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Golden-Angle Radial Sparse Parallel MRI: Combination
of Compressed Sensing, Parallel Imaging, and
Golden-Angle Radial Sampling for Fast and Flexible

Dynamic Volumetric MRI

Li Feng,l’z* Robert Grimm,? Kai Tobias Block,! Hersh Chandarana,® Sungheon Kim,?
Jian Xu,* Leon Axel,"? Daniel K. Sodickson,"? and Ricardo Otazo"?

Purpose: To develop a fast and flexible free-breathing dynamic
volumetric MRI technique, iterative Golden-angle RAdial Sparse
Parallel MRI (iGRASP), that combines compressed sensing,
parallel imaging, and golden-angle radial sampling.

Methods: Radial k-space data are acquired continuously
using the golden-angle scheme and sorted into time series by
grouping an arbitrary number of consecutive spokes into tem-
poral frames. An iterative reconstruction procedure is then per-
formed on the undersampled time series where joint multicoil
sparsity is enforced by applying a total-variation constraint
along the temporal dimension. Required coil-sensitivity profiles
are obtained from the time-averaged data.

Results: iGRASP achieved higher acceleration capability than
either parallel imaging or coil-by-coil compressed sensing
alone. It enabled dynamic volumetric imaging with high spatial
and temporal resolution for various clinical applications,
including free-breathing dynamic contrast-enhanced imaging
in the abdomen of both adult and pediatric patients, and in
the breast and neck of adult patients.

Conclusion: The high performance and flexibility provided by
iGRASP can improve clinical studies that require robustness to
motion and simultaneous high spatial and temporal resolution.
Magn Reson Med 000:000-000, 2013. © 2013 Wiley
Periodicals, Inc.
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INTRODUCTION

Dynamic MRI requires rapid data acquisition to provide
an appropriate combination of spatial resolution, tempo-
ral resolution, and volumetric coverage for clinical stud-
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ies. For example, rapid imaging speed is needed for
dynamic contrast-enhanced (DCE) examinations, in
which fast signal-intensity changes must be monitored
during the passage of the contrast agent (1,2). A variety
of fast MRI techniques have been developed to accelerate
the data acquisition. Parallel imaging (PI) techniques,
such as SMASH (3), SENSE (4), and GRAPPA (5), use
spatial information from multiple receiver coils with dif-
ferent sensitivity patterns to reconstruct images from
undersampled multicoil data. Temporal PI techniques,
such as TSENSE (6) or TGRAPPA (7), remove the need
to acquire extra coil reference data, by combining differ-
ent temporal frames acquired with shifted undersam-
pling patterns. However, the acceleration in PI is limited
by SNR constraints and restrictions in the coil design,
which can result in a poorly conditioned inverse prob-
lem for high accelerations. The presence of extensive
spatial and temporal correlations can be also exploited
to accelerate the data acquisition (8). The k-t acceleration
methods, such as k-t BLAST/k-t SENSE (9), k-t GRAPPA
(10), and SPEAR (11), are based on the fact that the rep-
resentation of dynamic images in the combined spatial
(x) and temporal Fourier (f) domain is typically sparse,
which reduces the signal aliasing in x-f space due to reg-
ular k-t undersampling and makes higher accelerations
feasible. Other techniques, such as keyhole imaging (12)
or TRICKS (13), aim to accelerate data acquisition and
increase temporal resolution by sharing portions of the
k-space data.

Compressed sensing (CS) (14-16) is another strategy to
accelerate data acquisition in dynamic MRI. CS methods
exploit spatial and temporal correlations by using irregu-
lar undersampling schemes to create incoherent aliasing
artifacts and using a nonlinear reconstruction to enforce
sparsity in a suitable transform domain (17-24). Incoher-
ent aliasing artifacts are often created using Cartesian k-
space trajectories with random undersampling patterns
(16). However, the incoherence achievable in this way is
relatively low, which limits the performance of CS.
Radial k-space trajectories (25,26) are an interesting alter-
native due to the inherent presence of incoherent alias-
ing in multiple dimensions (25), even for regular
(nonrandom) undersampling. Moreover, radial trajecto-
ries are less sensitive to motion, which improves captur-
ing dynamic information (26,27). When acquiring radial
data according to the golden-angle ordering scheme (28),



