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Abstract

Fundus imaging is the most commonly used modality to
collect information about the human eye background. Ob-
jective and quantitative assessment of quality for the ac-
quired images is essential for manual, computer-aided and
fully automatic diagnosis. In this paper, we present a no-
reference quality metric to quantify image noise and blur
and its application to fundus image quality assessment. The
proposed metric takes the vessel tree visible on the retina as
guidance to determine an image quality score. In our exper-
iments, the performance of this approach is demonstrated
by correlation analysis with the established full-reference
metrics peak-signal-to-noise ratio (PSNR) and structural
similarity (SSIM). We found a Spearman rank correlation
for PSNR and SSIM of 0.89 and 0.91. For real data, our
metric correlates reasonable to a human observer, indicat-
ing high agreement to human visual perception.

1 Introduction

Fundus imaging is the most commonly used modality to
collect information about the human eye background for the
diagnosis of various retinal diseases such as glaucoma or di-
abetic retinopathy. Retinal image analysis is an active field
of research providing image processing and machine learn-
ing methods either for computer-assisted or fully automatic
diagnoses [1]. However, for the success of these methods
high-quality image data is essential. Images of poor quality
must be detected by an operator and the acquisition must be
repeated, which is a highly subjective decision and a time-
consuming task. Furthermore, image processing techniques
ranging from autofocus [6] to image deconvolution [5] re-

cently established in ophthalmic imaging deal with images
of different quality that must be quantitatively assessed to
detect most the most reliable image (e. g. for autofocus) or
to evaluate image improvement (e. g. in deconvolution).

No-reference image quality assessment deals with the
problem to provide a quantitative score of image quality in
the absence of a gold standard. In literature, there exist two
groups of methods for solving this task: (i) classification-
based approaches and (ii) quality metrics for image content.
In methods falling in category (i), image quality is predicted
by assigning an image to one class out of a discrete set of
quality classes using supervised learning strategies. This
is achieved using feature extraction and classification based
on a gold standard provided by experts [8, 9]. Even if such
methods are attractive for identifying good images for diag-
nosis purposes, the application is limited to problems where
a discrete assessment is sufficient. (ii) Quality metrics are
scores for general quality features like image noise or sharp-
ness to provide a continuous measure in an unsupervised
manner, which is the focus in this paper. For the predic-
tion of the relative amount of sharpness in natural images
Narvekar and Karam [7] proposed the cumulative probabil-
ity of blur detection (CPBD). A quality metric to estimate
image noise and blur simultaneously is Renyi entropy [3]
adopted to fundus imaging by Marrugo et al. [4]. A major
limitation of these methods is that a uniform quality across
the whole image is assumed which is not always valid in
case of fundus images. This is caused by the curvature of
the retina or diseases which introduce local blur. Zhu et
al. [12] proposed a novel metric to quantify noise and blur
which does not require uniform disturbances.

In this work, we focus on simultaneous quantification of
image blur and noise. Here, we adopt the approach orig-
inally introduced by Zhu et al. [12] for automatic qual-



ity assessment of retinal fundus images. In section 2 we
present the state-of-the-art approach applicable to each im-
age modality. Our specialized approach for fundus images
is introduced in section 3 and takes the vessel tree as guid-
ance to determine an objective and continuous quality score.
The performance is demonstrated by analyzing the correla-
tion between no-reference assessment and established full-
reference metrics in section 4. This method may be used
either as stand-alone metric to detect blurred and noisy im-
ages or as feature in a classification-based approach.

2 Background

Let I be a grayscale image of size M ×N . We decom-
pose I in a set of distinct patches, whereas each patch P is
of size n × n. The local gradient matrix G of size n2 × 2
for P is given by:

G =

Px(1, 1) Py(1, 1)
...

...
Px(n, n) Py(n, n)

 , (1)

where Px(xi, yi) and Py(xi, yi) denotes the derivative of
P at pixel (xi, yi) in x- and y-direction, respectively. The
singular value decomposition (SVD) of G is given by:

G = UDV T (2)

= U

(
s1 0
0 s2

)
V T , (3)

for orthogonal matrices U and V and the singular values s1,
s2. It is shown in [12] that a local quality metric to quantify
image noise and blur in an anisotropic patch P is given by:

q(P ) = s1 ·R, (4)

where R denotes the coherence:

R =
s1 − s2
s1 + s2

. (5)

