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Abstract—Surface Electromyography (EMG) is an 
important tool for medical diagnosis, 
rehabilitation and sports biomechanics. While it is 
usually used to perform recording of data under 
laboratory conditions, wearable sensors have 
enabled also mobile recording of dynamic 
movements. This has led to feedback applications 
which require real-time processing of the EMG 
data on mobile devices. This paper presents our 
mobile EMG analysis framework, which consists 
of a wearable recording device, a wireless mobile 
sensor framework and a real-time biosignal 
analysis library. Additionally we present two 
example applications from sport and medicine. 
This includes real-time classification of fatigue 
during running and an application for 
classification between patients with Parkinson’s 
disease and healthy controls. 
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I. INTRODUCTION 
Surface electromyography (EMG) is an important 

tool for medical diagnosis, rehabilitation, sport 
applications and biomechanics [1]. It has been used for 
the quantification of tremor [2, 3], the diagnosis of 
neuromuscular disorders [4, 5, 6] and the assessment 
of neuromuscular coordination [7], training state [8] or 
fatigue [9] during sports movements.  

Measurement techniques for EMG vary from 
invasive needle based systems to easy to use systems 
using pre-gelled surface electrodes [1]. Recently, there 
is even a trend towards gel-free electrodes or even no-
contact capacitive measurement systems, which allow 
easier application and reduce artifacts during longer 
wear. In general, with the introduction of wearable 
body sensor networks [10], measurement systems have 
become smaller and smaller and new applications have 
been introduced [25]. This includes feedback 
applications during sports and various applications in 
home care, rehabilitation and other areas of medicine 
[11, 12]. 

While a high quality mobile measurement of the 
EMG signal is an important step towards feedback 
applications, sophisticated analysis methods must also 
be available to extract the required information from 
the EMG signal. Standard methods in this context 
include simple root-mean-square analysis to detect 
muscular events or the integration of the signal to 
estimate total muscle activation during a certain 
interval [1]. Usually also the frequency content of the 
EMG signal is analyzed using short time Fourier 
analysis, as this can provide hints towards muscular 
diseases or muscle fatigue. While these techniques can 
provide basic information on the current activation 
state of a muscle, they do not provide advanced 
information on neuromuscular coordination and they 
cannot reflect small changes in the muscle activation 
pattern due to central fatigue or neurological disorders. 
More advanced analysis methods like the Wavelet 
transformation [13] or pattern recognition and 
classification [14, 15] have been proposed to 
overcome this limitation. However, most 
implementations of these methods so far are limited to 
post-hoc analysis, as they are not able to run in real-
time on mobile devices. To use these methods for 
feedback and wearable applications, a mobile 
recording and analysis framework for EMG signals 
would be required. 

The purpose of this paper is to present a mobile 
analysis framework and Android demonstrator for 
real-time EMG processing. Additionally we present 
two example applications for this framework, which 
includes a real-time classification of fatigue during 
running and a study using EMG for the detection of 
Parkinson's disease during walking. 

II. METHODS 
A working system for mobile analysis of EMG 

signals (or any other biosignal) consists of three major 
components: the wearable sensor nodes which acquire 
the raw data, a mobile device receiving and processing 
the data and the actual analysis algorithms running on 
the device [16]. In the following we give a few 
examples for wearable EMG recording devices and 
introduce our mobile sensor framework to connect 
wireless sensors with an Android mobile phone. 



Patrick Kugler, Samuel Reinfelder, Johannes Schlachetzki, Bjoern M. Eskofier 
	  

Finally we present a mobile analysis library for 
biosignals, which can be used to analyse a variety of 
signals either on a PC or an Android mobile device. 

A. Wearable EMG Devices 
Recently many different devices have been 

appeared on the market which support mobile 
recording of the surface EMG. In general, there is a 
trend towards wireless and cable-free systems, which 
allow greater freedom and range of motion. Combined 
with gel-free electrodes, these systems allow recording 
of the EMG during ambulatory procedures and with 
short setup-time. Examples for available small systems 
are the Delsys Trigno wireless EMG system or the 
SHIMMER wireless sensor platform [17]. Both 
systems are very small, non-hindering and can 
transmit the data wirelessly to a mobile device. There 
is also a new trend for these devices to be compatible 
with smartphones and tablet computers using 
Bluetooth technology. Recently even completely new 
input devices like the MYO [25] have been 
introduced, which record and directly process the 
EMG signal on the device before using it to control 
flying drone or the cursor on the screen. 