where the angle of the radial lines is increased continu-
ously by 111.25°, a rather uniform coverage of k-space
with high temporal incoherence is obtained for any arbi-
trary number of consecutive lines. This enables dynamic
imaging studies using continuous data acquisition and
retrospective reconstruction of image series with arbi-
trary temporal resolution by grouping different numbers
of consecutive radial lines into temporal frames (29,30).
Higher accelerations can be achieved by combining CS
and PI using the idea of joint multicoil sparsity, as previ-
ously demonstrated for accelerated dynamic MRI in Car-
tesian k-space trajectories with the k-t SPARSE-SENSE
technique (21-24).

In this work, the idea of k-t SPARSE-SENSE is
extended to volumetric golden-angle radial acquisitions
and demonstrated for various clinical dynamic imaging
applications, including free-breathing liver DCE MRI,
pediatric body MRI, breast and neck imaging. The per-
formance of the extended approach, entitled iterative
Golden-angle RAdial Sparse Parallel MRI (iGRASP), is

compared  with  coil-by-coil CS and Pl-only
reconstructions.
METHODS

Golden-Angle Radial Sampling

Continuous 3D data acquisition was implemented using
a stack-of-stars k-space trajectory, where Cartesian sam-
pling is used along the partition dimension (k,) and
golden-angle radial sampling is used in the k,-k; plane,
as summarized in Figure la. The golden-angle acquisi-
tion scheme, which has previously been applied for
accelerated dynamic imaging (30-32), ensures approxi-
mately uniform coverage of k-space for any arbitrary
number of consecutive spokes, in particular if the num-
ber belongs to the Fibonacci series [defined as
F(k+2) =F(k) + F(k+1), where k>0, and F(0)=0 and
F(1)=1, e.g., 1,2,3,5,8,13,21,34,...] (28). Figure 1b shows
the point spread function (PSF) for a golden-angle radial
acquisition with 21 spokes using a single element
receiver coil (top) and a sensitivity-weighted combina-
tion of eight radiofrequency (RF) coil elements (bottom).
The PSF for the single coil is calculated by performing
gridding on a simulated k-space matrix with ones along
an undersampled radial trajectory with 21 golden-angle
spokes and 256 sampling points along each spoke, fol-
lowed by an inverse nonuniform fast Fourier transform
(NUFFT) operation. The Nyquist sampling requirement
for this case is 256*mw/2~402, corresponding to a simu-
lated acceleration rate of 19.1. The PSF is indicative of
the degree of incoherence associated with the radial
undersampling before the compressed-sensing recon-
struction. The PSF of the eight-coil acquisition with
identical acceleration was computed using the multicoil
SENSE model, which performs a sensitivity-weighted
combination of individual PSFs using simulated sensitiv-
ity maps. The resulting incoherence, which was com-
puted as the ratio of the main-lobe to the standard
deviation of the side-lobes in the PSF (16), was 83.1 for
the single-coil case and 106.9 for the eight-coil case. As
shown in the Figure 1b, the use of the multicoil SENSE
model reduces the side-lobes, which correspond to alias-
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FIG. 1. a: Continuous acquisition of radial lines with stack-of-stars
golden-angle scheme in iGRASP. b: Point spread function (PSF) of
an undersampled radial trajectory with 21 golden-angle spokes
and 256 sampling points in each readout spoke for a single ele-
ment coil (top) and for a sensitivity-weighted combination of eight
RF coil elements (bottom). The Nyquist sampling requirement is
256*mw/2~402. The standard deviation of the PSF side lobes was
used to quantify the power of the resulting incoherent artifacts
(pseudo-noise) and incoherence was computed using the main-
lobe to pseudo-noise ratio of the PSF.

ing artifacts due to undersampling. The higher encoding
capabilities provided by the coil array therefore improve
the performance of compressed sensing (21).