Larger values for q(P ) defined in (4) indicate higher image
quality in terms of blur and noise. It is important to note,
that q(P ) is only a valid quality metric in an anisotropic
patch with dominant gradient direction, whereas in isotropic
patches the score is not meaningful. In order to get a global
estimate for noise and blur, q(P ) is summed up over all
anisotropic patches and normalized according to:

Q =
1

MN

∑
i,j:P(i,j)=1

q(P ij) (6)

where P(i, j) denotes the patch map for image I such that
P(i, j) = 1 if P ij is anisotropic. These patches may be de-
tected automatically employing statistical tests for the co-
herence R (see Fig. 1). Patches having significant coher-
ences R > τR are assumed to be anisotropic for a fixed

(a) (b)

Figure 1: A color fundus image (a) and the detected
anisotropic patches of size 8× 8 pixels (b).

threshold τR calculated by:

τR =

√√√√1− α
1

n2−1

1 + α
1

n2−1

, (7)

where α is the significance level for testing if a given patch
is anisotropic. For the patch size we set n = 8 and for the
significance level α = 0.001 as suggested in [12].

3 Proposed Method

In this section, we describe, how the no-reference quality
metric Q is applied to color fundus images. Next, we pro-
pose an extended approach which takes blood vessels vis-
ible in fundus images as guidance to determine a spatially
weighted quality score.

3.1 Color Image Quality Assessment

The quality metric Q given by Eq. (6) is defined for
grayscale images only. However, in fundus imaging a qual-
ity score for color images is required. Here, contrast and
saturation of the color channels in RGB space are different.
Usually the blue channel has poor contrast between back-
ground and anatomical structures, whereas the red channel
is often overexposed. However, we assume uniform quality
of the channels with respect to noise and sharpness. There-
fore we propose to extract the green color channel for qual-
ity assessment, since it shows the best contrast and provides
maximal structure for subsequent quality assessment.

3.2 Vessel-Based Quality Assessment

One limitation of the quality metric Q is the automatic
detection of anisotropic patches. Using thresholding pro-
cedures may lead to false selections, especially in the case



of noisy or highly blurred images. On the other hand, fun-
dus images consist of relatively few texture and structure
compared to natural images. Thus, the number of possi-
ble candidates for anisotropic patches is low. To overcome
this problem, we propose to use the vessel tree as guidance,
since we expect that blood vessel boundaries are good can-
didates for true anisotropic patches.

3.2.1 Vesselness Measure

We detect blood vessels in an image I as follows. First, the
green color channel Ig is extracted from the color image I
due to the good contrast between vessels and background
compared to the other channels. For each pixel in Ig the
local Hessian matrix is calculated by:

H =

(
∂d2Ig

∂x2

∂d2Ig

∂x∂y
∂d2Ig

∂x∂y
∂d2Ig

∂y2

)
. (8)

For detection of blood vessels, we employ the vesselness
measure proposed by Frangi et al. [2] according to:

V = exp

(
−λ

2
1

λ22

)(
1− exp

(
−(λ21 + λ22)

))
(9)

for the eigenvalues λ1 and λ2 of H where λ2 ≥ λ1. Here,
V represents a probability measure where large values indi-
cate high probability for pixels to be located on a vessel (see
Fig. 2). Since we are mainly interested in thick vessels and
in order to decrease noise in the vesselness map, we neglect
pixels having small vesselness and set V = 0 for V < V0
below a fixed threshold V0. We set V0 adaptively to the 80th

percentile of all non-zero vesselness measurements.
In its original version, vesselness is computed pixel-wise

according to (9) using different window sizes to determine
the Hessian. Then, the size achieving the largest vessel-
ness is used for vessel detection. In this paper, we make
use of a multi-scale approach and determine the vesselness
for a fixed window of size 3 × 3 pixel but at downsampled
versions of the original image. This method speeds up the
computation of V for vessel detection.

3.2.2 Spatially Weighted Quality Metric

We utilize the vesselness as spatially adaptive confidence
weight for quality assessment of retinal fundus images.
Here, the basic idea is that anisotropic patches located on
blood vessel boundaries are more reliable for the overall
blur and noise estimate. Our vessel-based quality metric
is defined as:

Qv =
∑

i,j:P(i,j)=1

Σ̃ij · q(P ij), (10)

where Σ̃ij denotes the normalized local variance of the ves-
selness measure in patch P ij . Here, Σ̃ij is determined by

(a) (b)

Figure 2: An example color image (a) and calculated ves-
selness measure for blood vessel detection (b).

computing the variance of the vesselness V in P ij , where
normalization is done using the overall patch number such
that

∑
i,j Σ̃ij = 1. Thus, patches P ij located on a blood

vessel boundary indicated by large Σ̃ij have higher impact
to the overall estimate for image noise and blur. We demon-
strate in our experiments that this quality score is more re-
liable than thresholding for patch detection and the use of
uniform weights for all patches.

