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ABSTRACT

Mean shift clustering and its recent variants are a viable and popular
image segmentation tool. In this paper we investigate mean shift
segmentation on multispectral and hyperspectral images and propose
three new algorithms. First, we improve segmentation performance
by running mean shift on the spectral gradient. At the same time, we
adapt a popular superpixel segmentation method to the multispectral
domain using modified similarity measures from spectral mapping.
Based on superpixels, we design two mean shift variants that both
obtain competitive segmentation results in significantly reduced run-
ning time. For one variant, the speedup in our benchmark is over 100
times. This enables mean shift clustering in an interactive setting.

Index Terms— Multispectral imaging, Hyperspectral imaging,
Image Segmentation, Clustering algorithms, Distance measurement

1. INTRODUCTION

The ever-increasing popularity of multispectral data, especially out-
side remote-sensing applications, gave rise to general-purpose visu-
alization and analysis software [1, 2]. These tools allow interactive
inspection of a multispectral or hyperspectral image without prior
knowledge. Materials and reflectance effects in the scene can be
explored without the use of application-dependent dimensionality
reduction or pixel classification. A viable tool for such analysis is
clustering of the data. In particular, the mean shift algorithm [3] is a
well-understood and popular clustering method that is in theory ap-
plicable to high-dimensional data, such as multispectral pixel vectors.
Mean shift is a mode-seeking algorithm that clusters the image by
associating all pixels to a set of common modes. Mean shift clustering
has a key advantage over most popular graph-based segmentation al-
gorithms: The clustering can happen in a feature space that is agnostic
to pixel coordinates. No topological clues are needed and a segment
can consist of several disconnected areas within the image that share a
high pixel-wise consistency. It has also the important property that no
other prior information is needed, e.g. a desired number of clusters.
These properties make mean shift a good choice for clustering of
a multispectral image to aid the user in further exploration without
prior knowledge.

A major problem of the original mean shift is speed. In general,
mean shift operates in O(N2) time, N being the number of data
points, or pixels. This can lead to computation times of several hours
for a high-resolution image, let alone a multispectral one. In 2003,
Georgescu et al. [4] introduced the fast adaptive mean shift (FAMS)
algorithm which significantly reduces running times by employing
locality-sensitive hashing (LSH). However, on-demand calculation
within an interactive usage scenario is still not viable. Recent methods
further reduce computational complexity. Median shift [5] exploits
the LSH aspect of FAMS by taking statistical properties of the LSH as
a cue for finding modes in the feature-space density. While it achieves

(a) Original image in sRGB (b) FAMS segmentation

(c) SG-FAMS segmentation (d) PSPMS segmentation

Fig. 1. 31-band fake and real food image [8] and segmentation results.
We propose SG-FAMS and PSPMS. All figures best viewed in color.

a significant speed-up, it tends to under-segment the data: modes of
less well-represented parts of the scene are not identified and these
regions may be falsely attributed to poorly related larger segments.
Variants of the so-called hierarchical mean shift [6, 7] do not tackle
the theoretical computation time boundary. Rather, they start with
smaller search kernels, which in practice reduces the number of data
points to be considered in each shift step. Then, they iteratively
restart the method with the obtained modes from the previous step as
data points. A global segmentation is reached after two to four steps.
However, reducing the kernel size becomes increasingly impractical
with higher dimensionality of the input data. In a multispectral image,
the feature space typically consists of 30 to 250 dimensions.

In this paper we provide a conclusive methodology for obtaining
a valuable clustering of multispectral or hyperspectral images under
tight time constraints. First, we show that desirable results can be ob-
tained by FAMS when applied on the spectral gradient descriptor [9].
Second, we adapt an established superpixel segmentation method
to multispectral data. Then, we define two novel variants of FAMS
that employ superpixels for speed-up. We show that these methods
provide competitive results to our multispectral FAMS variant with
significantly decreased computational complexity.



2. MULTISPECTRAL FAST ADAPTIVE MEAN SHIFT

The FAMS [4] algorithm is a vital improvement to the general mean
shift formulation for our application domain (high resolution images
with a high dimensional feature space). We base our methods on
FAMS and use its multispectral variant as a baseline as defined below.

2.1. Fast Adaptive Mean Shift

Mean shift is a density gradient estimator. It finds the modes of the
multivariate distribution underlying a feature space with a kernel
estimator. In our case, the feature space consists of the N spectral
vectors xi of length D. In FAMS, the mean shift vector at location x
in feature space is defined as
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where hi is the bandwidth value as explained below, G(x) is the
Epanechnikov kernel, and g the kernel profile [4]. The algorithm
consists of three steps:

Bandwidth Selection. Unlike the original mean shift which uses
a fixed bandwidth h, FAMS selects an hi for each data point deter-
mining its radius of influence. hi is selected so that a minimum of k
data points neighboring xi lie within it. According to [4], parameter
k is not critical to FAMS, however we need to consider it in Sec. 4.2.

