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Abstract. 3-D endoscopy is an evolving field of research with the in-
tention to improve safety and efficiency of minimally invasive surgeries.
Time-of-Flight (ToF) imaging allows to acquire range data in real-time
and has been engineered into a 3-D endoscope in combination with an
RGB sensor (640×480 px) as a hybrid imaging system, recently. How-
ever, the ToF sensor suffers from a low spatial resolution (64×48 px) and
a poor signal-to-noise ratio. In this paper, we propose a novel multi-frame
super-resolution framework to improve range images in a ToF/RGB
multi-sensor setup. Our approach exploits high-resolution RGB data to
estimate subpixel motion used as a cue for range super-resolution. The
underlying non-parametric motion model based on optical flow makes the
method applicable to endoscopic scenes with arbitrary endoscope move-
ments. The proposed method was evaluated on synthetic and real im-
ages. Our approach improves the peak-signal-to-noise ratio by 1.6 dB and
structural similarity by 0.02 compared to single-sensor super-resolution.

1 Introduction

In minimally invasive procedures, reconstructing 3-D surfaces offers opportuni-
ties for new applications in addition to conventional 2-D endoscopes. This in-
cludes collision detection or augmented reality by registration with preoperative
planning data [1]. In terms of hardware, during the past years, three technological
directions for 3-D endoscopy emerged. (i) Stereoscopy [2] is a passive technique
to acquire surface data. The drawback of stereo vision is the computationally de-
manding correspondence search and the unreliable results in texture-less regions.
(ii) Structured light [3] is established as active acquisition technique. Therefore,
the device requires the light source and a sensor for data acquisition placed at a
certain distance to observe the situs from different perspectives, which is difficult
to accomplish in one single endoscope. (iii) Recently, Time-of-Flight (ToF) tech-
nology was proposed for 3-D endoscopy to obtain range data in real-time (30 Hz)
[4]. In a hybrid 3-D endoscope, the ToF sensor is augmented with an RGB cam-
era to acquire range data fused with complementary color images [5]. Sensor
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fusion provides the surgeon a comprehensive view of a scene and is beneficial for
image analysis [6]. However, today’s ToF sensors suffer from a low spatial reso-
lution and a poor signal-to-noise ratio (SNR) compared to color cameras. Thus,
improvement of range data is essential to obtain reliable surface information.

Multi-frame super-resolution methods recover a high-resolution (HR) image
from multiple low-resolution (LR) frames with known subpixel displacements [7].
Compared to single image upsampling, such techniques also increase the SNR
and preserve edges essential for noisy range data. Recently, super-resolution were
applied in 2-D endoscopy [8]. Approaches for color images were also adopted to
ToF imaging [9]. An application independent challenge is accurate estimation of
subpixel displacements having high impact to super-resolution quality [10]. In
literature, several robust methods were proposed [11,12]. Here, super-resolution
and motion estimation are formulated as joint optimization which is computa-
tionally demanding [12] or restricted to simplified motion models such as rigid
motion [11] being an invalid assumption for the considered application.

In this paper, we propose a novel super-resolution framework for range data
in a multi-sensor setup. Movements of the endoscope held by the surgeon are
used as a cue for super-resolution. Our approach is based on sensor fusion of
complementary RGB and range data, which is to the best of our knowledge not
considered for multi-frame super-resolution yet. Motion is estimated by comput-
ing optical flow on RGB data to obtain accurate displacements for range images.
This novelty of our method enables robust motion estimation without compu-
tationally demanding joint optimization whereas optical flow avoids restrictions
of simplified models essential for realistic laparoscopic scenes. To the best of our
knowledge, this is also the first application of super-resolution in 3-D endoscopy.

2 Methods

We address the problem of upsampling K LR range images of resolution M1×M2

denoted as Y (1) . . .Y (K) and defined on domain Ωr. For convenience, we denote
Y (k) as vector y(k) ∈ RM with M = M1 ·M2 by concatenating all pixels. For
each y(k) there exists a L1 × L2 color image C(k) ≡ c(k) defined on domain Ωc
captured simultaneously. Each y(k) and c(k) is related to a reference frame y(r)

and c(r) by a geometric transformation modeling 3-D displacements.
Our aim is to determine an HR range image x ∈ RN , N = s2 ·M from K LR

frames for the magnification factor s ∈ R. First, we present sensor data fusion
of range and RGB images as key idea in our framework. For super-resolution,
an established maximum a-posteriori (MAP) estimation scheme is employed [7].
Finally, multi-sensor super-resolution is proposed based on the MAP approach
and sensor data fusion for guidance in robust motion estimation.

