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Abstract. Compared to pre-operative imaging modalities, it is more convenient
to estimate the current cardiac physiological status from C-arm angiocardiog-
raphy since C-arm is a widely used intra-operative imaging modality to guide
many cardiac interventions. The 3D shape and motion of the left ventricle (LV)
estimated from rotational angiocardiography provide important cardiac function
measurements, e.g., ejection fraction and myocardium motion dyssynchrony. How-
ever, automatic estimation of the 3D LV motion is difficult since all anatomical
structures overlap on the 2D X-ray projections and the nearby confounding strong
image boundaries (e.g., pericardium) often cause ambiguities to LV endocardium
boundary detection. In this paper, a new framework is proposed to overcome the
aforementioned difficulties: (1) A new learning-based boundary detector is de-
veloped by training a boosting boundary classifier combined with the principal
component analysis of a local image patch; (2) The prior LV motion model is
learned from a set of dynamic cardiac computed tomography (CT) sequences to
provide a good initial estimate of the 3D LV shape of different cardiac phases;
(3) The 3D motion trajectory is learned for each mesh point. All these compo-
nents are integrated into a multi-surface graph optimization approach to extract
the globally coherent motion. The method is tested on seven patient scans, show-
ing significant improvement on the ambiguous boundary cases with a detection
accuracy of 2.87±1.00mm on LV endocardium boundary delineation in the 2D
projections.

1 Introduction

With multi-view or rotational angiocardiography, the 3D shape and motion of the left
ventricle (LV) can be estimated for intra-operative analysis of cardiac physiology, e.g.,
ejection fraction (EF) and myocardium motion dyssynchrony. Previous methods in 3D
LV shape/motion estimation from angiocardiography include binary voxel reconstruc-
tion based on 2D image intensities [1], elastic matching [2], 4D B-spline model [3],
etc. Most of these methods rely on manual editing of the silhouette of the LV endo-
cardium due to the difficulty in automatic boundary detection. Recently, an automatic
method was proposed for 3D motion estimation of the LV from rotational angiocardiog-
raphy [4]. First, a 3D LV mesh model is segmented from the 3D volume that containing
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Fig. 1. (a) One projection image; (b) Projected initial mesh; (c) The silhouette (green contour)
of the projected mesh and projected trajectory (yellow lines) based on the normal direction; (d)
The silhouette of the projected mesh and projected trajectory based on the prior model.

motion blur. The mesh is then forward-projected to each 2D X-ray angiogram as an
initial estimate of the LV boundary (Fig. 1b). The silhouette of the projected mesh is
extracted and deformed to fit the LV boundary observed on the angiogram. Therefore,
the 2D motion vector can be estimated for each silhouette point. With the assumption
that the 3D LV motion is along the surface normal, the estimated 2D motion vector can
be converted into 3D motion.

In this paper, a new method is proposed to overcome several limitations in the pre-
vious work. First, the initialization with a static LV model [4] (which is close to the
shape of the end-diastolic phase) is not accurate enough, especially for the end-systolic
phase, which has a much smaller LV volume. To address this issue, a prior LV motion
model is learned from a set of dynamic cardiac CT sequences. Using the previous 3D
static LV model generated from the non-gated reconstruction, the prior motion model is
aligned to the patient coordinate system to provide individualized initial mesh for each
cardiac phase. Second, the previous assumption of motion along the surface-normal is
reasonable for the middle and basal LV segments, but not good for the LV apex (Fig. 1c)
with many intersections in the trajectories of mesh points around the apex.

In this work, for each mesh point, a 3D motion trajectory is also learned from the dy-
namic cardiac sequences to replace the assumption of motion along the surface normal.
Third, instead of using each individual local image feature [4] for the weak classifiers
to train an AdaBoost based boundary detector, principal component analysis (PCA) is
applied to a local image patch to create a compact feature representation. The new fea-
ture pool is composed of the top principal components (PC) and the combination of a
pair of PCs, which are more powerful than the previous local image features. Last, in-
stead of estimating the 3D LV shape of each cardiac phase independently, we exploit the
recently proposed multi-surface graph optimization approach [5] to extract the whole
motion sequence from one single optimization procedure.

2 Method

2.1 Problem Formulation

In rotational angiocardiography, the C-arm X-ray source/detector pair is rotated around
the patient over 200 degrees while acquiring 2D projection images. Imaging starts with
a delay of 1s with respect to the injection of contrast agent into the heart chambers.
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Fig. 2. (a) An illustration of computing cost values along motion trajectory. (b) An illustration of
computing the dot product between the 2D motion vector (yellow arrow) and the image gradient
(red arrow) in two locations indicated by the white rectangle.