4 Experiments and Results

We evaluated the ability of the proposed quality metric
to quantify sharpness and noise in retinal fundus images.
First, our Qv defined in (10) is compared to the original
score Q defined in (6) by analyzing the agreement with
full-reference metrics based on synthetic images. We also
evaluated our approach for real image data. Supplementary
material for our experiments is available on our web page1.

4.1 Correlation to Full-Reference Metrics

For quantitative evaluation, we used 40 images out of the
DRIVE database [10]. From each original image we gen-
erated synthetic images in two steps: (i) We induced blur
using a Gaussian filter with fixed size of 7 × 7 and varying
standard deviation σb. (ii) From each blurred image, a noisy
image was generated by adding zero-mean Gaussian noise
of varying standard deviation σn (see Fig. 3). Having an
original image I and a disturbed image Ĩ , we employ the es-
tablished full-reference quality metrics peak-signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) [11] to
quantify the degradation of Ĩ . For evaluation of the reliabil-
ity of the proposed metric, we calculated Spearman’s rank
correlation ρ between the full-reference metrics and the no-
reference quality scores.

1http://www5.cs.fau.de/en/our-team/koehler-thomas



(a) (b) (c) (d)

Figure 3: Region of interest of an image used as ground truth (a), generated blurred image (σb = 3.0) (b), generated noisy
image (σn = 10−2) (c) and generated blurred and noisy image (d).

4.1.1 Assessment of Blur

In our first experiment, we varied the amount of Gaussian
blur from σb = 0.5 to σb = 3.0. For each blur level, 20 dif-
ferent noise levels ranging from σn = 10−4 to σn = 10−2

were simulated. Both parameters were increased logarith-
mically to achieve a uniform sampling of the corresponding
PSNR and SSIM measures. Spearman’s ρ was calculated
for all blur levels between each no-reference quality score
(Q and Qv) and PSNR as well as SSIM. Mean and standard
deviation of ρ averaged over 40 images are plotted in Fig. 4.
If σb becomes large, ρ is decreased on average and has a
higher standard deviation. Even for large σb we achieve cor-
relations higher than 0.8 between the full-reference metrics
and the no-reference metrics. Please note, that correlations
for PSNR and SSIM were equal in our experiment, since
both scores were perfectly correlated.

4.1.2 Assessment of Image Noise

We repeated our first experiment and calculated Spearman’s
ρ for different noise standard deviations σn. Mean and stan-
dard deviation for ρ averaged over 40 images are plotted in
Fig. 5. Here, Spearman’s ρ decreased and had a higher stan-
dard deviation if the noise level σn was increased. However,
for moderate noise levels (σn ≈ 3 · 10−3) we still achieve
correlations higher than 0.6 for Q and Qv .

4.1.3 Overall Correlation

We also analyzed Spearman’s ρ over a whole experiment,
where image noise and blur were varied simultaneously for
40 images as well as 20 noise and blur levels, respectively.
A comparison between Q and Qv is shown in Tab. 1. Here,
we achieve a Spearman correlation of above 0.8 for both
approaches with respect to the full-reference metrics PSNR
and SSIM.

Table 1: Spearman’s ρ for simultaneously varying noise and
blur for metric Q and our proposed metric Qv .

Full-ref. metric ρ(Q) ρ(Qv)

PSNR 0.8227 0.8920
SSIM 0.8412 0.9076

4.2 Real Images

We captured 18 image pairs of the same eye from 18
human subjects using a Canon CR-1 fundus camera with
a field of view of 45◦. For each pair, the first image suf-
fers from decreased sharpness and thus the examination
had to be repeated. Both images share approximately the
same field of view, whereas small shifts were caused by
eye movements between the acquisitions (see Fig. 6). The
proposed metric Qv was compared to the original Q metric
[12] as well as to the CPBD metric [7] and the anisotropy
measure [3]. All metrics were applied to the field of view
whereas the background regions were masked out for qual-
ity assessment. For normalization, we used the m = 104

most significant anisotropic patches to determine Q and Qv

for each image, to neglect the effect of the patch number to
the global quality score.