iGRASP Reconstruction

Figure 2 shows the iGRASP reconstruction pipeline.
Because the k, dimension is uniformly sampled, a fast
Fourier transform (FFT) is applied along this dimension
to enable slice-by-slice reconstructions, which reduces
the computational burden and enables straightforward
parallelization of the reconstruction. Coil sensitivity
maps are computed with the adaptive array-combination
technique (33,34) using coil-reference data from the tem-
poral average of all acquired spokes, which is usually
fully sampled as shown in Figure 2a. Afterward, the con-
tinuously acquired radial spokes are re-sorted by group-
ing a Fibonacci number (e.g., 34, 21, or 13) of
consecutive spokes to form each temporal frame with the
desired temporal resolution. The iGRASP reconstruction
is formulated as follows:
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FIG. 2. iGRASP reconstruction pipeline. a: Estimation of coil sensitivity maps in the image domain, where the multicoil reference image
(x-y-coil) is given by the coil-by-coil NUFFT reconstruction of the composite k-space data set that results from grouping all the acquired
spokes. b: Reconstruction of the image time-series, where the continuously acquired data are first re-sorted into undersampled dynamic
time series by grouping several consecutive spokes. The iGRASP reconstruction algorithm is then applied to the re-sorted multicoil
radial data, using the NUFFT and the coil sensitivities to produce the unaliased image time-series (x-y-t).

d=argmin{|F-S-d—m|2+\ || T-d|:}, [1]

where d is the image series to be reconstructed in x-y-t

space, T is the temporal total-variation (TV) operator

(sparsifying transform), imposed on the l; norm, m =
my

are the acquired multicoil radial k-space data

me
with ¢ coils, F is the NUFFT operator defined on the
Sy

radial acquisition pattern, S = are the coil sensitiv-

Se
ity maps in x-y space, and \ is the regularization weight
that controls the tradeoff between parallel-imaging data
consistency and sparsity. A ramp filter in the k,-k, plane
was applied to each spoke to compensate for variable
density sampling.

Selection of Reconstruction Parameters

To determine the optimal weighting parameter A, the
performance of several values was first evaluated on one
dataset for one temporal resolution and then adjusted for
other temporal resolutions according to the difference in
aliasing artifacts (pseudo-noise). First, iGRASP recon-
structions were performed using different weights rang-
ing from 0.01* M, to 0.1* M, (step size 0.01), where M,
was the maximal magnitude value of the NUFFT images
that are also used to initialize the iGRASP reconstruc-
tion, for the case of 21 spokes per temporal frame. An

adequate value for X was chosen by an experienced radi-
ologist, who identified the appropriate value correspond-
ing to the adequate balance between preservation of fine
detail and residual noise or pseudo-noise level, and who
also evaluated the signal intensity of regions of interest
(ROIs) along time. The parameter for different temporal
resolutions was then obtained with A/A,; * N1, where
A, is the pseudo-noise at the target temporal resolution
and A, is the pseudo-noise at 21 spokes per frame. The
pseudo-noise was computed as described before. In this
way, higher temporal resolutions (or equivalently, use of
fewer spokes for each temporal frame) will be regular-
ized more strongly, proportionally to the higher level of
pseudo-noise. This parameter estimation procedure
needs to be performed only once for a certain target tem-
poral resolution and application area (liver imaging in
this work), and the value can then be used for different
temporal resolutions and applications.

Implementation of the Reconstruction Algorithm

The iGRASP reconstruction was initially implemented in
a customized software developed in MATLAB (Math-
works, MA), using a tailored version of the nonlinear
conjugate gradient algorithm originally proposed in (16).
The reconstruction code is available online at http://
cai2r.net/resources/software/grasp-matlab-code.

