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ABSTRACT

One of the most popular form of biometrics is face recognition. Face recognition techniques typically assume
that a face exhibits Lambertian reflectance. However, a face often exhibits prominent specularities, especially
in outdoor environments. These specular highlights can compromise an identity authentication. In this work,
we analyze the impact of such highlights on a 3D-2D face recognition system. First, we investigate three
different specularity removal methods as preprocessing steps for face recognition. Then, we explicitly model facial
specularities within the face detection system with the Cook-Torrance reflectance model. In our experiments,
specularity removal increases the recognition rate on an outdoor face database by about 5% at a false alarm rate
of 10−3. The integration of the Cook-Torrance model further improves these results, increasing the verification
rate by 19% at a FAR of 10−3.
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1. INTRODUCTION

The most prominent biometric identifiers are fingerprints, irises, hand geometries, faces and voice. Face images
are easy to acquire, and can even be collected passively without the explicit cooperation of a person1. Several

applications use face recognition techniques to secure doors, notebooks and mobile phones.

However, pose, facial expressions and illumination still constitute challenges for face recognition (FR) systems.
Sinha et al.2 reported that it is difficult even for humans to recognize a subject under varying incident illumination,

shadows, different light colors and specularities. Thus, it is not surprising that computational methods also suffer
from these difficulties. In particular, differing illumination conditions between a face gallery and the probe image
makes reliable verification of a person challenging. Most methods model face reflection with the Lambertian
reflectance model3–5, assuming that faces reflect light purely diffusely. This assumption holds well in indoor

scenes, in particular when the subject is wearing makeup. However, for instance in outdoor scenes, strong
specularities may occur, in conjunction with a considerable number of pixels with partially specular and diffuse
reflection. As Li and Jain [6, p. 187] point out, specularities are one source of verification errors.

In this work, we investigate the impact of specular highlights on a 3D-2D FR system. Two approaches can
be used to address the presence of specular reflection. First, we consider specularity removal. Here, a diffuse-
only image is created, which can be used in an existing diffuse-reflectance-based FR system. Alternatively,
specular reflectance is directly incorporated in the FR system, using the well-known Cook-Torrance model7.

To demonstrate the impact of specular highlights, we use the 3D-2D FR system proposed by Toderici et al.8.

The evaluation is applied on a realistic face recognition database containing indoor and outdoor images. While
specularity removal slightly improves the verification rate, the largest performance gain is obtained from the
direct incorporation of specular reflection within the FR system.

In Sec. 2, we briefly review the most closely related work. The 3D-2D FR system employed is presented
in Sec. 3. In Sec. 4, we describe the investigated algorithms for specularity removal, and the explicit specu-
larity modelling using the Cook-Torrance model. Quantitative and qualitative performance evaluations, and a
discussion of the results are provided in Sec. 5. We conclude this work in Sec. 6.
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2. RELATED WORK

Ishiyama and Tsukada9 proposed a specularity removal method particularly designed for face recognition. The

authors model the diffuse part of the facial reflectance with spherical harmonics. The residual obtained from
subtracting this model from the input image yields the specular pixels. The estimated albedo of the gallery is
obtained by dividing the residual with the diffuse approximation. For each gallery texture, first the pose of the
probe image is adapted using landmark correspondences. Then, the illumination is fit by projecting the computed
illumination subspace of the gallery according to the computed pose of the probe texture. The approach achieves
better recognition results than without specularity removal. Note that, this kind of specularity removal is already
integrated in the bidirectional relighting of the face recognition system we use8 without explicit computation of

the albedo. The method by Ishiyama and Tsukada also considers the specularity of the probe image by modeling
it with a Phong specular component. In this work, we investigate a solution that relaxes the requirement for
the Phong model by removing the specularities in advance. In this way, we allow a relighting process which
only considers diffuse reflectance. In contrast to the work of Ishiyama and Tsukada, we also remove specularities
from the probe facial textures. The probe textures contain specularities with a much higher probability than
the gallery ones, which are usually captured in a controlled environment with low specularity.