Mean shift. mG(x) is started at each data point and iteratively
progresses in a hill climbing technique until it converges. The point
of convergence is most often a mode (local maximum) of the density.

Mode Pruning. In the previous step we obtained a corresponding
mode for each data point xi originating from pixel Pi. In the pruning
step, common modes of several pixels are identified and merged [3].
The segmentation consists of a cluster association Ci for each pixel,
such that all pixels in a cluster share a common mode.

2.2. Spectral Gradient FAMS (SG-FAMS)

Our C++ implementation is based on MultiSFAMS [10]. We added
support for higher-resolution images, parallelization of the adaptive
bandwidth calculation, and Streaming SIMD Extensions (SSE) ac-
celeration. We avoided parallelizing the shift step as it interferes
with early trajectory termination. Figure 1(b) shows a segmentation
obtained by applying our FAMS version on a 31-band multispectral
image. At first glance, the result does not look satisfactory. However,
further investigation reveals that the algorithm does in fact find dis-
tinguished clusters in the underlying distribution. The trouble is that
geometric effects are very dominant (a problem not present in remote
sensing data). The segmentation distinguishes brightness variations
on objects of uniform material. Different materials however are often
missed. For an example see both the plastic pepper on the left and
the real pepper on the right in Figure 1(a, b).

To overcome this issue, we need to define a different feature space,
similar to the use of the L∗u∗v∗ colorspace as opposed to RGB [3].
An appropriate representation for multispectral or hyperspectral data
is the spectral gradient space [9]. The spectral gradient is the discrete
approximation of spectral derivatives obtained by finite differencing.
It is a descriptor that by design separates material information from
reflectance content. Hence, in order to get a mean shift segmentation
that focuses on material properties we use SG-FAMS, a spectral
gradient variant of FAMS. In SG-FAMS we first compute the spectral
gradient gi for each pixel Pi, then use the gi image as input to the
FAMS algorithm.

Figure 1(c) shows an example segmentation obtained by SG-
FAMS. We observe a small amount of segments that cover well
the different objects, background and shadow regions. Different
materials fall into the same segment only in rare cases (e.g. the
missed strawberry leaves). Most specular highlights are assigned to a
distinct segment. However, the necessary computation time does not
fit into an interactive setting. Therefore we develop faster algorithms
that employ superpixels.

3. SUPERPIXEL SEGMENTATION

We expect all pixels from a small, homogeneous image region to fall
into the same FAMS cluster. Instead of finding a cluster for each
pixel, we could search a cluster for such a small homogeneous region
at once. Superpixel segmentation helps us to identify such regions.
Superpixel is a term recently coined in the field of computer vision.
It describes a set of pixels that are spatially connected and share high
similarity, replacing the rigid structure of the pixel grid of an image.

3.1. Superpixel computation

A wide range of segmentation methods fall into the superpixel cat-
egory, most prominently several graph-based algorithms as well as
gradient-ascend methods. Achanta et al. [11] discuss and compare
a comprehensive selection of these algorithms. While our method
is agnostic to the superpixel segmentation method used, we chose
the method proposed by Felzenszwalb and Huttenlocher in 2004
(FH04) [12]. FH04 has several advantageous properties that are
particularly well-suited for our application. It is crucial for us that
boundaries in the image are not missed and superpixels stay confined
within a homogeneous region with high intra-similarity. The algo-
rithm achieves the highest boundary recall in a benchmark of several
superpixel methods [11] on the Berkely Dataset. Other superpixel
methods often fulfill different properties, e.g. higher regularity in
shape or size, that are of no concern to us. Also, FH04 has a time
complexity of O(N logN). In the aforementioned benchmark, it
ranks second in computation speed. This makes it an ideal choice for
our interactive setting.

The algorithm operates on a 4-connected or 8-connected graph
that represents each pixel as a node. Edges are weighted based on
pixel dissimilarity. The graph is then partitioned starting with one
partition, or superpixel, per node. Superpixels are iteratively merged
while fulfilling several criteria. A parameter c manipulates the degree
to which the difference between two superpixels must be greater
than their internal differences to favor a split. Thus c influences the
average superpixel size. See [12] for details. We configure FH04 to
serve as a pre-processing step in clustering by setting a low c value.

3.2. Multispectral Superpixels

A key component of graph-based algorithms like FH04 is the setting
of wij , the weight of each edge in the graph. In the original implemen-
tation, wij = |I(Pi)− I(Pj)|, where I(Pi) is the intensity value of
a grayscale pixel Pi. For RGB images, the authors run the algorithm
on each band separately [12]. A weighted Euclidean distance was
proposed for four band RGB+NIR images [13]. Both adaptations are
not applicable to high-dimensional multispectral images.

