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ABSTRACT
Motion analysis has become an important tool for athletes to
improve their performance. However, most motion analysis
systems are expensive and can only be used in a laboratory
environment. Ambulatory motion analysis systems using
inertial sensors would allow more flexible use, e.g. in a real
training environment or even during competitions.

This paper presents the calculation of the flexion-extension
knee angle from segment acceleration and angular rates mea-
sured using body-worn inertial sensors. Using a functional
calibration procedure, the sensors are first aligned with-
out the need of an external camera system. An extended
Kalman filter is used to estimate the relative orientations of
thigh and shank, from which the knee angle is calculated.

The algorithm was validated by comparing the computed
knee angle to the output of a reference camera motion track-
ing system. In total seven subjects performed five dynamic
motions: walking, jogging, running, jumps and squats. The
averaged root mean squared error of the estimated knee
angle was 8.2� ± 2.4� over all motions, with an average
Pearson-correlation of 0.971 ± 0.020.

In the future this will allow the analysis of joint angles
during dynamic sports movements.

Keywords
inertial sensors, feedback training, sports, joint angles, mo-
tion tracking, Extended Kalman Filter, Euler angles

.

1. INTRODUCTION
Motion analysis has become an important tool, which can

contribute to the performance of an athlete [11]. It obtains
an objective characteristic of the motion, which is used to
generate qualitative feedback. Thereby, the performance of
the athlete can be improved while injuries can be avoided
[16].

The analysis of athletes performance is usually done with
a camera motion tracking system in a laboratory environ-
ment [11]. It is seen as the gold standard because of its
high accuracy. However, the camera motion tracking sys-
tem is expensive and motion is performed in an artificial
environment, e.g. on a treadmill [16]. The disadvantages of
a camera motion tracking system can be overcome with iner-
tial sensors. An inertial measurement system is ambulatory,
cheap and motion analysis can be performed outside a lab in
a real training environment or even during competition [18].
Through their low power consumption, even long term ob-
servations are possible [8] and such systems have been used
for medical applications [12].

A set of three-dimensional accelerometers attached on the
human body can be used as an inclinometer to measure
the orientation of sensors with respect to gravity [22], [10].
With the use of models, joint angles can be estimated. The
accuracy is less for motions with relatively large accelera-
tions. Three-dimensional gyroscopes can be incorporated
to improve the accuracy [15], [6], [23]. The angular rates
measured by the gyroscopes are integrated to estimate the
change of orientation. However, over time, large integration
error can accumulate. The accelerometer in combination
with the gyroscope can be used to compensate the drifts
and to define an absolute orientation [6]. Besides determinis-
tic approaches as TRIAD (Tri-axial attitude Determination)
and QUEST (Quaternion Estimator) , the preferred choice
to fuse measurements of accelerometer and gyroscope and
to estimate human body orientation with a high accuracy is
a stochastic approach, the Kalman Filter [18].

Estimation of the three-dimensional orientation of body
segments using inertial sensors in combination with mag-
netic sensing, including a three-dimensional accelerometer,



a three-dimensional gyroscope and a three-dimensional mag-
netometer, is available in research [18] and for commercial
systems [17]. In such a measurement system, the accelerom-
eter is used to detect inclinations, the gyroscope to detect
fast changes and the magnetometer to measure a horizon-
tal reference direction. Unfortunately, the measurements of
the magnetometer can be distorted in the proximity of fer-
romagnetic materials [16].

The calibration of the sensors attached on the human
body can be done using an external system, i.e. a camera
motion tracking system [3] or a stereoscopic camera [21].
Favre et. al [5] proposed an alignment procedure of sensors
without the need of an external system. Two alignment
motions are used to align the sensors vertically and horizon-
tally. However, they did not apply their method to highly
dynamic sport motions, e.g. jumping.