To achieve reconstruction times that allow for more
practical evaluation in clinical settings, the reconstruc-
tion was also implemented as a stand-alone application
using the C++ language. Several algorithmic optimiza-
tions were incorporated to achieve high reconstruction
speed. First, a channel-compression procedure was
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Table 1

Representative Imaging Parameters Of Dynamic Volumetric MRI In Different Applications

DCE Liver DCE Pediatrics DCE Breast DCE Neck

#Sampling in Each Readout (2x) 512~768 512 512 512
#Partitions 29~40 48 35 69
#Spokes in Each Partition 600~800 800 2280 800
Slice Thickness (mm) 3 3 2 2
FOV (mm?) 370x370 250%250 270x270 256x256
TR/TE (ms) 3.83/1.71 4.24/2.07 3.6/1.47 4.57/2.06
Flip Angle (Degree) 12 12 12 12
Acquisition Time (s) 90 193 331 283

applied to reduce the amount of k-space data, which
combined the receiver channels into eigenmodes based
on a principal component analysis and discarded higher-
order modes such that 95% of the signal power was pre-
served (35). Second, the reconstruction was parallelized
across slices using the OpenMP framework (36), yielding
an almost linear reduction of the reconstruction time
with the number of processor cores. The NUFFT was
implemented by means of convolution with a Kaiser-
Bessel kernel. Interpolation coefficients were precalcu-
lated and shared across threads. Corner rounding was
applied to allow for differentiation of the TV 1; norm.
Minimization of the cost function was achieved with a C
implementation of the limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) algorithm (37).

Representative Imaging Applications

iGRASP dynamic imaging was clinically implemented
and evaluated for a variety of representative imaging
applications, as described in the following subsections.
Human imaging was approved by institutional review
board and was Health Insurance Portability and
Accountability Act (HIPAA) compliant. Written informed
consent was obtained from all the subjects before the
imaging.

Dynamic Contrast-Enhanced Liver Imaging

DCE liver MRI was performed in six healthy volunteers
(age, 34.5*+5.2 years) and seven patients (age, 51 + 8.4
years) in axial orientation during free breathing using
whole-body 3 Tesla (T) or 1.5T scanners (MAGNETOM
Verio / Avanto, Siemens AG, Erlangen, Germany) with a
combination of body-matrix and spine coil elements
with 12 channels in total. Data acquisition was initiated
simultaneously with intravenous injection of 10 mL of
gadopentate dimeglumine (Gd-DTPA) (Magnevist, Bayer
Healthcare, Leverkusen) followed by a 20-mL saline
flush, both injected at a rate of 2 mL/s. A radial stack-of-
stars three-dimensional (3D) Fast Low Angle SHot
(FLASH) pulse sequence with golden-angle ordering was
employed for the data acquisitions. Two-fold readout
oversampling was applied to avoid spurious aliasing
along the spokes. All partitions corresponding to one
radial angle were acquired sequentially before moving to
the next angle. The ordering scheme along kz was
switched between linear (from kz=—kzmax/2 to
kz=+kzmax/2) and centric out (starting at kz=0) depend-

ing on the number of slices, as done in most of the mod-
ern 3D gradient echo (GRE) sequences. Frequency-
selective fat suppression was used and 60 initial calibra-
tion lines were acquired to correct system-dependent gra-
dient-delay errors as described by Block and Uecker (38).
Relevant imaging parameters are listed in Table 1.

Dynamic Contrast-Enhanced Pediatric Body Imaging

Abdominal DCE MRI was performed in five pediatric
patients (age 4.8 £4.1 years) in axial orientation on a
1.5T scanner (MAGNETOM Avanto, Siemens AG) using
a body/spine coil array with 12 elements. Acquisitions
were performed during free-breathing because the
patients were sedated during the exam. The imaging and
contrast-injection protocols were comparable to the liver
example described above. Relevant parameters are listed
in Table 1.

Dynamic Contrast-Enhanced Breast Imaging

Free-breathing unilateral breast DCE MRI was performed
in six patients (age, 55.3 * 6.7 years) in sagittal orienta-
tion before MRI-guided biopsy using the radial 3D
FLASH protocol on a 3T scanner (MAGNETOM Trio,
Siemens AG), equipped with a seven-element breast-coil
array (InVivo Corporation, Gainesville, FL). A single
dose of Gd-DTPA with concentration of 0.1 mM/kg body
weight was injected at 3 mL/s into an antecubital vein.
Relevant imaging parameters are listed in Table 1.