2.1 Sensor Data Fusion

In hybrid ToF/RGB endoscopy, the incoming light is decomposed by a beam
splitter in two components: near-infrared light for the ToF sensor and the resid-
ual for the RGB sensor (see Fig. 1). Fusion of both modalities can be tackled by
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Fig. 1: 3-D endoscope to acquire range and RGB data simultaneously.

stereo calibration [5] in general. In our work, we exploit the fact that a beam
splitter is used and employ a homographic mapping. For a pair (ũr, ũc) of cor-
responding range and RGB points in homogeneous coordinates, our mapping
is given by ũc ∼= Hcrũr. The homography Hcr ∈ R3×3 describes pixel-wise
alignment and is estimated using a checkerboard calibration pattern with self-
encoded markers and least-square estimation as proposed in [5]. Sensor fusion is
performed by transforming each c(k) into the coordinate system of y(k).

2.2 Maximum A-Posteriori Framework

The basic MAP framework [7] is based on a generative image model for math-
ematical modeling of image acquisition. Super-resolution is implemented by en-
ergy minimization based on this model to recover an HR image.
Generative Image Model. The generative image model states the relation
between each LR frame y(k) and the HR image x to be recovered according to:

y(k) = γ(k)m W (k)x+ γ(k)a 1 + ε(k). (1)

The system matrix W (k) models geometric displacements between x and y(k) as
well as blur induced by the camera point spread function (PSF) and downsam-
pling. To take out-of-plane movements and thus diverse range values in succes-

sive frames into account, we introduce γ
(k)
m and γ

(k)
a , where 1 ∈ RM denotes the

all-one vector. Spatially invariant noise is modeled by ε(k) ∈ RM . For a space
invariant Gaussian PSF of width σ, the matrix elements are obtained by:

Wmn = exp
(
− ||vn − u′m||

2
2 / 2σ2

)
, (2)

where vn ∈ R2 are the coordinates of the nth pixel in x and u′m ∈ R2 are the
coordinates of the mth pixel in y(k) mapped to the HR grid [11]. For efficient
memory management, we truncate Wmn for ||vn − u′m||2 > 3σ. Please see our
algorithm introduced in section 2.3 for details on the parametrization of this
model for range super-resolution proposed in this paper.
MAP Estimator. The objective function to obtain an MAP estimate x̂ for the
HR image x requires a data term and a regularizer weighted by λ > 0:

x̂ = arg min
x

(
K∑
k=1

∣∣∣∣∣∣y(k) − γ(k)m W (k)x− γ(k)a 1
∣∣∣∣∣∣2
2

+ λ

N∑
n=1

hτ ((Dx)n)

)
. (3)
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Algorithm 1 Multi-Sensor Super-Resolution (MSR)

Input: K range images y(k), RGB data c(k), reference frame r = dK/2e
Output: Super-resolved range image x̂
for k = 1 . . .K do

c(k) := Fuse(y(k), c(k)) . see Sect. 2.1
wc(uc) := OpticalFlow(c(t), c(r))

wr(ur) := ∆(
(
l1 ·wc,1(uc) l2 ·wc,2(uc)

)>
) . see Eq. (4)

W (k) := ComposeSystemMatrix(wr(ur)) . see Eq. (2)

γ
(k)
m , γ

(k)
a := MSAC(y(r), Warp(y(t), wr(ur)))

x̂0 := BicubicUpsampling(y(r)) . initial guess

x̂ := SCG(x̂0, {y(k)}, {W (k)}, {γ(k)
m , γ

(k)
a }) . see Eq. (3)

where D is a high-pass filter and hτ (z) = τ2(
√

1 + (z/τ)2−1) is the pseudo Hu-
ber loss function used for regularization. For D we choose a Laplacian to enforce
smoothness for x, which guides the estimation to reliable solutions. However,
since the regularizer based on the Huber function penalizes outlier less strictly
than a Tikhonov regularization using the L2 norm, edges are well preserved.

