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ABSTRACT

Minimally invasive interventions often involve tools of curvilinear shape like catheters and guide-wires. If the
camera parameters of a fluoroscopic system or a stereoscopic endoscope are known, a 3-D reconstruction of
corresponding points can be computed by triangulation. Manual identification of point correspondences is time
consuming, but there exist methods that automatically select corresponding points along curvilinear structures.
The focus here is on the evaluation of a recent published method for catheter reconstruction from two views. A
previous evaluation of this method using clinical data yielded promising results. For that evaluation, however,
no 3-D ground truth data was available such that the error could only be estimated using the forward-projection
of the reconstruction. In this paper, we present a more extensive evaluation of this method based on both
clinical and phantom data. For the evaluation using clinical images, 36 data sets and two different catheters
were available. The mean error found when reconstructing both catheters was 0.1mm ± 0.1mm. To evaluate
the error in 3-D, images of a phantom were acquired from 13 different angulations. For the phantom, A 3D
C-arm CT voxel data set of the phantom was also available. A reconstruction error was calculated by comparing
the triangulated 3D reconstruction result to the 3D voxel data set. The evaluation yielded an average error of
1.2mm ± 1.2mm for the circumferential mapping catheter and 1.3mm ± 1.0mm for the ablation catheter.
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1. INTRODUCTION

Atrial fibrillation is the most common heart arrhythmia and increases the risk of stroke significantly.1 Cardiac
ablation has become the standard treatment option for atrial fibrillation.2 The ablation procedure is usually
performed under fluoroscopic guidance using different catheters. In the fluoroscopic images, the catheters are
clearly visible, whereas the left atrium, in which the ablation is performed, remains almost invisible due to the low
soft tissue contrast of X-ray imaging unless contrast agent is administered. To add some soft-tissue information,
an overlay image may be rendered from a pre-operatively acquired 3-D volume of the patient’s heart and merged
with the fluoroscopic images.3 This overlay can be used to assess the position of the catheters with respect to
anatomical structures of the heart.

For certain tasks during an electrophysiology (EP) procedure, 3-D catheter reconstruction would be beneficial.
For example motion compensation of the overlay4 or tracking5, 6 may require a 3-D reconstruction of a catheter.
Moreover, reconstructions of catheters may provide a better orientation to the physician. Using a biplane X-ray
system, a possible method for reconstruction is the manual annotation of corresponding points along the catheter
in both images. Since this is very time consuming, a more automatic approach for reconstruction of curvilinear
structures is favored.
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A first approach was presented by Baert et al.6 It requires a 2-D curve for each image, which can be
faster annotated than several pairs of corresponding points. As this approach shows problems with highly
curved catheters, we presented an improved method7 which is suited to reconstructing highly curved catheters.
While the error in the first evaluation was measured only in 2-D for a single catheter type, we present a more
comprehensive evaluation. We worked with two different catheter types and also computed the 3-D error of
the reconstruction. The approach, however is not only limited to X-ray. A different application field is robotic
surgery where imaging is done using stereoscopic endoscopes. If the camera parameters of the endoscope are
known, this approach can be used for reconstruction of e.g. devices and vessels after segmentation.

This paper is structured as follows: Section 2 gives a detailed description of the reconstruction method,
Section 3 describes the evaluation methods and the results of the evaluation and in Section 4, we discuss the
results and draw conclusions.

2. METHODS

Reconstruction is performed based on two views A and B of a biplane system. For each plane, the projection
matrix PA and PB ∈ R

3×4, respectively, and a 2-D curve that models the catheter is required as input. These
curves, CA(tA) and CB(tB), tA, tB ∈ [0, 1] are usually provided as cubic spline curves. It is not required that
the curves share the same start- and endpoint, the direction, however, has to be the same. The reconstruction
approach can be divided into three parts: First, possible point correspondences are determined. Second, a set
of point correspondences is selected and third, the 3-D curve is reconstructed using these point correspondences.
The computation uses homogeneous coordinates. Given a 2-D point h, h̃ denotes the homogeneous extension of
h. In the first step, the fundamental matrix FA ∈ R

3×3 needs to be determined. Using the projection matrices
PA and PB, it can be computed by8

FA = [PB · õA]×PBP
†
A . (1)

Here, the cross-product is expressed in terms of a skew matrix

[c]× =

⎛
⎝

0 −c3 c2
c3 0 −c1

−c2 c1 0

⎞
⎠ . (2)

The camera center õA ∈ R
4 of plane A can be computed as the nullspace of PA, P

†
A denotes the pseudo-inverse9

of PA. For computing all possible point correspondences, a sequence of n points a1 . . . an is acquired by sampling
the curve CA equidistantly from the start to the end. The spline parameter of the i-th sample point is denoted
by ti. For every sampled point ai the epipolar line li ∈ R

3 is computed by

li = FAãi . (3)

As all points in B corresponding to ai have to lie on li, the set of possible corresponding points bi,1 . . .bi,m in B
is computed by intersecting the curve in B with li, see Figure 1(b). The intersections are saved as correspondence
pairs (ti, ti,1) . . . (ti, ti,m) with CA(ti) = ai, CB(ti,j) = bi,j .