Dynamic Contrast-Enhanced Neck Imaging

DCE MRI of the neck was performed in 10 patients (age,
66.2 = 19.9 years) in axial orientation using the radial 3D
FLASH protocol on a 1.5T scanner (MAGNETOM
Avanto, Siemens AG), using a head/spine coil with 15
elements. The contrast-injection protocol was identical
to the liver example. Relevant imaging parameters are
listed in Table 1.

Image Reconstruction

Iterative SENSE, coil-by-coil CS, and iGRASP reconstruc-
tions were performed on all the datasets using 21 spokes
for each temporal frame. The reconstructed in-plane
matrix size was 256 x 256 or 384 x 384, depending on
the number of readout samples. The achieved temporal
resolution was approximately 3 s/volume for the liver
application, 5 s/volume for the pediatric application,
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3 s/volume for breast imaging and 7 s/volume for neck
imaging. Compared with the Nyquist sampling rate, the
reconstructions correspond to an acceleration rate of 19.1
to 28.7.

The iterative SENSE reconstruction was performed using
the iGRASP implementation with a regularization weight
of A=0. The reference CS reconstruction was performed
separately for each coil element, followed by sensitivity-
weighted combination. The regularization parameter was
selected only once, as described for iGRASP.

To demonstrate the flexibility of iGRASP, reconstruc-
tions were also performed with different temporal resolu-
tions for one of the pediatric datasets (13 and 34 spokes,
corresponding to 3 and 8 s/volume).

Image reconstruction was performed using the C++
implementation on a Linux server equipped with four Intel
Xeon E5520 quad core CPUs at 2.27 GHz and 96 GB of
RAM. The reconstruction time ranged from 30 to 45 min for
a complete 3D data set, depending on the size of datasets.

Image Analysis and Statistics

To evaluate the image quality and temporal fidelity
achieved with iGRASP, one representative partition was
selected from each reconstructed dataset for image qual-
ity assessment. Images were compared between iGRASP
versus iterative SENSE, iGRASP versus coil-by-coil CS,
and for temporal fidelity assessment between iGRASP
versus NUFFT.

Image Quality Assessment

A total of 39 liver datasets (13 iterative SENSE, 13 coil-by-
coil CS and 13 iGRASP), 15 pediatrics datasets (5 iterative
SENSE, 5 coil-by-coil CS and 5 iGRASP), 18 breast data-
sets (6 iterative SENSE, 6 coil-by-coil CS and 6 iGRASP),
and 30 neck datasets (10 iterative SENSE, 10 coil-by-coil
CS and 10 iGRASP) were pooled and randomized for
blinded qualitative evaluation by three radiologists with
expertise on abdominal imaging, breast imaging and neu-
roimaging, respectively. The score levels for all the image
quality assessments were: 1=nondiagnostic, 2=poor,
3 =adequate, 4 =good, and 5 = excellent.

The reported scores in each reconstruction category
from all four applications were pooled together to repre-
sent mean = standard deviation. Wilcoxon signed-rank
sum test was chosen to compare the scores between
iGRASP versus iterative SENSE and iGRASP versus coil-
by-coil CS (n=34), using Excel (Microsoft, Redmond,
WA) where P<0.05 was considered to be statistically
significant difference.

Temporal Fidelity Assessment

For each of the iGRASP datasets, a ROI was manually
drawn to evaluate the signal-intensity time courses. The
upslope was computed using a linear fit of the curve
points chosen between 10% and 90% of the relative peak
enhancement, which usually corresponded to the first
pass of contrast agent. The corresponding NUFFT data set
was evaluated using the same ROI, and the upslope was
calculated using the same length of curve points as refer-
ence. The analysis was performed on all iGRASP datasets

(n=34) and the corresponding NUFFT results. The
upslope of NUFFT and iGRASP reconstructions were
pooled separately and the relative accuracy was evaluated
by performing linear correlation and Intraclass correlation
(ICC) in Excel (Microsoft, Redmond, WA).

