Recent Advances in Medical Image Analysis and Pattern Recognition

Joachim Hornegger
Pattern Recognition Lab (CS 5)
Topics

- Introduction
- Selected Examples:
 - 3D Endoscope
 - Segmentation
 - Interventional Cardiac Imaging
- Summary
Reconstruction

- CT reconstruction (1970)
- MR Reconstruction (1980)
- C-arm CT (1995)
- reconstruction of static objects: pretty ok

- Major achievements:
 - Helix CT
 - Multi-slice CT
 - flat panel detectors:
 low contrast resolution
 - large object reconstruction
Hybrid Imaging
Image Segmentation

- Group similar components
- Find structures and primitives
- Middle-level vision task performed by neurons between low-level and high-level cortical areas
- No ground truth segmentation
- Applications: Finding tumors, vessels, organs, etc.
Research Problems

- Segmentation problem in general
- Computation of „mean“ anatomy (atlas)
- Strategies for the optimal combination of different modalities
- Dynamic imaging (unknown motion, perfusion, metabolism)
Regression and Classification

- Feature vector: \(\mathbf{x} \)
- Regression problem:

\[
y = f(x)
\]

where \(y \) is real valued.

- Classification problem:

\[
y = \zeta(x)
\]

where \(y \) is a categorical variable.
3D Endoscope
3-D ToF/RGB Endoscopy
Development of Hybrid Endoscope
3-D ToF/RGB Endoscopy

- **System calibration:**
 1. Print self-encoded marker
 2. Use computer vision techniques to find and identify checkerboard
 3. Find correspondences in both views
 4. Use OpenCV to calculate homography

- **Sensor fusion:**
 1. Calculate 3-D world coordinate for ToF
 2. Use homography to transform into RGB coordinate system
 3. Use intrinsics to map 3-D point on sensor plane
Super-Resolution
Super-Resolution

Given a number of low-resolution images differing in:

- geometric transforms
- illumination
- camera blur (point-spread function)
- image quantization
- noise.

Problem: Estimate high-resolution image
Super-Resolution

Image x is mapped to degraded sequence $y^{(1)} \ldots y^{(K)}$ according to

$$y^{(k)} = W^{(k)} x + \epsilon^{(k)}$$

with

- x: Ideal, high-resolution image (as 1-D vector, $x \in \mathbb{R}^N$)
- $y^{(k)}$: k^{th} low-resolution image as (as 1-D vector, $y^{(k)} \in \mathbb{R}^M$)
- $W^{(k)}$: System matrix of k^{th} image (modeling of warp, blur, downsampling)
- $\epsilon^{(k)}$: Additive noise
Maximum a-posteriori Estimation

- Specify blur kernel (point spread function) and upsampling factor
- Estimate motion using image registration → compose system matrices $W^{(1)} \ldots W^{(K)}$ from motion and static imaging parameters
- MAP estimation for ideal image:

$$x^* = \arg\min_x \sum_{k=1}^K \left\| y^{(k)} - W^{(k)} x \right\|_2^2 + \lambda R(x)$$
High Resolution ToF/RGB Registration

- Estimate affine transformation $M_c^{(k)}$ for high-resolution RGB images
- Determine affine transformation $M_r^{(k)}$ for corresponding ToF images:
 $$M_r^{(k)} = HM_c^{(k)}H^{-1}$$

 H: Affine homography for RGB/ToF points
 → Fixed, determined via point correspondences
- $M_r^{(k)}$ is used for MAP estimation
Super-Resolution

(a) ground truth (b) range guided (c) RGB guided (d) improved guided

(e) raw frames (f) range SR (g) range/RGB SR
Super-Resolution

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean error [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Raw frame</td>
<td>2.01</td>
</tr>
<tr>
<td>(b) Range guided</td>
<td>1.39</td>
</tr>
<tr>
<td>(c) RGB guided</td>
<td>1.25</td>
</tr>
<tr>
<td>(d) Improved guided</td>
<td>1.14</td>
</tr>
<tr>
<td>(e) Range SR</td>
<td>1.01</td>
</tr>
<tr>
<td>(f) Range/RGB SR</td>
<td>0.91</td>
</tr>
</tbody>
</table>

![Box plot comparing different methods](image)
Super-Resolution
Super-Resolution
Interventional Cardiac Imaging
• Interventional cardiac imaging with C-arm systems

Fig. 1: Artis zeego multi-axis system, Siemens AG, Healthcare Sector.