The usage of inertial-based joint angle determination sys-
tem in the fields of sports is still an unexplored research area.
Chardonnes et. al [1], e.g. established an application of in-
ertial sensor and knee angle determination in alpine sports.
An inertial sensor mounted at the ankle was used during
running in [19] to classify di↵erent running surfaces and in-
clinations. Downling et. al [4] investigated the improvement
of motions through feedback by inertial sensing for avoiding
anterior cruciate ligament injury and Cooper et. al [3] eval-
uated an inertial-based knee angle estimation approach for
slow jogging. The estimation of the knee angle in running
and further dynamic motions is still unexplored [8].

The purpose of this paper is to investigate the perfor-
mance of an inertial-based orientation estimation approach
in highly dynamic motions. As the application is the usage
in sports, the alignment of sensor frames should be achieved
without the usage of an external system. The idea of Favre
et. al [5] is used for calibration and the orientation estima-
tion is done using an extended Kalman filter. As an exam-
ple for an important joint, we will focus on determining the
knee angle using an accelerometer and gyroscope attached to
both the thigh and shank. In the following sections we give
details on the used inertial measurement system, present
the proposed algorithm for estimation of the joint angle and
evaluate our system in an extensive study involving multiple
dynamic motions.

2. METHODS
The next sections outline the proposed method for calcu-

lating the flexion/extension knee angle from inertial sensor
data. First, we describe how the sensors are placed and
which coordinate systems are used to describe the joint mo-
tion. Then we describe the algorithm for computing the
knee angle, which consists of three main parts. First the
sensor frames are aligned using a functional alignment pro-
cedure. As a second step, an extended Kalman filter (EKF)
estimates the relative orientation of each IMU. Finally this
information is combined in the flexion/extension knee angle
calculation step. Figure 1 illustrates the main concept of the
knee angle estimation presented in this paper.

2.1 Description of Joint Motion
For the calculation of the knee angle we assume that two

IMUs containing 3D accelerometers and 3D gyroscopes are
attached to the thigh and shank (see Figure 2), forming two
sensor frames UVW and uvw. The knee joint is described as
recommended by the international society of biomechanics

Figure 1: An overview of the calculation of the knee

angle from the two IMUs at the tigh and shank. The

procedure can be divided into three main steps: the

alignment procedure, the extended Kalman filter,

and the knee angle calculation.

Figure 2: Two inertial measurement units are placed

on the thigh and shank, which form their own local

coordinate system. To compute the joint angle, the

sensor frames are transformed in a mutual coordi-

nate system, the joint coordinate system (JCS).

in a mutual coordinate system, the so called joint coordinate
system (JCS) as defined by Grood and Sunday [9]. For each
sensor attachment the transformation from the initial sensor
frames into the JCS and the resulting alignment of sensor
is done using the idea of the functional alignment procedure
of Favre et. al [7].

The joint motion is determined by the orientation of each
segment and is described in the XYZ-Euler angle representa-
tion. The rotation matrix that transforms the sensor frame
at any time step into the initial sensor frame is defined by the
multiplication of the single rotation matrices around each



axis and is determined by

R
i

=

2

4
c✓ c �c✓ s s✓

c� s + s� s✓ c c� c � s� s✓ s �s� c✓
s� s � c� s✓ c s� c + c� s✓s c� c✓

3

5 (1)

where c and s denotes the cos and sin function and �, ✓, and
 are the rotation angles about the U�, V�, and W�axes,
respectively [24].

2.2 Alignment of Sensor Frames
The alignment procedure is divided into two steps. The

sensor frames of the thigh and shank are first aligned ver-
tically with the JCS (Z-axis alignment). Then, the sen-
sor frame of the shank is rotated around the Z-axis to be
aligned horizontally with the sensor frame of the thigh (XY-
rotation).