The goal of the second step is to create a correspondence function f : tA → tB that maps a point CA(tA)
of the curve in plane A to a point CB(tB) of the curve in plane B. The control points of f will be a subset of
the correspondence pairs which were computed in the first step as shown in Figure 1(c). Once f is established,
point correspondences for arbitrary points CA(tA) can be computed by interpolating between the control points
of f . Since both curves follow the same direction, f has to be monotonous. This implies that if for a point aj
the point bj,k is selected as corresponding point, then for the point aj+1 a point bj+1,l must not be selected if
it is located before bj,k, i.e. if tj+1,l < tj,k.

The subset containing the most correspondence pairs satisfying this constraint will be referred as the optimal

set which defines the optimal correspondence function. This set can be computed greedily6 by sampling points
along CA and selecting as corresponding point to ai the point bi,j which comes directly after the previous
selected corresponding point. This is the point which has the smallest parameter ti,j that is still greater than all
parameters tB of previously included pairs (tA, tB), tA < ti. This method, however, can lead to wrong results in



(a) (b) (c)

Figure 1. For reconstruction, points of the curve in (a) are sampled. For each point, the corresponding epipolar line
is computed and the intersections with the curve in (b) are computed. These intersection points are stored (c) and a
correspondence function is fitted through them. This function maps the first curve to the second curve. It is monotonic
and includes as many intersection points as possible. Due to inaccuracies in a practical setup, the epipolar line might not
intersect the curve in (b) at the actual corresponding point as demonstrated by the solid green line. These missing point
correspondences can be interpolated using the correspondence function.

Figure 2. To compute S(t7, t6,2) one could include the point correspondence (t7, t7,1) and add it to the S of the green
area. This would result in the correspondences on the green line. Another posibility is to ignore the correspondences from
t7 and take the S which includes point correspondences from the green area. This S , which includes the correspondence
pairs on the blue line, will be choosen by the algorithm since it is the larger one

a practical setup: The epipolar line of a point ai might ideally intersect CB at two points bi,1 and bi,2 with bi,1

being the true corresponding point of ai. If, due to inaccuracies, the first intersection is not found, bi,2 would
be mistakenly selected as corresponding point. For following points in A, the correct corresponding points in B
cannot be selected if they are located before the mistakenly chosen point bi,2. This scenario happens often for
highly curved objects where the epipolar line is tangential to the object, like the solid green line in Figure 1(b).
In this case a small deviation causes the epipolar line to miss the curve and no intersection point will be found
at this position.

To overcome this issue, we search for the optimal set once all possible point correspondences have been
computed. Computing the optimal set can be expressed by a recursive formulation. S(ti, tB) denotes the optimal
set of point correspondences when considering the subcurves from CA(ti) and CB(tB) to the end. Figure 2 shows



Table 1. Acquisition angles of the phantom data.

Sequence number 1 2 3 4 5 6 7 8 9 10 11 12 13
Plane A -30 -20 0 10 30 -30 -20 -20 -50 -40 -30 55 52
Plane B -120 -110 -90 -80 -60 -110 -100 -90 -120 -110 -100 -67 -77
Angular difference 90 90 90 90 90 80 80 70 70 70 70 122 129

The primary angle in degree is given for each sequence and image plane as well as the angular difference in
degree between both C-arms. The secondary angle is set to 0◦ for all sequences.

the reduced set of point correspondences. Assuming n sampled points of the curve CA, the base case of the
recursion is

S(tn+1, 1) = {} (4)

as there are no correspondences after the end of the curve. S(t1, 0) yields the optimal set for the whole curves.
For computing the set S(ti, tB), we take the intersections of CB and the epipolar line corresponding to ai. The
correspondence function is monotonic and we do not want to deprive us of including subsequent intersection
points by proceeding too far along CB. Therefore, we consider the intersection point (ti, ti,j) with the lowest
value ti,j that is still larger than tB. The j for which this applies is denoted as

ĵ = min(j), ti,j ≥ tB . (5)

There are two choices: First, we could decide for this point correspondence (ti, ti,ĵ) and return it together with
the optimal set S(ti+1, ti,ĵ) of the remaining curves. The subcurves start at CA(ti+1) and CB(ti,ĵ) and the
parameters of S are therefore set accordingly. The second possibility is to ignore this point and to proceed only
along curve CA. This might be necessary if the epipolar line does not intersect CB at the true corresponding point
as demonstrated by the solid green line in Figure 1(b). The optimal set S(ti+1, tB) of the remaining subcurve is
returned. As we do not proceed in CB, the second parameter remains unchanged.