Incorporating in FR a more sophisticated illumination model than the pure Lambertian or Phong model has
been rarely addressed so far. Georghiades10 used the Torrance-Sparrow model11 for photometric stereo and to

recover the 3D shape of surfaces, and tested the model on face recognition. Evaluation on 10 subjects achieved
about 15% better results than using a Lambertian model. In contrast to this work we employ the Cook-Torrance
model (an extension of the Torrance-Sparrow model) and evaluate it on a more realistic outdoor face dataset.

3. A 3D-2D FACE RECOGNITION SYSTEM

In face recognition, a test image (the probe) is matched against a set of known images (the gallery). Different
representations have been proposed for the probe and the gallery. For this work, we use a 3D-2D face recognition
system. In such a system, the gallery data is captured in 3D, but the probe images for verification are captured as
2D images. This approach offers a compromise between 2D-2D systems which are cheaper, but also less accurate,
and 3D-3D systems, where increased accuracy can be achieved at the expense of an high-priced, sophisticated
capturing process: for 3D acquisition, more expensive, calibrated equipment is required on every authentication
site. In comparison, 3D-2D face recognition systems require a subject to enroll once at a site with full 3D
equipment, but authentication is very flexible, as 2D imaging systems are widely spread and straightforward to
set up. In particular, we use the 3D-2D face recognition system by Toderici et al.8. This system has two stages:

in the enrollment phase, the subject is entered into a 3D+2D gallery database. In the verification, a subject is
verified by its 2D facial image.

Specifically, during enrollment a 3D facial mesh and a 2D image is acquired. Landmarks are automatically
computed or manually annotated on the raw mesh data. The 3D facial mesh is then preprocessed to overcome
sensor-specific problems (i. e., fill holes and remove spikes). An Annotated Face Model (AFM) is aligned and
fitted to the 3D facial mesh. It allows a uniform representation of 3D facial meshes and provides a global 2D
parametrization in the form of geometry maps. The texture is lifted (i. e., a geometry map is created with the
texture values assigned from the projection of the fitted AFM on the 2D image plane) the 3D mesh of the fitted
AFM is projected to the 2D image plane of the image). Additionally, a visibility map, which denotes non-visible
areas of the 2D texture, is computed. The fitted AFM, the lifted 2D texture and the visibility map are stored
as meta data for a specific subject in the gallery.

During the recognition phase, a 2D facial probe image is compared to the meta data in the gallery. The
process is outlined in Fig. 1. First, reference landmarks on the 2D face have to be annotated or detected. The
following steps are computed for each subject of the gallery in order to compute a one-to-one similarity score.
The AFM of the gallery is registered to the 2D facial image using 3D-2D landmark correspondences. A pose
estimation step compensates mismatches of the head pose between the probe and a gallery image. The probe
2D texture is generated by the projection of the fitted AFM. Similarly to the enrollment phase, a visibility map
is computed. Differences in the illumination conditions of the probe are normalized by an optimization-based



Figure 1: The face verification phase: From the fitted and pose aligned mesh, the texture is lifted and compared
with the relit gallery texture before a score is computed between the textures (image courtesy of Toderici et al.8).

relighting of the gallery texture. Finally, a similarity score is computed between the lifted textures. From this
score, the best match in the gallery is determined (identification), and a threshold-based ACCEPT/REJECT
decision is made (verification).

4. SPECULAR HIGHLIGHTS IN 3D-2D FR

Given an inhomogeneous opaque surface, diffuse or body reflection occurs from light rays which penetrate the
body and then, leave the body again. Specular or interface reflection is caused by light rays which are directly
reflected from the surface body. Many algorithms in computer vision (e. g., for stereo matching, segmentation,
recognition and tracking) work under the assumption of perfect diffuse (Lambertian) reflection. However, in the
real world, most materials exhibit a combination of diffuse and specular reflection and this can cause errors in the
aforementioned algorithms (e. g., stereo mismatching). Thus, in this work, we aim to quantify the performance
gain in face recognition when specular highlights are considered.

