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Abstract. Modeling the deformable shape of the left atrium is of strong
interest for many applications in cardiac diagnosis and intervention. In
this paper, we propose a method for left atrium shape modeling us-
ing non-rigid point cloud registration. In particular, we build upon the
concept of Coherent Point Drift (CPD) registration that considers the
alignment as a probability density estimation problem. Based on the set
of non-rigidly registered point clouds, we perform a principle component
analysis to establish a deformable shape model. In an experimental study
on ten clinical data sets, we evaluated the registration accuracy in terms
of average mesh-to-mesh distance, as well as on anatomical landmarks
on the left atrium. With the proposed method, we achieved registra-
tion results with an average mesh-to-mesh error of 3.4 mm. The average
landmark offset was 8.5 mm.

1 Introduction

Statistical shape models are widely used today in different fields of medical
image processing. A common application is the use as prior information for
segmentation of 3-D medical image data [1]. The left atrium is a challenging
structure, as it shows a large amount of variation in surface topology and shape
across different patients. Examples of 3-D mesh models for different atria are
shown in Fig. 1. In addition to the anatomical differences among subjects, there
is the aspect of cardiac motion which leads to deformations of the left atrium in
different heart phases. In electrophysiology ablation procedures, a model of the
underlying anatomical structure could be used for planning of the intervention
as, e.g., suggested by Keustermans et al. using patient specific 3-D data sets for
planning of atrial fibrillation treatment [2].

In this paper, we propose a method for left atrium shape modeling using non-
rigid point cloud registration. In our approach, we generate the shape model from
3-D magnetic resonance imaging (MRI) volume data sets. We exclusively used
data sets of left atria with four pulmonary veins, which reflects the most com-
mon anatomic configuration [3]. First, the relevant structure was segmented and
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represented as a triangle mesh. Then we used the Coherent Point Drift (CPD)
algorithm [4] to pairwise align meshes via non-rigid point cloud registration.
Basically, CPD registration is performed based on a Gaussian Mixture Model
(GMM) framework and a regularization of the displacement field. Benefits of
the CPD algorithm are the generation of smooth deformation fields while being
robust against noise and outliers [4].

2 Materials and Methods

Left atrium mesh models of ten subjects were extracted from contrast enhanced
3-D MRI volume data sets. The MRI data sets were acquired with a resolution
of 256 × 256 × 68 voxels. The in-plane pixel spacing was 1.23 × 1.23 mm and
the slice thickness 1.5 mm. The left atrium was segmented from MRI voxel data
sets using a semi-automatic segmentation software (syngo InSpace EP, Siemens
AG, Forchheim, Germany). The segmentation process is initialized by manually
selecting a point inside the left atrium. Based on this seedpoint, the complete
left atrium is segmented automatically. The segmentation results are represented

(a) (b)

(c) (d)

Fig. 1. Mesh models of the left atrium segmented from 3-D MRI volumes from four
subjects (a-d). The colored spheres depict the anatomic position of the pulmonary vein
ostia and were labeled by an expert: right superior (dark green), right inferior (light
green), left superior (dark blue) and left inferior (light blue).
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as triangle meshes. Fig. 1 depicts models of the left atrium from four different
subjects.

For registration, let us consider the mesh as a point cloud M consisting of
N points xi ∈ R3

M≡m =
[
x>1 , . . . ,x

>
N

]> ∈ R3N (1)

In a first step, we selected one left atrium mesh model as a reference mesh. The
reference mesh was chosen based on visual inspection to clearly express the LA
anatomy. The reference mesh mRef is then registered to a set of sample meshes
{mt}Tt=1, with T = 9, using the CPD algorithm. All meshes have the same
anatomical orientation, and are zero centered before applying the registration.

2.1 Non-Rigid Point Cloud Registration Using CPD

We used the coherent point drift algorithm to register the reference mesh to
the set of sample meshes. CPD follows a probabilistic approach by considering
the alignment of the two point sets as a probability density estimation problem.
The basic idea is to fit the GMM centroids, represented by the points of the
reference meshmRef, to the sample meshmt, by maximizing the likelihood. This
optimization is performed with the expectation maximization algorithm. During
the optimization process, the GMM centroids are forced to move coherently as
a group, to ensure preservation of the topological structure of the point set.

The displacement function v for the reference mesh is defined as

m̂Ref = mRef + v(mRef) (2)

withmRef as the initial centroid positions. m̂Ref and v, respectively, are obtained
by minimizing the following energy function [5]:

E (m̂Ref) = −
N∑

n=1

log

M∑
m=1

e−
1
2‖xn−ym

σ ‖2 +
λ

2
φ (v) (3)

where φ(v) is a regularization to ensure the displacement field to be smooth.
xn denotes a point of the mesh mt, ym a point of the transformed mesh m̂Ref,
respectively. N and M refer to the number of points within the respective mesh.
The parameter λ determines the trade-off between data fitting and smoothness
of the deformation field. We empirically determined a suitable value for this
parameter (λ = 2.0).