Since the optimal set is defined as the set holding the most correspondences, we decide for that posibility
which returns the larger set:

S(ti, tB) =

⎧⎪⎨
⎪⎩

{} if ti > 1 or tB > 1 (base case)

(ti, ti,ĵ) ∪ S(ti+1, ti,ĵ) if 1 + |S(ti+1, ti,ĵ)| > |S(ti+1, tB)|

S(ti+1, tB) else

(6)

In practice, S is computed by dynamic programming.10 In the third step, the point correspondences of the
optimal set are used to reconstruct 3-D points according to Brost et al.11

3. EVALUATION AND RESULTS

Evaluation of the reconstruction was carried out both with clinical data and images of a phantom. The evaluation
using clinical data involved 36 biplane images from 28 cases each depicting a circumferential mapping catheter.
We also evaluated ablation catheter reconstruction based on 36 biplane images from 18 cases. The catheters
depicted in the clinical images were marked by a physician and used as input for the reconstruction. As no 3-D
data were available, the resulting 3-D catheter reconstruction was forward projected into the planes and the
difference between the input and the projection was computed. The overall mean error for the circumferential
mapping catheter is 0.1mm ± 0.1mm. The maximum error is 1.2mm. The error for each biplane pair is given in
Figure 3. For the ablation catheter, the mean error is 0.1mm ± 0.1mm, the maximum error is 0.2mm. Figure 4
shows the error for each biplane pair. An example of a reconstruction is given in Figure 6.

The error in 3-D was evaluated using phantom experiments. To this end, a scene comprising a circumferential
mapping catheter and an ablation catheter was prepared and tomographically reconstructed using C-arm CT.
Then 13 biplane images of the scene were taken, each at a different angulation. The primary angles of the C-arm
are given in Table 1, the secondary angle was kept fixed at 0◦. The 3-D position of the circumferential mapping
catheter was extracted out of the C-arm CT data and compared with the reconstruction results using the biplane
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Circumferential mapping catheter: 2−D Error of forward projected 3−D reconstruction

Plane A
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Figure 3. Difference between the reprojection of the reconstruction and the gold standard for the circumferential mapping
catheter. The thin bars denote the minimal and maximal error. The overall mean error is 0.1mm ± 0.1mm, the overall
maximum error is 1.2mm.
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Ablation catheter: 2−D Error of forward projected 3−D reconstruction
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Figure 4. Difference between the reprojection of the reconstruction and the gold standard for the ablation catheter. The
thin bars denote the minimal and maximal error. The overall mean error is 0.1mm ± 0.1mm, the overall maximal error
is 0.2mm.
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3−D Reconstruction Error based on Data acquired using a Phantom
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Figure 5. Mean reconstruction errors for each sequence, the thin bars denote the maximal and minimal error. The total
mean error is 1.2 mm ± 1.2 mm for the circumferential mapping catheter and 1.3 mm ± 1.0 mm for the ablation catheter.



(a) Image plane A (b) Image plane B

Figure 6. Reconstruction result of a circumferential mapping catheter. The blue line denotes the gold-standard annotation,
the green line shows the projection of the reconstruction. This biplane pair corresponds to sequence No. 28 in Figure 3.

Figure 7. Reconstruction result of a circumferential mapping catheter from two different views. The blue line denotes the
gold-standard annotation, the red line shows the reconstruction result. This biplane pair corresponds to sequence No. 12
in Figure 5.

images. The outcomes are presented in Figure 5. The mean error over all sequences is 1.2mm ± 1.2mm for the
circumferential mapping catheter and 1.3mm ± 1.0mm for the ablation catheter. The maximal error is 5.8mm
for the circumferential mapping catheter and 3.7mm for the ablation catheter. The reconstruction result with
the highest maximal error is shown in Figure 7

The evaluation was computed on an Intel i7 with 2,67GHz and 4GB RAM and required on average 0.15 s
which corresponds to a frame rate of 6 frames per second.

4. DISCUSSION AND CONCLUSIONS

Thanks to improvements in calibration techniques, the error of the reprojection could be reduced compared to
our previous evaluation.7 With a mean error of 0.1mm it is in the range of the pixel spacing of the detector which



was 0.1725mm. When comparing the maximum error of the circumferential mapping catheter and the ablation
catheter, the error for the circumferential mapping catheter is much higher. Although the point correspondences
were selected in an optimal way, the reconstruction of highly curved objects is still more error prone compared
to straight objects such as the ablation catheter. Figure 6 shows that errors occurred at the bottom and the
top of the elliptical catheter tip. Due to the camera setup, the main direction of the epipolar lines is horizontal.
So, these are the points where the epipolar line is tangent to the catheter and touches it in a single point.
Minor inaccuracies can lead to a small displacement resulting in a missed intersection point. The missing point
correspondences are interpolated using the optimal correspondence function which still leads to a satisfying
result.

The evaluation of the 3-D error reveals higher values compared to the reprojected 2-D error which compares
the reconstruction result with the input of the algorithm. Therefore, errors in the annotation of the catheter
play only a minor role. The 3-D error, however, receives as input the annotation in 2-D and compares the
reconstruction result to the 3-D annotation. Inconsistencies in the annotations for the A-plane, the B-plane and
the 3-D data, respectively, could be one reason for the higher 3-D error. Moreover, the 2-D errors in both images
may combine to a higher 3-D error. However, the error is still small enough to justify using our approach in a
clinical environment.12

Disclaimer
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