4.1 Methods for Specularity Removal

The first investigated approach is to remove specularities prior to face detection. A variety of general purpose
methods for specularity removal exist12. For application on FR, we require a specularity removal method that

operates on a single image. Furthermore, the method must be fully automatic.

Specifically, we employ three different specularity removal methods13–15, based on the dichromatic reflection

model16,

I(λ,x) = wd(x)Sd(λ,x)E(λ) + ws(x)E(λ) , (1)

where the reflected light I at a certain wavelength λ and surface location x = {x, y} is a weighted linear
combination of the diffuse reflectance function Sd(λ,x) and the spectral energy distribution function of the
illumination E(λ). The weights wd(x) and ws(x) denote geometric weighting factors for the corresponding
diffuse and specular reflection. Note that this reflection model assumes uniform illumination color throughout
the scene. Furthermore, the specularity removal methods utilize the chromaticity space. Let c = {r, g, b} a color
channel, and Ic the channel c of an input image I. Then, the image chromaticity σc for a color channel c can be
directly computed by

σc(x) =
Ic(x)

Ir(x) + Ig(x) + Ib(x)
. (2)



Similarly, the diffuse chromaticity Λc and illumination chromaticity Γc can be defined by setting ws = 0,
and wd = 0, respectively. Hence, Eqn. 1 can be rewritten in terms of diffuse chromaticity and illumination
chromaticity,

Ic(x) = md(x)Λc(x) +ms(x)Γc , (3)

where md and ms are the weighting factors for the diffuse and specular reflection component, respectively.
The goal is to decompose the image intensity Ic with a known illumination chromaticity Γc into the reflection
components, md(x)Λc(x) and ms(x)Γc for c = {r, g, b}13.

For a correct separation the methods typically assume that the surface color is chromatic, i. e., the surface
color is not a black, gray or white color (r 6= g or r 6= b or g 6= b). Further assumptions are that each color
region always includes at least one diffuse pixel and that the illumination chromaticity is known. Additionally,
the output of the camera must be linear to the flux of the incident light, i. e. the camera gamma equals 1 and
camera gain and camera noise are ignored.

In order to separate the reflection components the specular component must be pure white (i. e., Γr = Γg =
Γb). Since in the real world a pure white illumination is very unlikely, the image is normalized with the illumi-
nation chromaticity Γc, c = {r, g, b}13. The illumination chromaticity can be measured and compensated with

a white reference reflectance target in the scene. Since in most cases of FR under uncontrolled conditions, such
targets may not be available, we rely on a color constancy algorithm, the physics-based Illuminant Estimation
by Voting algorithm by Riess et al.17, to estimate the illumination chromaticity. We correct this estimate by a

fixed Fresnel term18, as skin reflectance slightly biases the output of the method.

4.1.1 Method of Tan and Ikeuchi

The method of Tan and Ikeuchi (abbreviated to Tan) first computes a specular-free (or pseudo diffuse) image
which has the same geometric profile as the diffuse image13. This is then used in a specular-to-diffuse mechanism

which iteratively decreases the specular component of each pixel.

The specular-to-diffuse mechanism relies on the maximum image chromaticity, which is defined as:

σmax(x) = max(σr(x), σg(x), σb(x)) (4)

where σmax(x) is a scalar value. The maximum diffuse chromaticity Λmax(x) and the maximum illumination
chromaticity Γmax are similarly defined. Tan and Ikeuchi showed that maximum chromaticities of diffuse points
in the image are always larger than those of the specular points. Furthermore, the projection of points from a
single material form a curve in maximum chromaticity space13 that can be described as:

Imax(x) =
md(x)(Λmax(x)− 1/3)σmax(x)

σmax − 1/3
. (5)

By setting Λmax(x) to a fixed scalar value (1/3 < Λmax(x) ≤ 1), a specular-free image can be created by setting
the value of each pixel regardless of its color. In our implementation, we chose Λmax = 0.6.