Fig. 2: Rotational angiograms of human left heart ventricle. Image courtesy of Thorax Center, Erasmus MC, Rotterdam. Dr. Schultz.

• Slow rotating scanner ➤ inconsistent projection data ➤ dynamic images of the heart from one rotation
Projection Data of the Heart

Image data provided by Klinikum Coburg, Germany

RCA

LCA

CS

CS
Scientific goal

- Interventional cardiac imaging with C-arm system

- Anatomical and functional information direct in the catheter lab about cardiac chambers

- Approaches:
 - Motion compensation with surface models
 - Motion compensation with 3-D/3-D registration
• **Hard problem:**
 • 3-D reconstruction of different heart states to gain morphological information over time

• **Applications:**
 • Ventricular applications:
 • ventricle ablation guidance
 • stem-cell injection of ventricular infarcts
 • Mitral valve repair:
 • guidance of annuloplasty

Fig.3: Mitral valve guidance. Image courtesy of the University of Leuven, Leuven, Belgium. Dr. Heidbüchel.
Motivation

- **Standard:**
 - 3-D FDK reconstruction [1] → no temporal resolution → image blurring

![Image](image_url)

Fig. 4: Standard FDK reconstruction of heart chambers of a porcine model from a single sweep. Image courtesy of the University of Leuven, Leuven, Belgium. Dr. Heidbüchel.

Motivation

- Retrospective ECG-gating
 - Single rotation
 - degraded image quality for heart chambers
 - Multiple rotations [2,3]
 - high radiation dose and contrast burden

Fig.5: Single sweep ECG-gated reconstruction of the heart chambers of a porcine model from a single sweep. Image courtesy of the University of Leuven, Leuven, Belgium. Dr. Heidbüchel.

Fig.6: Multi sweep ECG-gated reconstruction of the heart chambers of a human data set. Image courtesy of Klinikum Coburg Prof. Brachmann, Dr. Nölcker

[3] Prümmer et al.: Cardiac C-Arm CT: A Unified Framework for Motion Estimation and Dynamic CT, IEEE TMI, 28(11), 2009
ECG Gated Motion Compensation
General Idea

Combined Multiple Heart Phase Registration (CMHPR)

1. Deformable ECG-gated FDK volumes
2. Final Image
3. Reference Image
4. Minimize Objective function

Update 4-D Motion Field

Goal:
Similar final and reference image
Unknown:
smooth, dense, motion vector field
Method

Combined Multiple Heart Phase Registration (CMHPR)

1. ECG-gated FBP Volume Reconstruction
 - Retrospective ECG-gating of a number of H heart phases:
 - Rectangular or cosine weighting function
 - Here strict gating, i.e. only one projection per heart cycle

![Example of ECG-gated FBP volume reconstruction with 32 views.](image)

Left: relative heart phase of ~30%.
Right: relative heart phase of ~80%.
Combined Multiple Heart Phase Registration (CMHPR)

2. Final Volume
 - The final volume is defined as a sum volume $f(x, s)$ consisting of the deformed ECG volumes $f_h(x + s_h, x)$

 $$f(x, s) = \sum_{h=1}^{H} f_h(x + s_h, x)$$
Method

Combined Multiple Heart Phase Registration (CMHPR)

3. Reference Volume Reconstruction
 - Reconstruction of reference heart phase volume $f_r(x)$ with few-view reconstruction algorithm
 - Low-artefact level, sharp edges, e.g. PICCS [4] and/or iTV [5] algorithm

![Example of reference volume reconstructions of a porcine model with PICCS + iTV. Left: relative heart phase of ~30%. Right: relative heart phase of 80%.