RESULTS
Selection of Reconstruction Parameters

Figure 3 shows the results from the NUFFT reconstruc-
tion of one DCE liver data set (Fig. 3a) and the iGRASP
reconstructions with three representative values of the
weighting parameter N\ (Fig. 3b—d). It should be noted that
although the dynamic curves from the NUFFT reconstruc-
tion are contaminated by streaking artifacts, they still pre-
serve good contrast-time evolution due to the fact that
intensities were averaged over a relatively large ROL
Therefore, it can be used as a first rough measure to
assess temporal fidelity. The results suggest that
A =M;*0.05 yields a good balance between image quality
and temporal fidelity (Fig. 3c). Higher weighting (Fig. 3d,
A= M*0.09) produces lower residual artifact and slightly
better image quality but also stronger temporal blurring,
and vice versa for a lower weight (Fig. 3b, A= M*0.01).
Based upon these results, A =M;,*0.05 was selected by the
radiologist for iGRASP reconstructions with 21 spokes. As
shown in the following sections, this weight led to simi-
larly good results in other applications.

iIGRASP versus Coil-by-Coil Compressed Sensing and
Iterative SENSE

Figure 4 shows the comparison of iGRASP with coil-by-
coil CS and iterative SENSE reconstructions for a liver
dataset with in-plane matrix size of 384 x 384. iGRASP
showed better image quality than coil-by-coil CS recon-
struction, largely as a result of the reduction of aliasing
artifacts provided by the parallel-imaging component (Fig.
1b). The reduction of aliasing artifacts enabled recovery of
more signal coefficients, particularly those corresponding
to high resolution features, which generally have lower
values. iGRASP also outperformed iterative SENSE and
showed significantly lower residual aliasing artifacts due
to the temporal TV constraint, which exploits additional
temporal correlation and sparsity.

Dynamic Pediatric Body Imaging

Figure 5a shows one representative partition of DCE-MRI
from a 10-year old patient. The reconstructed images clearly
show distinct aorta, portal vein, and liver contrast enhance-
ment over time. Note that the same dataset was used to
reconstruct dynamic images with different temporal resolu-
tions by grouping 34 (top), 21 (middle), and 13 (bottom)
spokes. Figure 5b evaluates the corresponding signal inten-
sity changes over time for the aorta (AO) and portal vein
(PV). For comparison, the signal intensity-time curves of the
NUFFT reconstruction are included as reference.

Dynamic Breast Imaging

Figure 6a shows unilateral breast DCE-MRI of a patient
with fibroadenoma and fibrocystic changes. The images
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FIG. 3. Reconstruction of one representative partition from the contrast-enhanced volumetric liver dataset acquired with golden-angle
radial sampling scheme using NUFFT (a) and iGRASP with three different weighting parameters (b-d) by grouping 21 consecutive
spokes in each temporal frame. Results with A =M;*0.05 achieved an appropriate compromise between image quality and temporal
fidelity. This value was therefore chosen for iGRASP reconstruction with temporal resolutions of 21 spokes per frame. The weighting
parameter was adjusted for different temporal resolutions according to the level of incoherent aliasing artifacts or pseudo-noise in the
PSF. Mgy was the maximal magnitude value of the NUFFT images that were also used to initialize the iGRASP reconstruction.

reconstructed with iGRASP show appropriate contrast
enhancement over time in the normal breast tissue and
in a suspicious breast lesion indicated by the white
arrow. iGRASP also provided good image quality and
depiction of relevant morphological features, such as
fibroglandular tissue, skin layer, and the suspicious
lesion. Figure 6b shows the corresponding signal inten-
sity changes over time of the breast lesion, heart cavity,
vessel and breast tissue (white arrows and ROI). The
iGRASP reconstruction did not introduce significant
notable temporal blurring.

Dynamic Neck Imaging

Figure 7 shows representative images of two partitions
from a patient with neck mass and squamous cell cancer,
together with the corresponding signal-intensity changes
for the carotid artery (white arrows). The reconstruction

shows good image quality in different phases and similar
contrast enhancement to the NUFFT curves.