This pseudo diffuse image contains no specularities, but results in an image with a different color profile.
However, as the geometric profile of the specular-free image is identical to the one of the input image, it can be
used to separate the image diffuse and specular components. The logarithmic differentiations of two neighboring
pixels are computed from both the normalized input image and the specular-free image. If, per pixel, both
logarithmic differentiations are equal, the pixel is diffuse. This can be formulated as:

∆(x) =
d

dx
log

 ∑
c∈{r,g,b}

Ic(x)

− d

dx
log

 ∑
c∈{r,g,b}

Isf,c(x)

 , (6)

where Isf,c denotes the specular free image at color channel c. If ∆(x) is zero, the pixel is diffuse. Otherwise, it
is either (partially) specular or a color discontinuity, caused by noise or a boundary between two surface colors.
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Figure 2: Yoon: First, a specular-free image13 (bottom left) of the input image (top left) is computed. From

these images two ratios rd and rds are computed for each two neighboring pixels upon which the input image is
iteratively adjusted until convergence. Result: bottom right image.

Tan and Ikeuchi distinguish these cases via thresholding on the red and green chromaticity differences of two
neighboring pixels (i. e., if they are both above 0.1 the current pixel is declared as boundary pixel). Furthermore,
if the difference of the maximum chromaticity of two neighboring pixels is smaller than 0.01 the current pixel is
marked as noise. Specular pixels are transferred to diffuse pixels with the specular-to-diffuse mechanism. Here,
the maximum chromaticities of neighboring pixels are compared. The pixel with lower maximum chromaticity
adopts the maximum chromaticity of its neighbor. The algorithm converges when no pixel is labeled as specular.

4.1.2 Method of Yoon, Choi and Kweon

The method by Yoon et al.15 (abbreviated to Yoon) shares the basic idea of Tan, but is considerably simpler

and faster. The method is outlined in Fig. 2. First, a specular-free image (Fig. 2, bottom left) is computed from
the input image (Fig. 2, top left). An iterative framework based upon comparing local ratios of adjacent pixels
in the input and the specular-free image is then used for generating a correct-color, specular-free version of the
input image. This update is applied until convergence (Fig. 2, bottom right).

The specular-free image is obtained by subtraction of the minimum color channel Imin(x):

Isf,c(x) = Ic(x)− Imin(x) = md(x)(Λc(x)− Λmin(x)) , for c = {r, g, b} , (7)

where Λmin = min{Λr,Λg,Λb}. Isf,c(x) denotes the specular-free image, similarly to Tan, in color channel c at
pixel x, im denotes the normalized input image. This resulting image is independent of the specular component
and has the same geometric profile as the input. Based on Isf,c(x), the specularities in the input image can be
iteratively removed by comparing the local ratios rd of the specular-free image with rds of the input image (see
Fig. 2). The two ratios are equalized by decreasing one of the two neighboring pixels in the input image in every
step. If rds is larger than rd, the pixel x1 is decreased by:

m = n

 ∑
c∈{r,g,b}

Ind,c(x1)− rd
∑

c∈{r,g,b}

Ind,c(x2)

 , (8)

where Ind denotes the normalized input image at iteration n. Otherwise, the pixel x2 is decreased by:

m = n

 ∑
c∈{r,g,b}

Ind,c(x2)−
∑

c∈{r,g,b} I
n
d,c(x1)

rd

 . (9)

In our implementation, we use n = 1/3 and apply the update step by testing two neighboring pixels first in the
x- and then in the y-direction.



Yes

No

Figure 3: Method Yang: From the input image13 (top left) compute σmax (top middle) and an estimate of Λmax

(bottom left), then apply bilateral filtering and σmax update until convergence. Result: top right image.