B. Mobile Sensor Framework 

After data is collected using a sensor node, it must 
be transmitted to a device for processing. To support 
rapid developing of example applications, we recently 
proposed a mobile sensor framework [16] shown in 
Figure 1. The main focus of the framework is the 
Android platform, which is a widely supported open 
platform running on many phones. The framework 
allows easy access to data from various mobile 
sensors, e.g. ECG, EMG or kinematics.  Additionally 
it allows playback of pre-recorded data stored on the 
device, which is especially helpful for development 
and evaluation of algorithms. 

 

Figure 1.  The Mobile Sensor Framework as implemented for the 
Android platform. Data from various wireless sensors can be 

received and processed in real-time. 

C. Real-time Analysis Library for Biosignals 
While the mobile sensor framework collects and 

provides the sensor data, the main focus of the mobile 
analysis are the processing algorithms. To simplify the 
development of real-time applications we have created 
various real-time implementation of standard 
algorithms  [18, 19], which have been combined in a 
Java library. It includes algorithms for pre-processing 
(high and low-pass filter), event detection (Pan-
Tompkins), feature extraction (FFT, Wavelets, 
statistics) and classification (Linear Discriminant 

Analysis, Support Vector Machine). Special 
consideration was given the non-linearly scaled 
Wavelet transformation [13], as this algorithm has 
been used in various EMG analysis studies. A full 
real-time implementation of this algorithm was created 
and tested [18]. Since all algorithms were 
implemented in Java, the library allows both post-hoc 
analysis of collected data and real-time processing. As 
the Java library is platform independent it can be used 
on a standard PC running any operating system as well 
as on various mobile devices like Android phones. 

D. Android Demonstrator 
To demonstrate the possibilities of the real-time 

analysis library and the mobile sensor framework an 
Android demonstrator has been created which contains 
various example applications [16, 18, 19]. Figure 2 
shows the interface of the Android demonstrator 
performing a real-time Wavelet transformation of the 
incoming EMG signal. 

 

Figure 2.  The Android demonstrator performing a real-time 
Wavelet transformation of an EMG signal. The app displays the 

incoming raw signal (top), the result of the RMS analysis (middle) 
and the resulting Wavelet intensity pattern (bottom). 

III. APPLICATION EXAMPLES 

A. Detection of Fatigue During Running 
1) Motivation 

Recreational running is one of the most popular 
sports in the world. However, many recreational 
runners are inexperienced and overestimate their 
abilities. Especially muscle fatigue during prolonged 
running can cause changes in muscle properties and 
control strategies, which increases injury risk. While 
indicators of muscle fatigue may not yet be apparent to 
the runner himself, they are already present in the 
muscular activation patterns and can be detected using 
surface EMG [9]. Using data and methods from a 
previous study [9], we created an Android 
demonstrator which enables real-time detection of 
muscle fatigue during running. 
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2) Methods 
During a previous study [9], twelve female 

recreational runners performed an endurance run of 
one hour at approximately 95% of their maximum 
aerobic speed. EMG signals of the tibialis anterior 
(TA), gastrocnemius medialis (GM), vastus lateralis 
(VL) and semitendinosus (ST) were recorded using a 
wearable EMG recording device. Data was collected at 
2 minute intervals during the whole run and labeled as 
non-fatigued (15-25 minutes into the run) or fatigued 
(45-55 minutes into the run). For each interval a period 
of ±300 ms around heel strike was segmented. Using a 
standard PC, the EMG data were transformed into 
intensity patterns using the non-linearly scaled wavelet 
transform [13]. The transformed patterns were used to 
train a Support Vector Machine classifier to 
distinguish between non-fatigued and fatigued state. A 
real-time version of the classifier was then 
implemented in JAVA using the real-time biosignal 
analysis library and integrated into an Android 
demonstrator [18]. The mobile sensor framework 
enabled the demonstrator to use either live data from a 
Shimmer sensor node or pre-recorded EMG signals for 
evaluation. The final application performed a Wavelet 
transformation of the incoming signal, displayed the 
result on the screen and classified the pattern into 
fatigued or non-fatigued state using the previously 
trained classifier. 