A reasonable solution is to employ similarity measures specifi-
cally designed for spectral data. Two established and proven reliable
spectral mapping measures are the Spectral Angle Mapper (SAM)
and the Spectral Information Divergence (SID) [14, 15]. They best
discriminate different materials based on their characteristic spectra.



(a) Original image in sRGB (b) hand-labeled objects (c) PSPMS on (e), 116.4s (d) FSPMS on (e), 9.1s (e) fine superpixels

(f) edge weights in x-direction (g) SG-FAMS, 744.9s (h) PSPMS on (j), 82.4s (i) FSPMS on (j), 5.7s (j) coarse superpixels

Fig. 2. 31-band feathers image in sRGB, corresponding histogram-equalized SID edge weights, superpixel segmentations, and mean shift
segmentation results compared to hand-labeled objects from [17]. Running times after image loading are denoted next to algorithm names.

SAM has already been used in conjunction with FH04 on remote
sensing data [16]. Several similarity measures including SAM and
SID were evaluated for another graph-based segmentation algorithm
in [17]. The spectral angle (SA) has the property that it disregards
pure intensity changes and is defined for two spectra x and y as

SA(x,y) = cos−1
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where 〈·, ·〉 denotes the inner product and ‖·‖2 the L2 norm. SID
is based on the Kullback-Leibler information measure and models
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In several graph-based algorithms, e.g. graph-cut [18], only the
order of weights is taken into account, but not their ratio. In our
case, the ratio between weights is used when deciding whether to
merge superpixels. We found that the highly non-uniform distribution
of SID on our test images poses a problem. Therefore, we apply
histogram equalization (with 10 000 bins for higher accuracy) on the
edge weights. This procedure produces integer values, effectively re-
ducing FH04 complexity[12]. Since histogram equalization improves
the results for SA as well, it is always performed.

4. SUPERPIXEL MEAN SHIFT

We propose two new algorithms which combine multispectral super-
pixels with SG-FAMS. The idea behind both methods is to signifi-
cantly reduce the amount of input data but maintain sufficient detail
for obtaining a good segmentation quality. Depending on how this is
done, considerable to vast speed-ups can be achieved.

4.1. Per Superpixel Mean Shift (PSPMS)

In this variant, we sacrifice spatial detail for execution speed. Super-
pixels Sj , j ≤ NS are computed on the original image. The feature
space however is unchanged from SG-FAMS, i.e. it consists of the
spectral gradient vector gi of all pixels Pi, i ≤ N . For each Sj we
compute the centroid sj of all data points gk, Pk ∈ Sj . An adaptive
bandwidth is selected for each pixel Pi. However, instead of starting
the mean shift procedure at each gi, we start it at each sj . In all
other aspects, PSPMS runs like SG-FAMS. As a last step, the cluster
assignment Cj of Sj is back-projected to all Pk ∈ Sj . We obtain a
full segmentation.

In our experiments we observe a fivefold to tenfold speed increase
as compared to SG-FAMS. Algorithmic complexity is only reduced
by a constant factor, as the adaptive bandwidth selection still has a
complexity of O(N2). The mean shift procedure however is consid-
erably more time consuming than bandwidth computation due to its
iterative nature, and that is reduced to O(N2

S). Segmentation results
of this variant best mimic SG-FAMS behavior, as the superpixels only
affect the spatial resolution, but not the feature space.

4.2. Full Superpixel Mean Shift (FSPMS)

In this variant, we fully leverage the superpixel data representation.
The centroids sj , j ≤ NS form the feature space. Adaptive band-
widths are computed per superpixel. Then, from each sj the mean
shift is performed. Cluster assignments are back-projected to the
pixels after mode pruning. To achieve good results, we need to alter
the algorithm in bandwidth selection and mean shift steps.

Bandwidth Selection. The bandwidth for each data point is
chosen so that k nearest neighbors lie within its bounds. Georgescu
et al. reason that the choice of k is not critical for the performance
of the algorithm [4]. However, the adaptive bandwidths are directly
related to k. If the feature space is sparsely populated, k has a strong
effect on bandwidth size. As a result, data points influence a higher
number of shift trajectories, leading to fewer distinct modes. While



Algo. c Superpixels Segments Seconds
SG-FAMS 22.3 ± 7.4 629.3 ± 262
PSPMS 0.25 2349 ± 230 35.0 ± 17.3 79.6 ± 32.8

0.05 16706 ± 1178 33.0 ± 15.2 113.2 ± 39.9
FSPMS 0.25 2349 ± 230 23.7 ± 8.2 5.9 ± 1.1

0.05 16706 ± 1178 27.5 ± 6.8 9.0 ± 1.5

Table 1. Statistical results averaged over 13 test images.

typical input images have 218 pixels (in our test images) or more,
a superpixel segmentation on these images produces between 211

and 214 superpixels. Therefore a k suitable for SP-FAMS or PSPMS
is not suitable anymore for FSPMS and would yield a broad under-
segmentation. From our experiments we derive an effective rule for
the choice of k: k = p·

√
N . The linear factor p is a tunable parameter

that influences the coarseness of the segmentation. Georgescu et al.
also suggest to take the feature space dimensionality into account
when choosing k.