4.1.3 Method of Yang, Wang and Ahuja

The method of Yang et al.14 (denoted as Yang) is also based on Tan. In contrast to Tan, no specular-free image

is computed. Instead, the problem of specularity removal is reduced to finding the maximum diffuse chromaticity
Λmax(x) in each pixel. The authors exploit that in local patches, the maximum image chromaticity σmax and the
maximum diffuse chromaticities often do not change significantly. Using a low-pass filter, the maximum diffuse
chromaticity values can be propagated to the specular pixels. for this task, Yang et al. propose to use iterative
bilateral filtering towards the maximum chromaticity σmax(x). The bilateral filter is guided by the maximum
diffuse chromaticity to avoid blending different surface materials. In contrast to Tan, the method does not suffer
from artifacts of non-converged pixels that were induced by discontinuities in surface colors. Additionally, fast
bilateral filtering makes this method about 200 times faster than Tan.

The algorithm is outlined in Fig. 3. First, σmax (Fig. 3, top middle) and an estimate of Λmax (Fig. 3, bottom
left) are computed. Then, σmax is iteratively smoothed using Λ̃max as guidance, until convergence (Fig. 3, top
right). Λmax is unknown and needs to be approximated through Λ̃c(x) ≈ Λc(x), which depends only on the
material, as

Λ̃c(x) =
σc(x)− σmin(x)

1− 3σmin
for c = {r, g, b} , (10)

where σmin = min{σr, σg, σb} is the minimum image chromaticity, Λ̃max denotes the maximum chromaticity

channel of Λ̃c(x) for c = {r, g, b}. The smoothing process is repeated until the update for σmax is smaller than
ε = 0.003 (Fig. 3, top right image). Note that, typically, the method converges within three iterations.

4.2 Incorporating a Specular Reflection Model

We also investigate the direct incorporation of specularities for illumination normalization in FR. Most face
recognition algorithms assume Lambertian reflectance19,20. To model also specular reflectance, we rely on the

Cook-Torrance Bidirectional Reflectance Distribution Function (BRDF). Its specular BRDF fs is defined as

fs(l,v) =
DGF

4πcos θicos θo
, (11)

where cos θ = max(0, cos θ) denotes a clamped cosine, v the viewing direction and l the light direction. θi and θo
denote the angle between l and the surface normal, and the angle between v and the surface normal, respectively.
The distribution of the microfacets is denoted by D while G is a geometrical attenuation factor that takes into



account the partial interception of incident and reflected light. The Fresnel term F defines the amount of and
the spectral composition of the specularly reflected light.

The Cook-Torrance model describes the proportion of outgoing radiance at the viewing direction v to the
incoming radiance of the light source from direction l. For D, we chose to use the Beckmann distribution, and
for G we take the geometry factor proposed by Torrance and Sparrow11. The Fresnel term F is computed using

Schlick’s approximation21, for which F (0◦) can be computed from the refractive indices18. Since the surface

material is mainly skin, we use the values of the epidermis layer18, i. e., 1.433 for the red, 1.448 for the green and

1.449 for the blue color channel.

The rendering equation for relighting, in which the BRDF is integrated, defines for multiple point light sources
the outgoing radiance Lo as

Lo = ca ⊗ LA +

n∑
k=1

f(lk,v)⊗ dkeLk
cos θik , (12)

where ⊗ denotes element-wise vector multiplication, ca ⊗ LA describes ambient illumination with the ambient
light LA and the ambient surface color ca. Furthermore, k denotes the number of light sources, f(lk,v) the
actual BRDF, eLk

the illuminant color of light Lk, dk is an attenuation factor, and cos θ models foreshortening.
We assume LA to differ from the illuminant color by only a constant factor ka. For multiple light sources, we
set LA = kaea as the sum of all illumination colors (i. e., ea =

∑n
k=1 ek). Furthermore, we set ca equal to the

diffuse color cd.