For the vertical alignment, the inertial data of the ac-
celerometer from the motion still standing is required, where
the subject stands still with straight legs for ten seconds. As
the gravity is prominent in the signal of accelerometers dur-
ing static conditions [14], the averaged gravitational vector
g is detected for each sensor frame. It is used to calculate
the rotation matrices R

Z1 and R

Z2, which align the vertical
components W and w, respectively, with the vertical axis of
the JCS, Z. Z is defined by (0, 0, 1)T. Each rotation matrix
is computed by [2]
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where ↵ is the misalignment angle between g and (0, 0, 1)T

and k the rotation axis, which is the three-dimensional per-
pendicular unit vector to g and (0, 0, 1)T. The abbrevi-
ations s and c symbolize the sin and cos functions, and
v = 1� cos(↵).

For the horizontal alignment the motion AA-rotation as
defined by Favre et. al [5], is required. The straight leg is
lifted up and down laterally for 20 seconds, which produces
an approximately constantly orientated angular rate vector
in the sensor frame of thigh and shank. The misalignment
angle of the detected angular rate vectors !1 and !2 in the
sensor frame of thigh and shank are used to form the ro-
tation matrix R

XY

, which rotates the sensor frame of the
shank around the already aligned Z-axis to align it with the
sensor frame of the thigh. For each time step k, !1 and !2

are projected on the UV - and uv-plane, respectively. The
misalignment angle �

k

of the projected angular rate vectors
is first calculated for each time step by the cosine function
and then averaged with the weighting function according to
Favre et. al [5] by
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P
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N is the amount of time steps. � is the weighted averaged
misalignment angle and is used to compute the rotation ma-
trix R

XY

by
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2.3 Extended Kalman Filter
Two similarly designed standard EKF are used to describe

the roll and pitch orientation of the two adjacent segments.
The EKF is designed with an eight-row state vector as

~x =

0

BB@

~a

~!

�

✓

1

CCA , (4)

containing the three-dimensional acceleration ~a of the ac-
celerometer, the three-dimensional angular rates ~! of the
gyroscope, both expressed in the three axes of the sensor
frame, and the roll � and pitch ✓ orientation angles. The
rotation between the initial frame and the sensor frame at a
time step k is defined by the three Euler angles �, ✓ and  .
For the calculation of the flexion/extension knee angle only
the components roll and pitch are needed.

The dynamic system f is modeled linearly as
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where k indicates the time step, �t denotes the time interval
between each time step, ~ua and ~uw are the vectors of noise
on acceleration and angular rates, and �̇ and ✓̇ denote the
time derivatives of � and ✓.

Angles are calculated from the angular rates using the Eu-
ler formulation. In evaluations of the presented knee angle
algorithm, it was seen that the yaw component of the gy-
roscope angular rate vector is the main reason for drifts in
the outputs of the EKF. Therefore, in the calculation of ori-
entation angles the assumption is made that the gyroscope
yaw axis is zero. Setting !

 

=0, f7 and f8 are estimated by
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The observations of the dynamic system are the three-
dimensional acceleration of the accelerometer and the three-
dimensional angular rates of the gyroscope, which are both
measured in the sensor frames of thigh and shank. The
measurement is described by
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where ~v is the measurement noise. The output of the gy-
roscope is defined by the angular rate vector ~! and by the
bias ~b, which is assumed to be constant for each trial and is
determined for each axis to be the average value of angular
rates over the time steps of each trial. This assumption is
based on the cyclical behavior of movements.

The measurement and process noise covariance matrices
are defined by

Q =

2

4
�

a

u

Id3 03⇥3 03⇥2

03⇥3 �

!

u

Id3 03⇥2

02⇥3 02⇥3 02⇥2

3

5
. (9)

and

R = r Id6⇥6 . (10)

Id denotes the identity matrix and �

a

u

, �!
u

, and r are pa-
rameters of the algorithm.



2.4 Flexion/extension Knee Angle Calculation
The flexion/extension knee angle is defined in the sagittal

plane of the leg and is the intersection angle of the vertical
component of the sensor frame of thigh and shank.