We considered quality classification implemented as
thresholding of the estimated quality score. ROC curves
for classification based on the different metrics are shown
in Fig.7. For Qv we obtained an area under the ROC curve
of 88.3% (CPBD: 50.9%, Anisotropy: 75.3%, Q: 79.6%).

The metric Qv was also compared pair-wise between a
good acquisition and the corresponding image of poor qual-
ity. Here, the ranking obtained byQv agrees to a human ob-
server for 16 out of 18 image pairs resulting in an agreement
of 88.9% (CPBD: 55.6%, Anisotropy: 94.4%, Q: 83.3%).



(a) (b) (c) (d)

Figure 4: Mean and standard deviation of Spearman’s ρ between no-reference quality assessment and PSNR ((a) and (b)) as
well as SSIM ((c) and (d)) for 40 test images versus varying amount of artificial blur.

(a) (b) (c) (d)

Figure 5: Mean and standard deviation of Spearman’s ρ between no-reference quality assessment and PSNR ((a) and (b)) as
well as SSIM ((c) and (d)) for 40 test images versus varying amount of additive Gaussian noise.

4.3 Discussion

As shown in Fig. 4 for each blur level, our metric Qv

outperforms the original approach with respect to mean and
standard deviation of Spearman’s ρ. This is especially no-
ticeable for high amounts of blur. In contrast to this result,
in the case of varying noise levels shown in Fig. 5, ρ is lower
for both Q and Qv . However, the mean correlation for Qv

is still improved. Spearman’s ρ for simultaneously varying
noise and blur summarized in Tab.1 indicates higher corre-
lations of Qv to the full-reference metrics with significance
level 0.05. Thus, Qv has a higher agreement with both full-
reference metrics over a wide range of noise and blur.

In our experiments using real images, Qv agrees reason-
able with visual inspection of the camera’s operator. This
is also the case for non-uniform degradations such as spa-
tially varying blur (see Fig. 6a). In terms of quality classi-
fication, our approach outperforms state-of-the-art methods
indicated by an improved area under the ROC curve. Please
note, that our method measures blur and noise whereas re-
lated aspects such as illumination homogeneity is not ex-
plicitly taken into account. However, Qv may be combined
with various features to assess different quality criteria.

5 Conclusion

In this paper, we presented an improved no-reference im-
age quality metric Qv to quantify the amount of noise and
blur in retinal fundus images. For reliable quality estima-
tion, we employ the vessel tree detected by the well known
vesselness measure as guidance to determine a global qual-
ity score from local estimates in anisotropic patches. The
proposed metric shows high agreement with the estab-
lished full-reference metrics PSNR and SSIM indicated by
a Spearman rank correlation of 0.89 and 0.91, respectively.
Thus, Qv is able to replace full-reference metrics for qual-
ity assessment in the absence of a gold standard. For real
data, our metric agrees reasonable to visual inspection of a
human operator in terms of image sharpness.

In our future work, we will study the adaption of the pro-
posed method to applications where image sharpness has
to be continuously assessed, such as camera auto-focusing.
As another application we focus on the integration of Qv as
feature into a classification-based quality rating in combina-
tion with different quality features. Our experiments using
real data indicates that this may be feasible and an extensive
evaluation on large image databases is ongoing research.



(a) Qv = 0.0091 (b) Qv = 0.0020

(c) Qv = 0.0122 (d) Qv = 0.0099

Figure 6: Fundus images and corresponding scores Qv: If
the quality of the first acquisition was too low (first row),
the examination was repeated (second row). Images of poor
quality suffer either from local loss of sharpness (a) or are
globally degraded (b).
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[8] M. Niemeijer, M. D. Abràmoff, and B. Van Ginneken. Im-
age structure clustering for image quality verification of
color retina images in diabetic retinopathy screening. Medi-
cal Image Analysis, 10(6):888–898, 2006.

[9] J. Paulus, J. Meier, R. Bock, J. Hornegger, and G. Michel-
son. Automated quality assessment of retinal fundus photos.
International Journal of Computer Assisted Radiology and
Surgery, 5(6):557–564, 2010.

[10] J. J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever,
and B. Van Ginneken. Ridge based vessel segmentation in
color images of the retina. IEEE Transactions on Medical
Imaging, 23:501–509, 2005.

[11] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.
Image quality assessment: from error visibility to struc-
tural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004.

[12] X. Z. X. Zhu and P. Milanfar. Automatic Parameter Selec-
tion for Denoising Algorithms Using a No-Reference Mea-
sure of Image Content. IEEE Transactions on Image Pro-
cessing, 19(12):3116–3132, 2010.