The electrocardiography (ECG) signal is used to record the cardiac phase synchronous
to the acquisition of each projection image. The patients were asked on hold breath
during the acquisition. In the proposed framework, The ECG signal is analyzed and a
relative phase bin is assigned to each projection image. The LV motion is assumed to
be periodic and is represented by a sequence of triangulated meshes −→n (m, t), which
indicates the 3D spatial location of a mesh point indexed by m ∈ [0,M − 1] at phase
t ∈ [0, T − 1]. Here, M is the number of mesh points and T is the number of cardiac
phase bins. This representation inherently enforces the identical topology of the LV
meshes and point correspondence in different phases. The motion detection framework
is established on predetermined motion trajectories from an initial location, which pro-
vides a close approximation to the detected motion and is used to create the base of the
4D graph. The motion trajectories determine the possible location for each mesh point
before the detection. They are sampled by a limited number of points ns(m, t), where
ns ∈ [0, N − 1] is the point index (For an initial estimation based on a static mesh,
ns(m, t) is irrelevant to t). Each sampled point ns(m, t) is assigned a cost value, which
is used during the optimal detection framework. The optimization aims to minimize the
following function,

n̂(m, t) = arg min
ns(m,t)

T−1∑
t=0

M−1∑
m=0

cost(ns(m, t),m, t), (1)

where n̂ is selected from all the possible ns. The details of the graph-search-based
motion detection framework can be referred to Chen et al. [5], where both spatial and
temporal smoothness constraints are incorporated in the optimization framework.

The assignment of the cost value for motion trajectories on the silhouette is illus-
trated in Fig. 2a, where the black and the white rectangles represent the original 3D
sampled location and the corresponding 2D projected locations. For each sampled point



the cost value is computed by the following functions:

cost(ns,m, t) = −
P−1∑
p=0

δ(p, t)ζ(m, p)w(ns,m, p), (2)

where P is the number of projection images. Function δ(p, t) equals to one if and only
if the projection image p belongs to the phase index t. Otherwise, it equals to zero.
Function ζ(m, p) equals to one if and only if the mesh point m locates on the silhouette
in projection p. Otherwise, it equals to zero. Function w(ns,m, p) computes the cost
value for a sampled point ns of a mesh point m in one projection image p. In [5], the
cost function w(ns,m, p) is assigned based on the dot-product of the projection motion
direction and image gradient(Fig. 2b), which works well for lung tumor boundary de-
tection in 2D projections of mega-voltage cone beam CT. In this application, the image
boundary of the LV endocardium is much weaker than a nearby confounding bound-
ary of the LV pericardium (the boundary between the heart and lung). Therefore, the
deformed silhouette is often attracted to the pericardium. In this work, we propose to
use the response of a learning-based boundary detector as the cost function w(ns,m, p)
(Section 2.4).

2.2 Prior Motion Model

The prior LV motion model is derived from a training set containing 12 LV motion se-
quences extracted from dynamic cardiac CT data sets, where each sequence contains
10 LV meshes (10 phases). The mean LV surface is computed after aligning the 4D
(3D+t) shapes based on the Procrustes analysis [6]. Given an input dataset of a pa-
tient, a static LV mesh is extracted from the non-ECG-gated reconstruction. The static
mesh and the prior motion model are represented by the same LV model with built-in
point correspondences. The prior motion model is transformed to the patient coordinate
system specified by the static mesh based on the thin-plate-spline (TPS) interpolation
approach [7] to provide an personalized initial mesh for each phase. The static mesh is
found close to the shape of the end-diastolic (ED) phase, instead of the average shape
of the whole cardiac cycle. The displacement between ED phase of the mean LV mo-
tion model and the static mesh provides the landmarks/anchor points for the registration
technique.

2.3 Motion Trajectory

In order to convert the 2D motion vector estimated from the angiogram to 3D, a pre-
vious assumption is that the motion occurs mainly along the surface-normal [4]. It is
reasonable for most parts of the LV where the motion is dominated by the contraction
and relaxation of the LV cavity. However, this assumption does not hold well for the LV
apical region, where the LV endocardium forms a sharp wedge. As shown in Fig. 1c,
the projected normal directions have severe self-intersections around the LV apex. The
intersections in the motion trajectory will eventually result in folds in the estimated 3D
mesh.
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Fig. 3. (a) Sample of an image patch; (b) Along a manual contour (green) in one projection im-
age, positive (yellow arrows) and negative (red arrows) locations are selected to train the boundary
detector; (c) Positive (blue) and negative (red) training data visualized in PCA-reduced 2D space.
Each cyan line shows the classification boundary of a weak classifier.

In this work, the prior motion trajectory is fitted by a 3D quadratic curve for each
mesh point (m, t). The fitting is based on using the transformed prior motion model
introduced in the previous section, where a parametric curve with the following repre-
sentation is determined by the least-squared errors (LSE) with 10 points (one from each
cardiac phase and the whole cardiac cycle contains 10 phases):

x(t) = x0 + a1t+ a2t
2, (3)

y(t) = y0 + b1t+ b2t
2, (4)

z(t) = z0 + c1t+ c2t
2. (5)

(x0, y0, z0) is assigned with the point location of the initial mesh model.
Fig. 1d shows the projected motion trajectory. Compared to the normal direction,

the learned motion trajectory has much fewer self-intersections around the LV apex.