Mean shift. The key idea behind the mean shift algorithm is the
estimation of the density gradient. Our new feature space is based on
the rationale that the superpixels provide a good sparse representation
of the image’s distribution. This is only the case when each superpixel
both represents a homogeneous region in the image, and has the same
weight as the points that are represented by it. Therefore, we weight
the bandwidth of each superpixel centroid by the superpixel size.

The main advantage of this variant is that complexity is reduced
to O(N logN +N2

S). This makes the method viable for interactive
applications, where a result should be obtained within a few seconds.

Figure 2 illustrates the operation and results of PSPMS and
FSPMS on an example image. From the input image, displayed
in sRGB, (a), SID edge weights are calculated including histogram
equalization, (f). Superpixel segmentation is run with parameters
c = 0.05, (e), and c = 0.25, (j). PSPMS and FSPMS are run with
both superpixel configurations as input next to SG-FAMS.

5. EVALUATION

We test our algorithms on the CAVE multispectral image database [8].
This is a set of high-quality multispectral images that depict objects
of different materials in a laboratory setting. Images have a spa-
tial resolution of 512 × 512 pixels and cover the spectral range of
400nm−700nm in 31 bands. Ground-truth data for evaluation of a
global clustering is not available and would be very difficult to obtain.
Therefore we mostly rely on qualitative evaluation of the segmenta-
tion results. An important measure in judging the segmentations is the
number of obtained segments. In general, the segmentations of SG-
FAMS provide enough detail without adverse over-segmentation. We
expect PSPMS and FSPMS to obtain a similar number of segments as
SG-FAMS, although in a fraction of time. A second important aspect
is material discrimination. Objects of the same material properties
should fall into one, or only few segments. Furthermore, objects that
differ in material properties should not share a segment.

We tested both the SA and the SID similarity measures for edge
weights wij . Both work very well when histogram equalization is
applied. Most often, the segmentations obtained with SID were on-
par or of higher quality. We, therefore, only report results computed
with SID. We present two different settings of c to judge the influence
of superpixel size. We found that considerably large superpixels can
achieve good results in a shorter time. We keep the FAMS parameters
fixed to k = 1, K = 20, L = 10 [4].

(a) Original image in sRGB (b) SG-FAMS, 407.5s

(c) PSPMS, c = 0.05, 120.0s (d) FSPMS, c = 0.05, 8.1s

Fig. 3. 31-band flowers image and segmentation results.

Table 1 lists the number of obtained segments by each method,
the number of superpixels used in PSPMS and FSPMS and the corre-
sponding running times. All methods were run five times on an Intel
Core i7-2600 CPU with eight threads. The number of segments is sta-
ble and in the same range across all methods. Example segmentations
are depicted in Figures 1-3. A challenging example is the flowers
image (Figure 3). A good segmentation of all six flowers is hindered
by shading effects. PSPMS mostly differs from SG-FAMS in how it
handles the noisy background. FSPMS puts emphasis on different
aspects. All methods successfully capture the flowers as well as the
leaves in the background.

We observe that on our data, PSPMS provides a reasonable speed-
up without evident loss in segmentation quality. Another advantage
of PSPMS over SG-FAMS is that it is more resistant to noise on the
pixel level. FSPMS segmentations are not always on par with the
other methods, as some details are missed in comparison. However,
they prove functional and can easily be further refined in an inter-
active setting. The running times of FSPMS do offer an impressive
advantage. In conclusion, FSPMS opens mean shift clustering to new
time-critical application scenarios, including ours.

6. CONCLUSIONS

Unsupervised clustering of image data is an important image process-
ing tool. Due to the rich pixel vectors of a multispectral image, mode-
seeking clustering algorithms can provide very helpful segmentations
without prior knowledge. We demonstrate this with the SG-FAMS
method. Furthermore, superpixels are an effective tool not only on
grayscale and RGB data, but also in the multispectral domain. By
combining superpixels with SG-FAMS, we obtain a fast, yet reliable
unsupervised clustering method. Our proposed FSPMS algorithm
allows the on-demand calculation of a global segmentation in an inter-
active setting. The source code used in our experiments is available
within the open-source Gerbil framework at http://gerbil.sf.net.
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