3) Results 
Both the transformation and the fatigue 

classification were able to run faster than real-time on 
all tested devices. The classifier on the mobile device 
achieved the same classification rate of up to 94.4 % 
when using the same data as in the previous analysis 
performed on a PC in in [9]. Table I shows detailed 
results of the runtime evaluation of the Wavelet 
transformation. The additional runtime of the classifier 
was negligible. Table II shows a detailed analysis of 
the classification rates. 

TABLE I.  RUNTIME OF THE MOBILE WAVELET ANALYSIS 

Device (CPU cores) 1000 Hz 500 Hz 

Samsung Galaxy Ace (1) 157 ms/s 57 ms/s 

Samsung Galaxy Tab 10.1 (2) 6.9 ms/s 0.6 ms/s 

Asus Transformer Prime (4) 7.5 ms/s 0.6 ms/s 
(Results are shown in ms runtime per second of raw signal) 

TABLE II.  CLASSIFICATION OF NON-FATIGUED VS FATIGUED 

Value / Muscle TA GM VL ST 

Total patterns 225 266 248 166 

Non-Fatigued patterns 126 154 148 110 

Fatigued patterns 99 112 100 56 

Avg. classification  89.2 % 88.3 % 84.6 % 94.0 % 

Max. classification  93.3 % 91.4 % 89.9 % 94.4 % 

B. Classification of Parkinson’s Disease 
1) Motivation 

Diagnosis and severity staging of Parkinson’s 
Disease (PD) is usually performed by subjective 
clinical examination of major motor symptoms [20]. 
However, these examinations are rater dependent and 
focus only on the symptoms and ignore their 
neuromuscular cause. As previous studies have shown, 
Parkinson can cause specific changes in myoelectric 
activation during gait that can be resolved using 
surface EMG [5]. Using data collected in this study [5] 
and our analysis library, we created an analysis 
pipeline to classify the EMG signals. 

2) Methods 
While data collection is ongoing, the data of 10 

subjects have been used for this analysis. This 
included 5 subjects with Parkinson’s Disease and 5 
healthy controls. All subjects performed a 10 meter 
walk exercise, while EMG data of the tibialis anterior 
(TA), gastrocnemius medialis (GM) and 
gastrocnemius lateralis (GL) was collected. Data was 
automatically split in single steps using data from an 
additional three-axis accelerometer mounted on each 
heel. For each step a period of ±300 ms around heel 
strike was segmented. The analysis library was used to 
compute various statistical features (variance, 
skewness, kurtosis, RMS energy) and frequency 
features (dominant frequency, mean frequency, 
median frequency, total power). Additionally each step 
was transformed using the Wavelet transformation and 
an average step pattern was computed for each subject. 
All features and the Wavelet pattern were then used to 
train a Support Vector Machine classifier to 
distinguish between PD and healthy controls. Finally a 
real-time version of the trained classifier was 
implemented in the Android demonstrator. 

3) Results 
Table III shows the result from the classification 

experiments. Results of the real-time Android version 
were identical to the PC version when tested on the 
same data. As has been shown before in [5], Kurtosis 
of the TA was the best feature with a significant 
difference (p=0.013), see Figure 3. 

TABLE III.  CLASSIFICATION RESULTS FOR PD VS. CONTROL 

Muscle Sensitivity Specificity Best Feature 
TA 1.0 0.8 Kurtosis 
GM 0.8 0.8 Mean Freq. 
GL 1.0 0.8 Mean Freq. 

 

Figure 3.  The best features when classifying PD vs control. 
The difference in Kurtosis was significant (p=0.013). 
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IV. CONCLUSION AND OUTLOOK 
In this paper we presented a mobile analysis 

framework for real-time EMG analysis. We presented 
an analysis library for biosignals and showed how it 
can be combined with our mobile sensor framework to 
create an Android demonstrator. Additionally we 
presented two example applications. The first, a real-
time classification of fatigue during running, showed 
how the library can be used to create real-time 
feedback. Combined with previous approaches for 
fatigue classification [23, 24] and special mobile 
devices [25] this could lead to powerful fatigue 
detectors. The second example showed that the 
framework can also be used in the classical analysis of 
EMG data from Parkinson patients. Combined with 
results using motion sensors [21, 22] this could 
improve diagnosis and disease staging. 

In the future powerful devices and analysis 
algorithms will allow mobile recording and analysis of 
the surface EMG signal in a variety of everyday 
situations. This will lead to the use of the EMG signal 
as an input device as in [25], allow feedback training 
applications or enable systems that can provide early 
detection of neuromuscular diseases in a home 
environment. 
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