The relative orientation of segments over time is estimated
by the EKF, where the orientation is based on the initial
sensor frame. To calculate the transformation matrix of each
sensor frame at any time step into the initial sensor frame,
R

i

, as determined in equation (1), is used. The vertical
component of the sensor frames for each time step expressed
in the initial sensor frames is then calculated using the roll
and pitch component estimated by the EKF by
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for the shank.
The vertical component expressed in the initial sensor

frames can further be transformed in the JCS using the verti-
cal and horizontal alignment matrices R

Z1, RZ2, and R

XY

.
Describing the whole transformation, the vertical compo-
nent of the sensor frames at any time step can be described
with � and ✓ based on the JCS as
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The flexion/extension knee angle for each time step is cal-
culated by projecting r

1 and r

2 for each time step on the
X-Y-plane and determining the intersection angle by
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where s̄ = sign(r2
y,k

r
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r
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) defines the sign of
rotation and � denotes the dot product. The estimated flex-
ion/extension knee angle ⌘

knee

is the final result of the pre-
sented joint angle calculation method.

3. EXPERIMENTAL VALIDATION

3.1 Inertial Measurement System
For evaluating the presented algorithm, two inertial mea-

surement units (IMU) (Invensense, Sunnyvale, CA, USA)
containing an accelerometer (± 16 g) and a gyroscope (±
2000 �/s) were attached to the thigh and the shank of the
right leg. Double-adhesive tape was used to attach the sen-
sors to the skin or tight trousers, causing a reasonable firm
attachment to the segments. The position of the measure-
ment units was selected with proximity to bones to minimize
artifacts through muscle movements. A data logger was at-
tached on the thigh and allowed recording inertial data from
both sensors on a SD-card at 1000 Hz. Figure 3 shows the
exact positioning of sensors.

Figure 3: Attachment of the IMUs (top and mid-

dle box) and the data logger (bottom box) during

data collection. The IMU of the shank was posi-

tioned four centimeters under the trochanter ma-

jor, while the IMU of the thigh was positioned four

centimeters under the middle of the frontal tibia.

For the reference system, 32 reflective markers were

attached to the leg.

3.2 Reference Measurement System
The gold standard in motion analysis is the usage of an

camera motion tracking system, which tracks reflective mark-
ers over time. Therefore, as reference to the inertial-based
knee angle, a camera motion tracking system with eight ca-
maras was used (Qualysis, Göteborg, Sweden). The ref-
erence knee angle was calculated using Visual 3-D Reader
(C-Motion, Germantown, Maryland, USA) at 200 Hz. The
attachment of reflective markers can be seen in Figure 3.
The camera system and the inertial sensor recorder were
synchronized by a wireless trigger system with high accu-
racy and low jitter [13]. Any remaining systematic time o↵-
set between the two systems was removed before performing
the evaluation.

3.3 Study Design
The study was conducted at the Motion Lab of the FAU

Erlangen-Nuremberg and was approved by the local ethics
committee. Informed consent was obtained from the test
subjects. In total, seven subjects participated in the study.
Their anthropometric data is presented in Table 1. The
study contained seven motions. For the vertical alignment
of sensors the subject stood still for ten seconds. The AA-
rotation, where the right leg is lifted up and down laterally,
was used for the horizontal alignment of sensors. The addi-
tional motions were walking, jogging, running, squats, and
countermovement jumps. These five dynamic motions dif-
fer in speed and magnitude of the change of the knee angle
and were used to evaluate the knee angle calculation algo-
rithm during dynamics. All motions were performed on a
two-belt treadmill to simplify execution. Some data had to



Anthropometric data general

Number of Subjects 7
Female 4
Male 3
Age (year) 25 ± 3
Height (cm) 178 ± 13
Weight (kg) 75 ± 14

Table 1: The anthropometric data of the test sub-

jects (mean ± standard deviation).