Image Quality Comparison

Table 2 summarizes the mean scores and standard devia-
tions for different reconstruction strategies in each appli-
cation. iGRASP yielded significantly better scores
(P <0.05) when compared with both iterative SENSE and
coil-by-coil CS reconstructions. The score of iGRASP
was above 3.0 in all applications, suggesting that good
image quality can be achieved with the proposed acceler-
ation rate and temporal resolution.

Temporal Fidelity Comparison

For the upslope calculated from the data pairs (n=34,
iGRASP versus NUFFT), the linear regression coefficient
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FIG. 4. Comparison of iGRASP (top) reconstruction with coil-by-coil CS (middle) and iterative SENSE (bottom) reconstructions in the
liver dataset with the same acceleration rate and temporal resolution of 21 spokes/frame =3 s/volume. iGRASP showed superior image
quality compared with both coil-by-coil CS and iterative SENSE reconstructions.

was 0.99, the linear fitting slope was 0.98, and ICC was
0.99, indicating strong agreement between the upslopes
obtained from iGRASP and NUFFT. This result suggests
that iGRASP does not introduce significant temporal
blurring.

DISCUSSION

This work introduces a robust approach for rapid
dynamic volumetric MRI named iGRASP, which is
applicable for a broad spectrum of clinical applications.
Even though individual components of the method have
been proposed before, the synergistic combination of CS,
PI, and golden-angle radial sampling results in a tech-
nique that is particularly well-suited to obtain high spa-
tial resolution, high temporal resolution, and large
volumetric coverage at the same time. iGRASP achieved
significantly better performance than either PI or CS
alone and demonstrated high value for clinical studies
that require robustness to patient motion and simultane-
ous high spatial and temporal resolution. iGRASP can be
also used in other applications such as cardiac cine
imaging (39).

The motion robustness can be mainly attributed to the
use of radial k-space sampling. Radial sampling is well-
known for being less susceptible than Cartesian sampling
due to (a) lower sensitivity to motion-induced phase shifts
and (b) signal averaging at the center of k-space. Moreover,
it is well-suited for CS because radial undersampling cre-
ates incoherent low-intensity streaking artifacts. The

golden-angle ordering scheme additionally introduces
temporal incoherence of the k-space acquisition.

In radial acquisitions, the image contrast corresponds
to the average over the acquisition window because all
lines cover k-space center. In this regard, radial sampling
introduces a certain amount of temporal blurring, which
manifests as slightly lower vessel-tissue contrast com-
pared with Cartesian acquisitions that use a narrow time
window for the acquisition of the k-space center. How-
ever, as opposed to other radial approaches that use a
broad temporal view-sharing filter to extract different
temporal phases without streaking artifacts (28), iGRASP
enforces data fidelity only within a relatively small tem-
poral window (e.g., 21 spokes), which enables to pre-
serve high temporal sharpness.

iGRASP reconstruction removes streaking artifacts in
the undersampled time-series of images at the expense of
suppressing small coefficients in the temporal TV
domain, which can compromise temporal fidelity for
high acceleration factors because rapidly oscillating
intensity changes may be dampened in this case while
the temporal onset of sharp intensity changes remains
unaffected due to the use of the 1, norm. However,
unlike reconstruction approaches that use TV constrains
in the spatial domain, iGRASP does not lead to spatial
image blurring or synthetic appearance. In cases where
there is motion between temporal frames, temporal blur-
ring artifacts might under certain circumstances appear
as spatial blurring artifacts, but these artifacts originate
in the temporal dimension. This penalty, which is
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common to all compressed sensing methods, is due to
the fact that MR images are compressible rather than
truly sparse, presenting a few high coefficients and many
small coefficients. If the small coefficients fall below the
pseudo-noise level created by the undersampling arti-
facts, they may not be robustly recoverable. For the par-
ticular case of temporal TV, abrupt temporal variations
usually result in high coefficients that are well recovered
by the reconstruction. However, moderate or smooth sig-
nal variations might result in low-value coefficients
below the pseudo-noise level, which could be sup-
pressed by the reconstruction. Although minor compro-
mises in the temporal fidelity may result, it is unclear
whether these effects are clinically relevant. Future stud-
ies are planned to assess the impact on the diagnostic
performance of dynamic imaging, although the prelimi-
nary results obtained so far indicate that the technique
does not introduce clinically significant temporal distor-
tions. From a clinical perspective, it is presumably of
higher relevance that iGRASP enables dynamic abdomi-
nal imaging in patients that are incapable of suspended
respiration, including severely sick, pediatric, or sedated
patients, where it is infeasible to perform dynamic imag-
ing with adequate diagnostic quality using established
conventional techniques (40,41).