Incorporating the diffuse BRDF (1/π) and the specular BRDF from Eqn. 11 in the rendering Eqn. 12 yields

Lo = cd ⊗ kaea +

n∑
k=1

[(
cd
π

+ ks
DB(θh,mk)GTS(l,v)FS(αh, F (0◦))

4πcos θicos θo

)
⊗ dkeLk

cos θik

]
, (13)

where DB , GTS and FS denote our implementation choices for D, G and F , and ks is a normalization factor
for the Beckmann distribution22. The angle θh is the angle between the surface normal and h, where h is the

halfway vector between l and v. m denotes the root-mean-square slope of the microfacets and αh the angle
between h and the viewing direction v.

Most of these factors can be precomputed. The unknown parameters to be estimated in Eqn. 13 are: ka and
ks, the per light parameters mk for the Beckmann distribution, and the per-light attenuation factors dk. The
unknown albedo cd depends only on the diffuse reflectance component. Within the framework of Toderici et al. 8,

it is implicitly computed within the relighting step. Three lights were used as proposed by Toderici et al..

Note that modelling skin with a BRDF is only approximately correct. Skin consists of multiple layers. Incident
photons entering the skin at one point may scatter below the surface of the skin and exit at a different point [6,
p.171]. This behavior is known as subsurface scattering, and should ideally be modeled with a Bidirectional
Surface Scattering Reflectance Distribution Function (BSSRDF). However, we restricted this study to employing
a BRDF function.

5. EVALUATION

The specularity removal methods were evaluated within two variants of the face recognition framework. In the
first scenario, specularity removal was applied before relighting (i. e., before the light condition of the probe
face texture is applied to the gallery face texture). In the second scenario, relighting is omitted (i. e., after
specularity removal, gallery and probe images are directly passed to score computation). The advantage of the
latter approach is the reduced computational load, since relighting is the computationally most demanding step
of the recognition pipeline.



(a) Original (b) Tan: Diffuse (c) Yoon: Diffuse (d) Yang: Diffuse

Figure 4: Results of specularity removal on a facial texture containing a strong specular component. Tan shows
clear artifacts. Yang and Yoon perform better. The albedo is best preserved by Yang.

5.1 Database

The evaluation was performed on the University of Houston Database 30 (UHDB30)23. The face images were

captured with a Flea2 camera. The dataset consists of nine subjects, 22 outdoor and seven indoor sessions.
We chose to use one indoor session as gallery and the remaining images as probe, thus resulting in 9 × 252
(Gallery × Probes) comparisons. This makes the comparison more challenging, because the light conditions
differ considerably between indoor and outdoor images. Additionally, outdoor images contain typically stronger
specular highlights than indoor images.

5.2 Integration of Specularity Removal Methods

Several parameters have to be set for the specularity removal methods. Yang typically converges after 3 iter-
ations. We set the number of iterations to 10, to make sure that convergence is always reached. For Yoon,
we set the maximum difference of the ratios rd and rds, to 0.1. Additionally, we set the maximum number
of iterations to 500. To normalize the illumination color, we used Illuminant Estimation by Voting (IEbV)17,

with 100 samples per image. The remaining thresholds were set according to the values stated in the respective
papers. Each specularity removal method is applied on both, gallery and probe face textures.

5.3 Qualitative Evaluation

Specularity Removal and Purely Diffuse Relighting: Figure 4 depicts a facial texture image of UHDB30
which was captured outdoors and thus contains strong specularities. Noticeable in all results are the dark
pixels in the middle of the nose which are saturation artifacts. As the specular part is directly subtracted from
the input image, the output diffuse component contains black-pixel artifacts. This comes from saturation of
specularities, which can eiter be averaged out24, masked out25 or avoided by careful control of the capturing

setup. Fortunately, such overexposed pixels occur relatively rarely in UHDB30. Another issue is the sparkles in
the facial hair regions. Here, Tan produces large gray areas.