Number of test data

Still Standing 7
AA-Rotation 7
Walking 1.3 m/s 7
Jogging 2.2 m/s 7
Running 3.0 m/s 5
Squats 6
Jumps 6

Table 2: Number of test data used for the evalua-

tion of each dynamic motion. The test data includes

the inertial data of accelerometer and gyroscope at-

tached on the thigh and shank.

be excluded due to missing or incomplete sensor data. The
number of test data used for evaluation for each motion is
listed in Table 2.

3.4 Evaluation of the Knee Angle
The inertial sensor based estimated flexion/extension knee

angle was evaluated on all five dynamic motions in compari-
son to the camera motion tracking system. The parameters
�

a

u

, �!
u

, and r were determined systematically in comparing
the resulting knee angle of di↵erent parameter combinations
for a single subject. The optimal parameter combination
was chosen to have the highest Pearson-correlation of the
resulting knee angle in comparison to the camera system as
reference.

The root mean squared error (RMSE) and the Pearson-
correlation was then computed for ten seconds. To remove
any systematic amplitude o↵set between both systems, the
knee angle outputs were aligned before the evaluation was
performed. In order to compare the performance of the
presented knee angle calculation algorithm, the of the two
systems were aligned before parameter computation. This
amplitude shift was calculated by averaging the position of
minima in the angle data and calculating the average o↵set
between inertial and reference system. Thereby, a systemat-
ical o↵set, which could be caused by imperfect attachment
of the sensors, is not considered in the evaluation.

4. RESULTS
Figure 4 illustrates the knee angle calculation using the

outputs of the EKF for the data set walking with 1.3 m/s.
The parameter search resulted in �

a

u

= 100, �!
u

= 1100,
and r = 1000. The results of the evaluation of all sub-
jects are shown in Table 3, where the RMSE and Pearson-
correlation are averaged over the results of number of avail-
able test data. The mean RMSE and mean Pearson-correlation,
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Figure 4: Flexion/extension knee angle calculated

using the outputs of the EKF roll and pitch of thigh

and shank during walking at 1.3 m/s.

Dynamic motion RMSE in

�
Correlation

mean ± std mean ± std

Walking 1.3 m/s 7.0 ± 1.7 0.968 ± 0.020
Jogging 2.2 m/s 7.3 ± 1.7 0.965 ± 0.021
Running 3.0 m/s 10.2 ± 3.4 0.956 ± 0.035
Squats 9.7 ± 2.0 0.976 ± 0.016
Jumps 7.0 ± 2.9 0.991 ± 0.006

Table 3: Average and standard deviation of RMSE

and Pearson-correlation for dynamic motions.

both averaged over the average of the dynamic motions were
8.2� and 0.971 with a mean standard deviation of 2.4� and
0.020, respectively. In Figure 5, the knee angles estimated
from the inertial measurement system and the camera sys-
tem are compared for one subject performing the di↵erent
motions.

5. DISCUSSION
This study demonstrated an algorithm to compute the

knee flexion-extension angle from two body-worn inertial
sensors. The extended Kalman filter, which is often used in
the literature for human motion analysis [18] was adapted
to highly dynamic motions and combined with a functional
alignment procedure [5] for aligning sensor frames without
the need of an external camera system.

During the validation the inertial-based knee angles was
estimated over a 10 second period with an mean RMSE and
mean Pearson-correlation of 8.2� ± 2.4� and 0.971 ± 0.020.
This shows that the presented algorithm allows to obtain
su�ciently accurate knee angle estimates from body-worn
inertial sensors, even during high dynamic motions. The es-
timated knee angles correlated with a high accuracy, even for
the highly dynamic jumps. This means that the detection
of fast changes that are small is achieved precisely.