[5] Ritschl et al.: Improved total variation-based CT image reconstruction applied to clinical data, Physics in Medicine and Biology, 56(6), 2011
4. **Objective Function**

 - Minimize negative normalized cross correlation (NCC) between final volume and reference volume

\[
\mathcal{L}_{NCC} = -\frac{1}{|\Omega|} \sum_{x \in \Omega} \frac{(f(x, s) - \bar{f})^2 \cdot (f_r(x) - \bar{f}_r)^2}{\sigma_f \cdot \sigma_{f_r}}
\]

\(\bar{f} \), \(\bar{f}_r \) mean values
\(\sigma_f \), \(\sigma_{f_r} \) standard deviations
\(\Omega \) area of optimization
Method

Combined Multiple Heart Phase Registration (CMHPR)

5. Optimization strategy

- Gradient based quasi-Newton method, Broyden-Fletcher-Goldfarb-Shanno optimizer (L-BFGS) [6]

- Motion mask Ω

- Spatial and temporal Deriche Filter [7] to smooth 4-D motion vector gradient

Experimental Setup

- Porcine model p_1 with systemic contrasted heart chambers
- Siemens Artis zee C-arm system
- Acquisition time: 14.5 s
- 381 projection images with 30 f/s
- Projection size 1240 x 960 pixel
- $(25.6 \text{ cm})^3$ with a 256^3 voxel grid
- External pacing and image acquisition synchronized
- 32 heart cycles
- $H = 12$ heart phases
- External pacing of ~ 131 bpm

Fig.9: Projection data of porcine model p_1. Image courtesy of the University of Leuven, Leuven, Belgium. Dr. Heidbüchel.
Results

Fig. 10: Experimental results in porcine model p1 of the central slice and a relative heart phase of 80%. (W 1630 HU, C 50 HU, slice thickness 1.0 mm). The ECG-gated reconstruction was windowed to be visually comparable.

Fig. 10a: Standard FDK reconstruction.

Fig. 10b: ECG-gated reconstruction.

Fig. 10c: PICCS + iTV reference reconstruction.

Fig. 10d: Result of CMHPR algorithm.
Results

Fig.11a: Standard FDK reconstruction.

Fig.11b: ECG-gated reconstruction.

Fig.11c: PICCS + iTV reference reconstruction.

Fig.11d: Result of CMHPR algorithm.

Fig.11e: Porcine model p_1 and heart phase 80%.
Results

Fig. 12a:
Standard FDK reconstruction.

Fig. 12b:
ECG-gated Reconstruction (32 views).

Fig. 12c:
PICCS + iTV reference reconstruction.

Fig. 12d:
Result of CMHPR algorithm.

Fig. 12: Experimental results in porcine model p1 of the central slice and a relative heart phase of 30%. (W 1630 HU, C 50 HU, slice thickness 1.0 mm). The ECG-gated reconstruction was windowed to be visually comparable.
Fig. 13a: Standard FDK reconstruction.

Fig. 13b: ECG-gated reconstruction.

Fig. 13c: PICCS + iTV reference reconstruction.

Fig. 13d: Result of CMHPR algorithm.

Fig. 13e: Porcine model p_1 and heart phase 30%.
Results

- **Dynamic imaging**

Fig.14a: ECG-gated reconstructions.

Fig.14b: PICCS+iTV reconstructions.

Fig.14c: CMHPR reconstructions.
• **Combined Multiple Heart Phase Registration (CMHPR)** algorithm for motion estimation and compensation
 - reduces streak artifacts
 - preserves sharp edges
 - no comic-like appearance

• Dynamic imaging of heart chambers in 3-D

• Increases image quality for cardiac angiographic C-arm data

• Evaluation on porcine model is promising
Cardiac Reconstruction: Coronaries
ECG Gated Motion Compensation

(a) Standard

(b) Motion compensated
Big Picture: Motion Compensated Reco

1. Reference image creation for motion estimation
 - Measured projections
 - Initial ECG-gated reconstruction
 - Segmentation of vasculature
 - Sparse reference image

2. Iteration scheme for 4-D non-periodic motion estimation
 - Motion field
 - Acquisition time
 - Motion compensated reconstruction
 - Compute joint intensity (correlation) with ref. image
 - Motion field gradient computation

Joachim Hornegger | Pattern Recognition Lab (CS 5) | Recent Advances in Medical Image Analysis and Pattern Recognition
Clinical Results

Venous (CS) and arterial (CA) cardiac vasculature

CS

CA