2.4 A Boundary Detector Based on Supervised Learning

Instead of computing the image gradient for each projected 2D location [5], a binary
classifier is trained from a data set containing both manually labeled positive and neg-
ative data points. The graph node cost w(ns,m, p) in Equation (2) is computed based
on the posterior probability p(+1|x), where x is a feature vector including the intensity
of a sampled 11 × 11 pixel patch centered on the projected location. The orientation
of the patch is determined by the tangent direction of the motion trajectory at its center
location. Fig. 3a illustrates one image patch example.

The manually annotated LV contours on the projection images are used to create the
training data set, which is illustrated in Fig. 3b. The contour points are used as positive
data, while the negative data are located with some distance outside or inside of the
contour. The orientation of both positive or negative patches is set to the normal of the
nearby annotated contour.

The training stage includes a dimensionality reduction step based on the principal
component analysis (PCA) and an AdaBoost training step [8]. During the PCA step,



the original 121 dimensional space is reduced to a few principal components (PC) with
largest variations. Two types of features are extracted after PCA to train an AdaBoost
classifier. The first type of features contains coefficients for the 50 most significant PCs:

fT1(Xr) =
∑
i

wiIri, (6)

wherewi and Iri represents the weight and value of the ith PC, respectively. The second
type of features contains a linear combination of the first two PCs since the two most
significant PCs cover about 98% of all the variance,

fT2(Xr) = cos(θ)Ir1 + sin(θ)Ir2, (7)

where Ir1 and Ir2 are the value of the training point Xr in the reduced dimension and θ
sets the relative weight of these two PCs. Parameter θ is quantized with a step size of 1
degree to generate an finite number of 2D linear features. Fig. 3c shows a few selected
type-II features by the AbaBoost classifier. The positive and negative training data are
shown as blue and red dots, respectively. A cyan line shows a type-II feature with a
specific combination of the first two PCs.

For each training point, the feature function fT1 or fT2 is able to generate a value
used for a weak classifier:

hi(Xr) = sign(pifi(Xr)− piγi), (8)

where pi is±1, representing the parity of the data, and γi is the threshold for the binary
classification. The subscript i in those denotations represents the ith feature in the fea-
ture pool. A strong classifier is generated combining a set of selected weak classifiers
from the feature pool with a value F :

H(Xr) = sign(F (Xr)), F (Xr) =

K∑
i=1

σihi(Xr), (9)

where σi is a parameter related to the training error of the ith weak classifier and K
is the number of selected weak classifiers. The posterior probability of the binary Ad-
aBoost classifier is given by:

q(+1|Xr) =
e2F (Xr)

1 + e2F (Xr)
, q(−1|Xr) =

e−2F (Xr)

1 + e−2F (Xr)
. (10)

3 Experiments

We collected seven sequences of C-arm rotational angiocardiograms from two clinical
sites. A typical imaging protocol was composed with a rotation of the C-arm X-ray
source/detector around the patient for 200 degrees. Each rotation took about five sec-
onds and a total of 133 projection images were recorded. Leave-one-out cross validation
is performed to quantitatively evaluate the accuracy of the proposed method by com-
puting the distance between the mesh silhouette and a manual contour. The distance of



Fig. 4. Mean of the distance (measured in mm) between silhouette derived based on 4 approaches
and manual contour.

the two contours is computed by measuring the distance between each silhouette point
and its closest location on the manual contour:

dist(C1, C2) =
1

Np

∑
p1∈C1

minp2∈C2
dist(p1, p2), (11)

where p1 and p2 are the points belonging to contour C1 and C2, respectively. Np is
the number of points in C1 that are taken to compute the distance metric. To evaluate
the performance of the algorithm for each scan, the mean and variance of the contour
distance in all the projection images based on Rayleigh distribution are computed. Fig. 4
shows the mean distance before and after the motion estimation in seven scans. The
bars “Static Mesh” show the initialization error using a static mesh extracted from a
3D volume using non-ECG-gated reconstruction, while the bars “Prior Model” show
the initialization error using the pre-learned motion model, which is more accurate than
the initialization using a static mesh. The performance of the previous approach [4] is
shown as the green bar, which is surpassed by the proposed method (the purple bar).
The proposed method achieves a mean contour distance of 2.87 ± 1.00 mm. It should
be noted that for a gradient-based approach, the difference to the manual contour is even
larger than the initial static model, and it is not shown in this figure.

Fig. 5 compares the detection result of a gradient-based cost function [5] and the
proposed learning-based cost function, respectively. It can be seen that for the learning-
based boundary detector, the detected silhouette is much closer to the manual contour,
while the gradient-based approach is attracted to the confounding boundary.

4 Discussions and Conclusions

In this work, a new method is proposed to automatically estimate the 3D motion of
the left ventricle from rotational angiocardiography, which incorporates a boundary de-
tector based on the principal component analysis of local image patches. All the com-
ponents are integrated into a multi-surface graph optimization framework to achieve a
coherent 3D motion estimate.



Fig. 5. Detected silhouette (green) using gradient-based boundary detector (left, [5]) and learning-
based boundary detector (right) compared with manual contour (red). The 3D mesh of LV (green)
and outflow tract (blue) is shown on the right for each 2D projection image.

The estimated 3D motion can be used for motion compensated reconstruction and
intra-operative measurement of the cardiac function, including ejection fraction and
dyssynchrony analysis.
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