Regarding the accuracy of the knee angle estimation and
the usage of the inertial-based estimation procedure in sports,
the presented algorithm cannot be used as a tool in compar-
ing motion pattern of di↵erent athletes to each other or a
camera reference system, as the accuracy is to low. Further
improvement regarding the constancy for di↵erent speed is
compulsory. As the error of the estimated knee angle to the
reference system stays acceptably constant over each speed
the presented knee angle estimation tool could be used to
analyse and optimize the motion pattern of one athlete in-
dividually for one selected speed. Moreover, the presented
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Figure 5: Knee angles computed by the algorithm

compared to the camera reference knee angles from

the camera system for one subject performing all

five dynamic movements. Additionally the knee an-

gle estimation error is shown.

knee angle estimation tool could still be used to track aver-
age values of the biomechanics of the motion over time.

Other researcher have investigated the inertial-based knee
angle calculation during relatively slow motions [20], [21],
[7], Cooper et. al [3] evaluated their work on running with
2.2 m/s with a RMSE of 3.4�, which is better than the pre-
sented algorithm. However, in contrast to the algorithm
presented in this paper, Cooper based the alignment of sen-
sor frames on a camera system. This improved the resulting
knee angle, but is critical regarding the usage of inertial mea-
surement units in a real environment in the field of sports.
In contrast, the presented algorithm relies on the functional
alignment procedure presented by Favre et. al [5]. This
allows the estimation of the joint angle without any initial-
ization from a reference system.

Most ambulatory three-dimensional orientation measure-
ment systems include accelerometers, gyroscopes, and mag-
netometers [18], [17]. However, none of these studies re-
ported on the error of the determination of the knee angle
during dynamic motions. Favre et. al [5] calculated the flex-
ion/extension angle based on repeated alignment motions
trials with an error less then 3�. However, their results were
only based on slow walking and was not evaluated on high
dynamic motions. As the parameters of the presented al-
gorithm were optimized for dynamic motions, the presented
algorithm could not achieve such a high accuracy during
walking. However, the accuracy was quite stable even dur-

ing highly dynamic motions, e.g. jumping. A further op-
timization of the algorithm parameters to the motion task
will be subject of future work.

While the presented algorithm had a very high correla-
tion for all motions, it could not achieve an RMSE error
below 7 �, which is higher than errors reported by other ap-
proaches. However, the accuracy of the presented algorithm
is su�cient for many tasks and applications, e.g. feedback
training or performance evaluation. Due to the high correla-
tion, the error is most probably caused by systematic o↵sets
or by drift. During the evaluation it was also found that the
accuracy decreased with increasing speed. Again, the main
reason might the increasing drift and inaccuracy of the gy-
roscope when measuring large angular rates. Furthermore,
stronger vibration of muscles can produce additional noise
in sensors and distort the attachment of sensors on the leg.
Both problems could be solved by incorporating a bias term
in the EKF. Additionally one could incorporate prior knowl-
edge about the motion. This could be used to detect steps
and to reset the angle calculation after each stride.

One important limitation of the presented work is the sta-
bility of the EKF in the trials with highly dynamic motions.
During the experiments the EKF was found as stable, but
the stability is still dependent on the chosen parameters and
dynamics. This means that the estimation of knee angles in
even higher dynamic motions, as during soccer could pro-
duce instabilities. Then the parameter of the EKF would
have to be adopted to the dynamic motion and an automatic
adjustment of the parameters might become necessary. This
will be investigated in future work.

To our knowledge, this is the first study presenting and
evaluating the estimation of knee joint angles from inertial-
sensors with the purpose of the usage in dynamic sports. We
believe it is a further step towards the usage of inertial-based
motion analysis during sport applications.

6. SUMMARY
This paper presented an inertial sensor based knee angle

calculation algorithm usable in the novel application field
of running sports. Knee angles are estimated with an ex-
tended Kalman filter using the data of accelerometer and
gyroscope both attached on the thigh and shank. The cali-
bration of sensors is done without the usage of an external
system. The paper presented an important step towards the
application of inertial-sensors for analysis of joint angles in
sports. Using the algorithms presented in this paper, objec-
tive feedback of motions can be obtained from the inertial
sensors. This could constantly help improving the perfor-
mance of the athlete in training or even in competitions.
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