To alleviate the artifacts at the beard and forehead, we blurred the original image in Fig. 4a with a Gaussian
kernel of 3× 3 pixels size with a standard deviation of 0.8 (Fig. 5a). For Tan, the artifacts increased. However,
Yoon preserved the facial color better. The only noticeable artifact in Fig. 5c is a slight albedo edge in the
right half of the face. In contrast, Yang did not benefit from the Gaussian blur preprocessing. Artifacts at the
forehead disappeared, but new artifacts around the eyebrows were introduced. Additionally, blurring did not
achieve a complete removal of the saturated specularities at the nose bridge.

As a general remark, we observed that Tan is weak at preserving edges in the image. For specularity removal,
Yoon performs best. In comparison, Yang fails to remove some specularities at the forehead, nose and lips.
However, the diffuse component generated by Yoon is too dark, while Yang much better preserves the face
albedo.



(a) Original (b) Tan: Diffuse (c) Yoon: Diffuse (d) Yang: Diffuse

Figure 5: Results of specularity removal on a facial texture containing a strong specular component which has
been blurred prior to removal. Tan has strong artifacts while Yoon has the most significant improvement, in
comparison to the non-blurred version.

(a) Gallery (b) Probe (c) Diffuse BRDF (d) Diffuse + Specular
BRDF

Figure 6: Qualitative results of applying different BRDFs. (a) Gallery (source) image to be relit with the
illumination condition of probe/target (b), (c) using a purely diffuse BRDF, (d) using the Cook-Torrance BRDF.
The diffuse and specular BRDF covers shadowed areas better (e. g., the right side of the nose bone) and the
specular highlight at the nose tip are better transferred from the probe image. All images are in the texture
geometry space of the 3D face model.

Incorporation of Specularities using the Cook-Torrance Reflectance Model An example result can
be seen in Fig. 6, where the gallery texture (6a) is relit to the probe’s lighting condition (6b). Compared to the
result using a purely Lambertian model (6c), the use of a combined diffuse/specular BRDF looks much more
plausible (e. g., the shadow at the right side of the nose bone is much darker). However, the difference in the
specular part is difficult to see in the image.

5.4 Quantitative Evaluation

We present quantitative results for face recognition using receiver operating characteristic (ROC) curves. A
ROC curve describes the 1:1 verification rate (i. e., it answers the question whether an individual is the claimed
person or not). The verification rate (or true acceptance rate, respectively) is plotted as a function of the false
acceptance rate (FAR). Each point on the curve represents a decision threshold to obtain the respective FAR.
Note that the x-axis denoting the FAR is in logarithmic scale. The closer the ROC curve is to the upper left
corner, the higher the overall accuracy of the test. As the ROC curve is sufficient to show the performance26,

we omit the also often reported cumulative match characteristic (CMC) curves. Although the full ROC curves
are presented, the performance at very low false acceptance rates (e. g., 10−3) is often an important metric for
assessing the system performance. Also note that the plotted scores are normalized using Z-score normalization.

Specularity Removal and Purely Diffuse Relighting: Figure 7a shows the verification rate with relighting.
For a low FAR of 10−3, Yang is the best performing method. For higher false acceptance rates, it is favorable to
omit specularity removal. In a second experiment (Fig. 7b), we added a Gaussian blur filter as a preprocessing
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Figure 7: Specularity removal on UHDB30: (a) with unmodified input images (b) with Gaussian blurred input
images. For comparison, the non-blurred results are also shown as dashed lines in (b).
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Figure 8: Specularity removal on UHDB30 without relighting: (a) with unmodified input images (b) with
Gaussian blurred input images. For comparison, the non-blurred results are also shown as dashed lines in (b).

step to the specularity removal methods. The non-blurred results of Fig. 7a are shown as dashed lines, while
the blurred versions are denoted with solid lines. Applying the blurring step negatively affects the specularity
removal method Tan compared to its non-blurred version, while Yang and Yoon achieve slightly better results.