2.2 Deformable Shape Model Generation

The reference mesh mRef is registered to every sample mesh mt. The trans-
formed mesh m̂Ref is labeled vt for ease of use. The training set is defined as
V = {mRef,v1, . . . ,vT }. We used a Principle Component Analysis (PCA) ap-
proach [6] to compute the modes of variation. Applying PCA to the covariance
matrix of the centered version of V yields a set of eigenvectors ei describing the
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principle modes of variation in the training data set. The eigenvectors are ordered
in descending order based on the value of their corresponding eigenvalue. The P
largest eigenvectors are stored in the matrix Φ = [e1, . . . , eP ] ∈ R3N×P . A linear
combination of the P principal modes of variation, with b ∈ RP as weighting
factors, spans a subset of linearized mesh models composed of the given modes
of variation:

m∗ = v̄ +Φb (4)

The mean shape v̄ is defined as

v̄ =
1

T + 1

(
mRef +

T∑
t=1

vt

)
(5)

For quantitative evaluation of the proposed framework, we used ten clinical data
sets with manually annotated pulmonary vein (PV) ostia. These landmarks are
labeled RSPV (Right Superior Pulmonary Veins), RIPV (Right Inferior Pul-
monary Veins), LSPV (Left Superior Pulmonary Veins), and LIPV (Left Inferior
Pulmonary Veins). The quality of the registration is measured based on residual
landmark distances and mesh-to-mesh distance. The residual landmark error is
defined as the Euclidean distance of the center of corresponding PV ostia and
measured after non-rigid CPD registration.

3 Results

Quantitative registration results are shown in Fig. 2 and discussed in more detail
in Section 4. Fig. 2(a) shows the average mesh-to-mesh distance, as well as the
initial and residual landmark offset per data set. The initial and residual offsets
per landmark are shown in Fig. 2(b). The average mesh-to-mesh distance is
between 2.5 and 5.1 mm, the average landmark offset is between 2.9 and 13.9 mm.
Fig. 3 depicts the residual registration error for data set 4, which shows the
highest mesh-to-mesh error. The highest mesh-to-mesh distance occurs at the
end of the pulmonary veins. In this case especially on the right inferior PV.

4 Discussion

We described a method for left atrium shape modeling using non-rigid point
cloud registration. The overall performance of the mesh registration shows a
mean mesh-to-mesh error of 3.4 mm over all data sets. The coherent point drift
algorithm was capable of dealing with high variations in anatomy. The highest
residual mesh-to-mesh distance results from different extents of the pulmonary
veins. The average landmark offset was 8.5 mm. Landmarks on the right side of
the left atrium, namely RSPV and RIPV, show a lower residual error compared
to left sided landmarks LSPV and LIPV. This might be due to the additional
pouch on the left side of the left atrium, the left atrial appendage, which is
anterior to the PV ostia.
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The mesh models of the left atrium also contained a large part of the con-
nected pulmonary veins. Removing or trimming these extensions might improve
the accuracy, since these structures show a high variation in shape and size.
For the modeling of the atrium, short pulmonary vein ostia would be sufficient.
This work is a first step towards our goal of automatic planning of ablation re-
gions for atrial fibrillation procedures. Planning structures could be transfered
to augmented fluoroscopy systems used to guide the procedure and overlaid to
the X-ray images.
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Fig. 2. (a) Mean and standard deviation of the residual mesh-to-mesh error, landmark
error after registration, and initial landmark error are shown per data set. (b) Mean
and standard deviation of the initial and residual landmark error.
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Fig. 3. Residual mesh-to-mesh error color coded on one example mesh. The error is
measured as Euclidean distance in [mm]. The highest mesh-to-mesh distance occurs at
the end of the pulmonary veins. In this case especially on the right inferior PV.
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(a) Posterior view
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(b) Anterior view
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ley - Europäische Metropolregion Nürnberg, project grant Nos. 01EX1012A
and 01EX1012E, respectively. Additional funding was provided by Siemens AG,
Healthcare Sector. S. Bauer acknowledges support by the Graduate School of
Information Science in Health (GSISH) and TUM Graduate School.
Disclaimer: The concepts and information presented in this paper are based on
research and are not commercially available.

References

1. Heimann T, Meinzer HP. Statistical shape models for 3D medical image segmenta-
tion: A review. Med Image Anal. 2009;13(4):543 – 563.

2. Keustermans J, De Buck S, Heidbuechel H, Suetens P. Automated planning of
ablation targets in atrial fibrillation treatment. Proc SPIE. 2011;7962:796207.

3. Kautzner J, Micochova H, Peichl P. Anatomy of the Left Atrium and Pulmonary
Veins–Lessons Learned from Novel Imaging Techniques. Eur Cardiol. 2006;2(1):89–
90.

4. Myronenko A, Song X. Point set registration: Coherent Point Drift. IEEE Trans
Pattern Anal Mach Intell. 2010;32(12):2262–2275.

5. Myronenko A, Song X, Carreira-Perpinan M. Non-rigid point set registration: Co-
herent Point Drift. Adv Neural Inf Process Syst. 2007;19:1009–1016.

6. Jolliffe I. Principal component analysis. Wiley Online Library; 2005.


