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Abstract—The collection of kinematic data with a head-worn
sensor is a promising approach for swimming data analysis in the
context of athlete support systems. We present a new approach
of analyzing these data and describe a system that segments
the lanes of a swimming session and classifies the swimming
style of each lane. Special emphasis was put on the algorithm
efficiency and the analysis of the resource demands to be able
to port the implementation to an embedded microcontroller. For
developing the system, data of twelve subjects was collected. The
data incorporated two different turn styles that mark the end
of a lane as well as the four main swimming styles backstroke,
breaststroke, butterfly and freestyle. All turns were successfully
identified from the turn detection. Our fully automatic swimming
style classification reached a classification rate of 95.0%. The
results from the resource consumption analysis can be used to
support the decision for the embedded target hardware of a head-
worn swimming training system.

I. INTRODUCTION

Inertial sensor data is an important modality in state-of-the-
art swimming analysis. Compared to camera-based systems,
sensor solutions enable long-term monitoring, provide user-
centric analysis and do not suffer from water turbulences
and image blurring. Advanced sensor systems for precise
technique analysis were developed and proved to be helpful
in high performance practice [1]–[3]. However, these systems
suffer from enhanced water resistance and a complicated setup.
Beside these systems, minimal sensor solutions that consist
of wristwatch devices equipped with inertial sensors were
proposed. These devices limit the comfort of the athlete and
feedback on the wristwatch can only accessed in breaks.
This articles investigates an unobtrusive sensor position at the
occiput for swimming data analysis capabilities. Kinematic
sensor data of a single sensor were collected to develop an
analysis system capable of detecting starting and turning events
as well as classifying the four common swimming styles.
Special emphasis was put on the computational complexity
to enable an implementation on an embedded microcontroller
or Body Area Sensor (BSN) node. Our approach provides an
alternative to the wristwatch positioning and is the first step
to an unobtrusive athlete support system for swimming.
Research on sensor-based swimming monitoring was first
presented by Oghi et al. [4] in 2002, who presented a wrist-
watch accelerometer device. Since then, numerous studies used
video- and accelerometer-based analysis to investigate swim-
ming performance. A good overview and a comparison of both
approaches can be found in [5]. Recently, a comprehensive
swimming technique evaluation system including feedback
mechanism was developed [2]. However, the data processing
was performed offline and no instant feedback was given

during exercise. The single unobtrusive sensor position on the
head was first investigated in 2010 [6]. The authors proved to
be able to detect three swimming styles, certain events like wall
push-offs and turns as well as important parameters like stroke
count and stroke duration. Though, results are only shown
exemplary for one subject, not proven in a scientific study and
only three of the four main swimming styles were investigated.
Additionally, algorithms were not designed for an embedded
real-time implementation. From a product perspective one of
the most popular devices is the Pool Mate (Swimovate Ltd.,
Wraysbury, UK) wristwatch. It detects turns and strokes of
the four main stroke types and can therefore be used as a lap
counter, training tracker and efficiency monitor.
Our works overcomes some of the limitations in [6] and
provides an alternative data analysis approach with pattern
recognition methods. We conducted a research study to provide
a head-worn swimming analysis system capable of detecting
the state of the swimmer, turning events and the four main
swimming styles. Special emphasis was put on the algorithm
design to address limited hardware capabilities of an embedded
microcontroller. The proposed system provides an alternative
to the common inconvenient sensor position on the wrist and
has the potential to be directly integrated in the swimming
goggles to display training feedback in an integrated display.

II. METHODS

A. Data collection

1) Hardware: We used the SHIMMERTM sensor platform
[7] to collect inertial sensor data. The main board includes a
three-axis accelerometer and was extended with a three-axis
gyroscope resulting in raw data of six dimensions. We set the
sampling rate to 200 Hz and chose an accelerometer range
of ± 1.5 g. The gyroscope collected rotational velocity in the
range of ± 500 deg/sec. The sensor was waterproofed and data
were logged on SD card.
The sensor node was placed on the occiput of the subject
underneath the swimming cap. The position and the corre-
sponding axes are schematically shown in Fig. 1.

2) Study design: We set up a research study to collect
data from different states, events and swimming styles occur-
ring during a swimming session. The four main swimming
styles butterfly, backstroke, breaststroke and freestyle were
considered. We defined an active and a resting state describing
whether the athlete is swimming or not. As events, we col-
lected flip and tumble turns at the end of a lane. The protocol
of a session is shown in Tab. I and was based on the normal
medley race order.
For data collection, 12 german 2nd league swimmers (5 female,
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Fig. 1. Schematic sensor placement at subjects’ occiput with accelerometer
and gyroscope axes x, y and z.