2.3 Multi-Sensor Super-Resolution

In our framework, each c(k) is aligned to y(k) after sensor fusion. Motion estima-
tion is performed on RGB images employing optical flow and the displacement
fields are projected to the range image domain to compose all system matri-

ces W (k). The unknown γ
(k)
m and γ

(k)
a are determined using robust parameter

estimation. We obtain x̂ by minimizing (3) using Scaled Conjugate Gradients
(SCG) optimization [13] with a bicubic upsampled version of reference frame y(r)

coincident with x̂ as initial guess. See Algorithm 1 for details of our method.

Optical Flow Estimation. For motion estimation, we determine displace-
ment vector fields wc : Ωc 7→ R2, wc(uc) = (wc,1(uc) wc,2(uc))

> for RGB
images between a reference frame c(r) and a template c(t) using optical flow.
This transforms each point uc from c(t) to its position u′c in c(r) according to
u′c = uc + wc(uc). The central frame c(r) with r = dK/2e is chosen as refer-
ence to minimize the expected displacements between c(r) and c(t) for robust
flow estimation. Optical flow is computed in a course-to-fine manner using the
method proposed by Liu [14]. Once a displacement field wc is estimated, it is
transformed yielding the range displacement field wr : Ωr 7→ R2:

wr(ur) = ∆
(
l1 ·wc,1(uc) l2 ·wc,2(uc)

)>
, (4)

for the resampling operator ∆ : R2 7→ R2. We implement ∆ as the median of
corresponding displacement vectors wc in both coordinate directions. To obtain
wr in the dimension of range data, rescaling by li, 0 < li ≤ 1 is required, where
li denotes the ratio of resolutions between y(k) and c(k). Then wr is used to
compose the system matrices for each frame according to Eq. 2.
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Range Diversity Correction. If we allow general 3-D movements of the en-
doscope such as out-of-plane translation, this results in an offset for range values
in successive frames. Neglecting this effect as implicitly done in related super-
resolution approaches [9] leads to biased reconstructions. This problem can be
mathematically compared to the fusion of intensity images differing photometri-
cally. Therefore, we adopt a photometric registration scheme to range correction.
First, two frames to be corrected are assumed to be geometrically aligned by
warping them according to the precomputed optical flow displacement field. Let
y be a range value in reference frame y(r). The corresponding range value y′ in
template frame y(t) is given according to the affine model y′ = γm · y + γa.

We utilize an M-estimator sample consensus (MSAC) for robust estimation
of γm and γa as suggested by Capel [15] for photometric registration. These

parameters are plugged into the generative image model (1) for γ
(k)
m and γ

(k)
a .

For the reference y(r) we set γ
(r)
m = 1 and γ

(r)
a = 0 to obtain a super-resolved

image having the same measurement range as the reference frame.

3 Experiments and Results

We compared multi-sensor super-resolution (MSR) to the conventional single-
sensor approach (SSR) where optical flow is estimated on range data. The PSF
width was set to σ = 0.5 and for regularization using Huber function we set
λ = 70 and τ = 5 · 10−3 determined empirically using a grid search. SCG was
used with termination tolerance 10−3 for pixels of x and the objective func-
tion value. The maximum iteration number was set to 50. Super-resolution was
applied with magnification s = 4 in a sliding window scheme over time using
successive K = 31 frames (30 template and one reference frame) per window.
This improves the robustness and our method is able to recover from failures
caused e. g. by misregistration of single frames in highly dynamic scenes. Sup-
plementary material for our experiments is available on our web page.1

Synthetic Data. For quantitative assessment, six synthetic data sets based on
ground truth data were generated. We used a ToF/RGB simulator to obtain
RGB and range data from a model of a laparoscopic scene designed in collabo-
ration with a medical expert (see Fig 2). The resolutions for RGB (640×480 px)
and range images (64×48 px) are equal to those of the hybrid 3-D endoscope
used in experiments for real data. Each LR frame is a downsampled version of
the ground truth and disturbed by a Gaussian PSF (σb = 0.5) as well as additive,
zero-mean, Gaussian noise (σn = 0.05). Random motion of the camera was used
to simulate movements of the endoscope held by a surgeon. Small displacements
of endoscopic tools and organs simulated minimally invasive surgery. As qual-
ity metrics we employed the peak-signal-to-noise ratio (PSNR) and structural
similarity (SSIM). For comparison, we also evaluated bicubic interpolation as
a fast and simple upsampling technique. MSR was evaluated with and without
range correction to justify our correction scheme. See Tab. 1 for PSNR and SSIM
measures averaged over ten subsequent sequences in sliding window processing.