Figure 8a shows the results from the experiment without relighting. If the relighting step is omitted, all
specularity removal approaches perform worse than the baseline result. Interestingly, Fig. 8b indicates that the
performance of each method improves from Gaussian smoothing. With the Gaussian blur filter, all methods
improve by about 5% over the raw (no relighting) curve at 10−3 FAR.

Consequently, specularity removal can improve the face recognition rate on outdoor, natural illumination
conditions. An important preprocessing step is a slight blurring of the images to attenuate saturation artifacts
and to reduce the noise in the image. This preprocessing better supports the specular-to-diffuse process for
neighborhood-based specularity removal methods.
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Figure 9: Results of incorporating the Cook-Torrance reflection model into 3D-2D FR.

Incorporation of Specularities using the Cook-Torrance Reflectance Model: Figure 9 indicates that
the Cook-Torrance model has a significant impact on the face recognition rate. Note that the score of the
diffuse BRDF (black curve) is slightly different in comparison to Fig. 7 since we had to choose different bounding
parameters in the optimization process for the Cook-Torrance model, and thus, for a more convenient comparison,
we chose to use the same optimization parameters for the relighting process as proposed by Toderici . et al. The
verification rate significantly increased, particularly for lower FARs. At a FAR of 10−3, we obtain an improvement
of about 19%. Thus, we consider this approach superior to specularity removal and relighting of purely diffuse
pixels.

Nevertheless, simplifications of the Cook-Torrance BRDF should be tested as well. The Beckman distribution
for the microfacets’ distribution is computationally very expensive. Therefore, in computer graphics, the distri-
bution function is often modeled similarly to the Blinn-Phong specular term. Kemelmen and Szirmay-Kalos22

in turn give an approximation of the geometry factor G, which makes its computation numerically more stable
and more efficient. These simplifications, and the proposed Cook-Torrance BRDF should also be tested against
the Phong model which Toderici et al.8 proposed to use during relighting.

5.5 Discussion

We showed that using the diffuse component of a specularity removal method can improve the verification rate
in FR under uncontrolled illumination. One important preprocessing step is to apply Gaussian smoothing to
the image, to attenuate artifacts from saturated pixels and to remove image noise. Even better results can be
obtained if the specular component is explicitly incorporated in the actual illuminant normalization algorithm.
To achieve that, we incorporated the physics-based Cook-Torrance model which simulates macroscopic reflectance
by microscopic facets.

For a more comprehensive understanding of specularities in face recognition, both approaches should be
further investigated. In future work, we plan to evaluate both techniques on larger databases and improve
robustness, e. g., by applying the method of Lehmann and Palm to ignore unsaturated and too bright pixels
in advance25. Another extension would be to further evaluate different existing specularity removal methods

regarding their performance and robustness. Mallick et al. proposed a very promising method which seems to
handle finely textured images, like faces, very well27.

Furthermore, the use of the Cook-Torrance BRDF has to be tested on a larger database to fully assess its
impact. This would require methods with an overall lower computational complexity. Currently, as a workaround,
the relighting process operates on images that are downsampled by a factor of 50%. On full-resolution images,
the Cook-Torrance BRDF could achieve even higher verification rates.



6. CONCLUSION

We investigated the impact of specular reflection on FR on a challenging benchmark of outdoor images, where
specular highlights occur more often than in controlled indoor environments. Our results indicate that specular-
ities can have a considerable impact on face recognition performance. First, we applied methods for specularity
removal to create purely diffuse images. Face recognition on these images (instead of the original images) in-
creased by about 5% at a FAR of 10−3. Alternatively, we directly incorporated the Cook-Torrance model for
specular reflectance in the relighting step of a 3D-2D face recognition pipeline. This resulted in a significant
improvement by 19% over the baseline at a FAR of 10−3. However, one important issue is computational com-
plexity. For future work, computationally more efficient ways of modeling the specular component have to be
researched.
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