7 male) aged 16-20 were recruited. After warm-up, subjects
were asked to swim a 200 m medley distance with 80% of their
personal best. We repeated the recording session at the end of a
two hour training to get a variation in the swimming technique
due to fatigue. Overall, eleven dataset with two sessions were
recorded. Due to sensor malfunction, a single session at the
beginning of the training session was collected for one subject.

TABLE I. PROTOCOL OF A 200 M MEDLEY SESSION WITH
CORRESPONDING EVENTS AND SWIMMING STYLES

Nr. Description Abbr. Type
1 Waiting at the poolside REST State
2 Butterfly lane SWIM Interval
3 Turn TURN Event
4 Backstroke lane SWIM Interval
5 Turn TURN Event
6 Breaststroke lane SWIM Interval
7 Turn TURN Event
8 Freestyle lane SWIM Interval
9 Resting at the poolside REST State

B. Classification system

Pattern recognition is an established methodology for high-
dimensional data analysis in biomedical [8] and sports ap-
plications [9]. We used pattern recognition methods for turn
detection and swimming style classification. The simplified
processing pipeline [10] of a classification system consists of
the working phase and the training phase (Fig. 2). To classify
unknown data, the working phase of the system is executed
and will be described in the following section.
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Fig. 2. Classification processing pipeline consisting of working phase (white)
and training phase (black).

1) Data: The inertial sensor input for the classification
system consisted of the 12-Bit analog-digital converter output.

2) Preprocessing: The SHIMMER calibration procedure
described in the user manual [11] was used to convert the

TABLE II. COMPLETE FEATURE SET USED IN THE PROPOSED DATA
ANALYSIS SYSTEM

Nr. Feature Nr. Feature
1 Mean 5 Kurtosis
2 Standard Deviation 6 Skewness
3 Variance 7 Minimum
4 Energy 8 Maximum

raw analog-digital-converter output to acceleration and angular
velocity units.

3) Features: We adopted a feature set consisting of statis-
tical measures and signal characteristics which was previously
evaluated for physiological and kinematic data [12]. The
complete list of features is shown in Tab. II.
These eight features were computed for each axis of the input
data. As six axes were recorded, this results in patterns of
dimension 48 for each classification problem.

4) Classification: We implemented a classifier that takes
a class decision based on linear regression models [13]. For
each class C, a linear data model

fC(x) = w

T
x+ w0 (1)

with weight vector w

T, constant w0 and unknown feature
vector x was estimated with linear regression in the training
phase. Subsequently, in the working phase, the model of
each class was evaluated. The results were transformed to
probabilities as values bigger than one were set to one and
negative values were set to zero. Furthermore, all values were
scaled to sum up to one. The class whose function fC(x)
delivered the highest probability was chosen as classification
decision for the unknown pattern.

5) Evaluation: The Embedded Classification Software
Toolbox (ECST) [14] was used to perform training and perfor-
mance estimation of the classification system. In addition, the
software is capable of computing the memory consumption and
demand of mathematical operations for a classification system.
It can therefore give an interesting benchmark for estimating
the resource demands on the target hardware.

C. Data processing

1) State detection: The purpose of the state detection was
to decide wether the athlete was swimming or resting. We
considered two criteria for this decision, the signal energy and
the head position (Fig. 3).
The signal energy defined a general level of head movements.
After differentiating and taking the absolute value, we com-
puted the signal energy E(x) of each sample t using

E(t) = w

T
t (2)

We incorporated a set of weights w in the computation for
two reasons. First, to account for the influence of the two
different sensor types, as the acceleration was in the numerical
range of ± 1.5 and the gyroscope in the numerical range of
± 500. Second, to attenuate axes that best reflected the state
differences. All weights were chosen to be a power of two,
as such a multiplication or division can be mapped to a shift
operation in an embedded implementation. The last step in
the signal energy computation was a moving average filter.
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Fig. 3. Overview of the state detection based on signal energy and head
position.

We used Knuth’s computation [15] that is well suited for an
embedded implementation and transforms the unfiltered signal
x(t) to the filtered signal y(t). First, the difference of the last
filtered value y(t � 1) and x(t) was computed and scaled by
the filter width (Eq. 3).

� = (x(t)� y(t� 1))/width; (3)

Second, this difference was used to determine the current
filtered value y(t) value based on y(t� 1) (Eq. 4).

y(n) = y(t� 1) + �; (4)

We chose the filter width to be 28 to be able to map the
division to a shift operation. A threshold according to the
labeled study data was defined that differentiated the resting
from the swimming phase for most cases.
The head position defined the posture of the head and was em-
ployed to differentiate the resting phase from backstroke swim-
ming. There, only minimal head movements were recorded
and resulted in low values for the signal energy. The moving
average algorithm described in Eq. 3 and Eq. 4 was applied to
the z-axis of the accelerometer and a threshold separating the
posture in backstroke swimming and resting was defined.
The result of the signal energy and the head position com-
putation were combined to the final state decision. As post-
processing step in the state detection, we removed state
changes that lasted shorter than one second.

