, where our algorithm reached an accuracy
of over 96% on average.
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