1 http://www5.cs.fau.de/research/data/

http://www5.cs.fau.de/research/data/
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(a) RGB image (b) LR range (c) SSR (d) MSR (e) Ground truth

Fig. 2: Synthetic sequences S4 and S5: RGB data (a), LR range data (b), results
for SSR (c) and the proposed MSR (d) compared to ground truth data (e).

Table 1: PSNR in dB (SSIM in brackets) for synthetic data. Each result is av-
eraged over 10 sub-sequences per set. We compared bicubic upsampling (second
column) to SSR (third column) and our MSR approach with the proposed range
correction scheme (fourth column) and without range correction (last column).

Sequence Interpolation Range corr. No corr.
(bicubic) SSR MSR MSR

S1 24.28 (0.57) 28.16 (0.87) 29.85 (0.89) 29.83 (0.89)

S2 25.23 (0.59) 30.78 (0.91) 31.13 (0.92) 30.91 (0.91)

S3 25.83 (0.60) 31.89 (0.92) 32.72 (0.93) 31.93 (0.93)

S4 25.58 (0.59) 29.06 (0.89) 31.17 (0.91) 29.19 (0.91)

S5 26.58 (0.59) 30.36 (0.91) 32.77 (0.93) 31.35 (0.93)

S6 26.26 (0.57) 28.43 (0.89) 30.66 (0.92) 30.28 (0.92)

Mean 25.63 (0.58) 29.78 (0.90) 31.38 (0.92) 30.58 (0.91)

Real Data. For qualitative evaluation, we acquired real data using a hybrid
3-D endoscope prototype manufactured by Richard Wolf GmbH, Knittlingen,
Germany. Therefore, a liver phantom and two surgical tools were measured with
a frame rate of 30 fps. Range and RGB images were captured and the endoscope
was slightly moved during acquisition. Raw data compared to super-resolved
data is shown in Fig. 3. See Fig. 4 for a 3-D mesh created for one sequence.

4 Discussion

For synthetic images, super-resolution yields more reliable 3-D surfaces com-
pared to bicubic interpolation, especially due to denoising implicitly performed
in MAP estimation (see Tab. 1). The proposed MSR approach clearly outper-
forms SSR indicated by increased mean PSNR (SSIM) of 1.6 dB (0.02). We could



Multi-Sensor Super-Resolution for Hybrid 3-D Endoscopy 7

(a) RGB (b) LR range (c) SSR (d) MSR

Fig. 3: Liver phantom acquired by a hybrid 3-D endoscope: RGB images (a), LR
range data (b) and the results of SSR (c) as well as the proposed MSR (d).

(a) RGB (b) SSR 3-D mesh (c) MSR 3-D mesh

Fig. 4: RGB image (a) and 3-D meshes for SSR (b) and the proposed MSR (c).

also verify improved reconstruction of depth discontinuities by visual inspection,
e. g. for surgical tools (see Fig. 2). For sequences containing large out-of-plane
movements (S4 and S5), we observed a particulary biased reconstruction if no
range correction is applied indicated by decreased PSNR. For real data, the
proposed MSR approach recovers the liver surface and endoscopic tools barley
visible in raw data as well as in the result of SSR (see Fig. 3).

In our experiments, super-resolution was performed off-line to obtain one
single HR image from multiple LR frames. Please note, that this limitation may
be avoided by dynamic estimation schemes [10] to enable an on-line implemen-
tation, which is however beyond the scope of this paper.

5 Conclusions

In this paper, a multi-sensor framework for super-resolution in hybrid 3-D en-
doscopy has been introduced. Range super-resolution is guided by RGB images
acquired simultaneously. Our method is a general-purpose technique to overcome
low spatial resolutions and poor SNR of today’s ToF sensors. For applications
such as segmentation or classification, super-resolution holds great potential
and may help to make the breakthrough of ToF imaging in minimally inva-
sive surgery. Beyond ToF/RGB endoscopy, our method may also be applicable
in related hybrid range imaging systems, which is part of our future work.
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