2) Turn detection: Turns mark the end of a lane and are
therefore important events to measure time and distance. We
considered two criteria to detect turns, the head position and
a classification system.
We tracked the same axis as for the state detection, the
accelerometer z-axis, to detect turns bounding the lanes where
the backstroke style was swum. A characteristic drop due to
the turnaround of the head was registered to mark a turn.
In addition, we trained a classification system to determine the
remaining turns that were not found with the head position
criterium. Therefore, we manually segmented two seconds
of each turning event for the TURN class. Furthermore, the
remaining data, which were determined to be of the swimming
state, were also split in 2 second intervals to make up the

SWIM class. The class distribution was skewed as the number
of TURN events was much lower compared to the number of
patterns in the SWIM class. We therefore doubled the number
of TURN patterns by adding each pattern twice.
The two criteria were combined to a final turn detection
that was checked every second. If a turn was registered, the
detection was set inactive for eight seconds to avoid double
detection. We employed a static duration of 1.5 seconds for
each turn.

3) Swimming style classification: We set up a classification
problem to determine the swimming style. Therefore, the
manual turn segmentation was used to split a complete session
in lanes. According to the protocol, the first lane was labeled
with butterfly (BU), the second lane with backstroke (BA),
the third lane with breaststroke (BR) and the last lane with
freestyle (FR). We evaluated different interval sizes between 1
and 20 seconds for classification performance and processing
effort.

4) Evaluation: The collected data was split in two distinct
sets, a training set and a test set. The training set consisted of
ten subjects with two swimming sessions each. One session
was recorded before and one after the training session. The
test set consisted of one subject with two swimming sessions
(before and after) and one subject with one session (before).
The classification results on the training set were determined
with leave-one-subject-out cross-validation [16]. This method
was chosen as multiple patterns of each subject contributed to
the data sample. In addition, we expected subject-dependent
characteristics in the data.
The classification results for the test set were determined with
a training-test procedure. Therefore, a classifier was trained on
the training set and tested on the previously unseen test set.

III. RESULTS

A. Training data

1) Turn classification: The training set for the turn classi-
fication consisted of 1721 patterns. As each swimming session
consisted of three turns and was added twice to the training set,
the TURN class consisted of 120 patterns. The SWIM class
comprised of 1601 patterns accordingly.
The classification rate of the SWIM class was 99.6%, the
classification rate for the TURN class was 80.0%. This resulted
in an overall classification rate of 98.2%. A distribution of
misclassified patterns is shown in Tab. III.
To save the trained classification system on the target hardware,
98 floating point variables for the linear models and one integer
value to store the pattern length were determined. The ECST
also computed the number of operations that were needed for
feature extraction and classification (Tab. IV).

TABLE III. CONFUSION MATRIX OF THE TURN CLASSIFICATION

Prediction
SWIM TURN Label
1594 7 SWIM
24 96 TURN

2) Swimming style classification: The size of the training
set for the swimming style classification varied between 3160
patterns (1 sec interval) and 196 patterns (20 sec). The interval



TABLE IV. COMPUTATIONAL EFFORT OF THE TURN CLASSIFICATION
IN NUMBER OF OPERATIONS

Operation Feature extraction Classification
+,- 43,170 97
⇥ 21,654 96
÷ 4,872 2p
x 18 -

 4,788 5
Overall 74,502 200

of 13 sec delivered the best result (90.6%) and the 18 sec
interval the lowest classification result (84.3%) (Fig. 4).
For all intervals, the memory demand of the classification
system remained the same and was calculated with 196 floating
point parameters and 1 integer value. To make the computa-
tional effort comparable across all intervals, we summed all
operations and normalized the values to the number of oper-
ations per second. The results show an exponential decrease
of the overall number of operations with increasing intervals
sizes (Fig. 5). The most operations per second were needed in
the 1 second interval (37,704) and the fewest in the 20 second
interval (37,225).

Fig. 4. Swimming style classification results for different interval sizes.

B. Test data

1) Turn detection: The turn classification detected eight
out of nine turns of the test set. All 513 intervals where
the subjects were swimming were classified as SWIM. Thus,
the turn classification reached an overall classification rate of
99.8%, and class-dependent classification rates of 100% for the
SWIM class and 88.9% for the TURN class. The turn detection
algorithm detected the single misclassified turn and therefore
all turns of the test set were successfully determined without
additional misdetections.

2) Swimming style classification: We used the intervals
with the best classification rates on the training set for classi-
fying the test set. These were the 5 second interval and the
13 second interval. For the segmentation of the swimming
session, the automatic state and turn detection was used.