iGRASP provides a simple and flexible way of per-
forming dynamic MRI studies in these patients and can
help to improve clinical workflow by enabling data
acquisition without the need for synchronization with
breath-hold commands or for selection of a predefined
rigid temporal resolution. While a typical clinical use
case does not require reconstruction and evaluation of
image series at multiple temporal resolutions, which
would increase the workload of radiologists if used
indiscriminately, the flexibility of reconstructing differ-
ent temporal resolutions without the need to re-acquire
data can be another advantage for specific clinical ques-
tions or in the event of a suggestive finding. Formal stud-
ies are currently in progress using a prototypic workflow
integration (42) to investigate the clinical potential of
multi-resolution reconstructions and to determine the
range of effectively achievable temporal resolutions.

The current implementation of iGRASP has some limi-
tations that will be addressed in future work. First, a
stack-of-stars k-space sampling pattern is used to enable
parallelized slice-by-slice reconstructions. This reduces
the computational burden of iGRASP reconstructions,
but prevents using compressed sensing along the slice
dimension. The use of full 3D golden-angle radial sam-
pling along with a volumetric reconstruction are

Table 2
Image Quality Assessment Scores Represent Mean = Standard Deviation For Each Reconstruction Category For Different Applications
DCE Liver DCE Pediatrics DCE Breast DCE Neck
iGRASP 3.38+0.65 4.20+0.84 4.67+0.52 3.80+0.79
Coil-by coil CS 1.62+0.77 1.80+0.45 2.33+£1.08 2.10+0.74
Iterative SENSE 1.38+0.65 1.40+0.55 217+1.17 1.00+0.00
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expected to further increase the performance, at the
expense of higher computational demand. Second,
although temporal TV has been used before for different
dynamic MRI reconstructions and was shown to be bet-
ter in some specific applications (19), it may be not opti-
mal to use it as the only sparsifying transform for all
cases and applications. Other advanced temporal sparsi-
fying transforms, such as dictionary learning, might be
also useful to increase temporal fidelity for high under-
sampling factors. Third, the current work did not use rig-
orous mathematical criteria to select the weighting
parameter X\, which controls the tradeoff between
removal of streaking aliasing artifacts and temporal fidel-
ity. The empirical rule to make N proportional to the
pseudo-noise level in the PSF produced reasonable per-
formance for different undersampling factors. The same
N\ was also used in different applications for a given tem-
poral resolution, which suggests that the reconstruction
can be automated without intervention. However, evalu-
ation on a larger set of patients comparing with standard
clinical techniques is required to test the robustness of
this new approach. Finally, because it is impossible in
practice to acquire a fully-sampled volumetric DCE data-
set with the target spatial and temporal resolution, the
current study used NUFFT reconstructions as temporal
reference. While NUFFT reconstructions provide time
curves without artificial temporal blurring effects, they
can be affected by strong streaking artifacts at high accel-
erations that limit their value for assessing the ground-
truth signal evolution. A comprehensive analysis of the
temporal fidelity achieved with iGRASP using numerical
simulations and dynamic phantom scans is currently in
progress.

CONCLUSIONS

The combination of compressed sensing, parallel imag-
ing, and golden-angle radial sampling used in iGRASP
enables rapid dynamic volumetric MRI studies with high
spatial resolution, temporal resolution, and motion
robustness. Because of the continuous data acquisition
and the flexibility to reconstruct images retrospectively
at different temporal resolutions, dynamic imaging with
iGRASP can be integrated easily into clinical workflow
(42). iGRASP can be used for a wide range of clinical
applications and demonstrated particular value for
examinations of patients that are unable to suspend
respiration.
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