Fig. 5. Number of operations per second for classification systems with
different interval sizes

The 5 second interval experiment classified the 100 test
patterns of the three datasets with a classification rate of
95.0%. Each lane was classified correctly when considering
the majority vote over one lane. The five misclassifications
were registered for the butterfly and breaststroke swimming
styles.
In the 13 second interval, the 38 test patterns were classified
with a classification rate of 92.1%. Again, each lane was clas-
sified correctly with the majority decision. For each subject,
one misclassification was registered either for the butterfly or
the breaststroke style.

IV. DISCUSSION

The analysis results demonstrate that determining turn
events and swimming styles with a head-worn kinematic
sensor is possible with high accuracy. This was shown for a
cross-validated training set and confirmed with a disjoint test
set for the four main swimming styles.
The test set analysis reached better results than estimated on
the training set. This might be due to the size of the test
set and due to the fact that the test set consisted solely of
girls. However, the analysis on a disjoint test set confirmed
the training results and proved the applicability to previously
unseen subjects.
For the swimming style classification, we compared the results
for different analysis interval sizes and the corresponding
resource consumption. As the memory size of the trained
classification system was constant, this aspect has no influence
on a potential hardware decision. In contrast, the number
of operations per second differed for different interval
sizes and suggested choosing a long interval to minimize
computational effort. Another aspect that might influence
the interval decision was the decision granularity. Shorter
intervals have a higher time resolution and are therefore
suitable if the swimming style is changed during a lane or
to give live feedback. In addition, more decisions during one
lane alleviate single misclassifications and might result in a
more robust classification of the swimming style of a lane.
From a performance perspective, the classification rates of



the considered intervals were between 84.3% and 90.6% and,
thus, did not vary considerably. A small variation of less than
500 operations per second was also registered for the overall
number of required operations. To sum up the performance
and effort analysis for the swimming style classification, a
trade-off between decision granularity and robustness on the
one hand and resource consumption and performance on the
other hand has to be made for a final system decision.
We presented a turn detection approach that combines head
position tracking with a turn classification system. The
advantage of the head position tracking is its computational
ease as it consists of threshold comparisons. In contrast,
the turn classification is computationally demanding and the
major part of operations was used for feature extraction.
Thus, feature reduction is the most promising approach to
reduce the computational effort. Especially the features that
require the most operations are a target for removal. We also
propose to incorporate prior knowledge to the turn detection.
This could be a sleep time after a detected turn that lasts for
the minimum time needed to swim a lane.
We analyzed the swimming style misclassifications on the
test set in more detail. We discovered that most of the
misclassification occurred at the beginning or the end of a
lane. Furthermore, the butterfly and the breaststroke class were
confused most often. We hypothesize that misclassifications
at the start or end of a lane occurred due to a beginning turn
or diving phase. Turn preparation and diving phase detection
has to be addressed in further research. We further assume
that the confusion of butterfly and breaststroke appeared due
to similar head movements of the swimming styles. This was
already visible in the recorded data and seems to be confirmed
by the classification result. Anyway, it can be stated that
the butterfly and breaststroke showed the most similar head
movement patterns across all swimming styles.
We provided a resource consumption analysis for parts of
the data processing described. However, other aspects like
the conversion of the analog-digital converter output in
acceleration and rotational velocity units was missing. This
has to be addressed in further research to compile a complete
overview of computational effort and memory demand.
The results for the state and turn detection as well as the
swimming style classification proved the applicability of the
proposed data processing. We designed the algorithms under
consideration of the computational complexity to enable
the porting to an embedded microcontroller. However, an
evaluation of the precise timing regarding the event detection
is missing so far. Therefore, the recorded video has to be
precisely aligned with the recorded inertial data to quantify
delays in the event detection.

V. SUMMARY AND OUTLOOK

This article presented an analysis of kinematic swimming
data recorded at the occiput. We conducted a research study
to collect swimming sessions that consisted of the four main
swimming styles and were collected in rested and in fatigued
state. An energy-based state detection was used to detect
whether the athlete was resting or swimming. Based on this
decision a two step turn detection segmented single lanes.
Finally, we trained a classification system that was able to
distinguish the swimming styles with high accuracy.

The algorithms were designed under consideration of their
computational complexity. Furthermore, practical cost mea-
sures were computed for the classification steps. This work is
the basis for porting the presented swimming analysis system
to an embedded microcontroller. This would be the next step
towards an athlete support system that gives instant feedback
about timing and distance of a swimming training. Due to
the sensor positioning at the back of the head, the system
is unobtrusive and offers the opportunity to give visual and
acoustic feedback. Our vision is to integrate the feedback
capabilities directly in the swimming goggles.
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