
Shimmer, Cooja and Contiki: A New Toolset for the
Simulation of On-node Signal Processing Algorithms

Patrick Kugler, Philipp Nordhus and Bjoern Eskofier
Digital Sports Group, Pattern Recognition Lab, Department of Computer Science

Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
Email: patrick.kugler@cs.fau.de

Abstract—Wearable sensors are widely used for data collection

in many applications. Ssensor nodes have also been applied for

real-time applications, e.g. for ECG analysis or activity and fall

detection. Processing of the sensor data is either done on an

external device or on the node itself. While on-node processing

reduces data rate and increases battery life, development and

testing can be time-consuming. To allow faster implementation

of such algorithms, we propose a simulation framework for

the Shimmer platform using the Cooja simulator, MSPSim

and the Contiki operating system. We provide the simulator

and example applications compatible with the ShimmerConnect

protocol, allowing streaming of raw and pre-processed sensor

data to MATLAB, LabView and Android. Additionally, a simple

activity and fall detection algorithm was implemented on the

sensor node and evaluated using both the simulator and real

hardware. In the future this will allow rapid development and

testing of on-node pre-processing algorithms.

I. INTRODUCTION

Wearable sensors usually integrate physiological, biochem-
ical or inertial sensors with a low-power microcontroller and a
wireless transmitter [1]. Body Sensor Networks (BSNs) have
been widely used for monitoring and medical applications [2],
[3]. Recently, such wearable sensors have also been proposed
for real-time applications [4]. Examples include biosignal
processing [5], [6], fall detection for the elderly [7] as well
as sport applications [8], [9], [10]. All these purposes require
that the data is processed online with as little delay as possible.

In order to implement real-time solutions, one possible
approach is to stream the raw sensor values from the wireless
sensor nodes to a central processing unit, e.g. a computer or a
smartphone [6], [3]. In this case no processing is done on the
sensor node and all data is streamed to the host for processing
(off-node processing). This is often easy to implement, as
the host is simple to program and more powerful than the
microcontroller of the sensor node. However, this can have a
serious impact on the battery life, as the sensor nodes must
constantly transmit high volumes of raw sensor data over a
wireless link [4].

A different approach is to perform the processing directly
on the wireless sensor node (on-node processing) to save
battery life [11]. These techniques have been successfully ap-
plied to ECG processing [5], [12] and activity recognition [7].
Methods range from filtering and downsampling operations
[13] to implementing the entire classification algorithm on the
sensor node [7]. As only the processing results are transmitted,
this approach can significantly increase battery life. However,
on-node processing can be difficult to realize, as it requires

implementing and testing the processing algorithms on the
embedded microcontroller.

To simplify on-node software development, a series of
software tools exists for many widely used platforms such as
Shimmer, MikaZ or Telos [1]. Embedded operating systems
like TinyOS [14] and Contiki [15] and their corresponding sim-
ulation tools TOSSIM [16] and Cooja [17] can help with the
rapid development of applications. However, most operating
systems and simulation tools focus on network simulation and
do not support Bluetooth connections or streaming of sensor
data. Hence, existing simulation tools do not address the need
of the BSN community for simulation tools for the automated
testing of on-node pre-processing algorithms.

The purpose of this paper was to provide a complete
simulation framework for faster and easier development and
testing of on-node pre-processing algorithms for BSN appli-
cations (Fig. 1). The main contributions of this paper are as
follows. Firstly, the Contiki operating system was ported to
the widely used Shimmer hardware platform. Secondly, the
simulators Cooja and MSPSim were extended to support Blue-
tooth connections and the streaming of previously collected
sensor data. Thirdly, we developed three different Contiki
example applications for Shimmer and evaluated them both
in the simulator and on real hardware.

Fig. 1. The workflow for developing on-node pre-processing algorithms
using Shimmer, Cooja and Contiki. Data from the wearable Shimmer sensors
is collected and stored in a file (left). Using Cooja, this data is then replayed to
a simulated Shimmer node running the Contiki-based pre-processing firmware.
To evaluate if the firmware is working as intended, any compatible host
application can connect to the node using a simulated Bluetooth connection.



II. BACKGROUND

A. Shimmer Wireless Sensor Platform

Shimmer [18] is a commercially available wireless sensor
platform, which supports a wide variety of physiological and
kinematic sensors. It was chosen, as it is easily available,
commercially supported and has been used in many BSN
applications [1]. The current Shimmer 2R nodes contain a
low power Texas Instruments MSP430F1611 microcontroller
with 8-channel 12-bit ADC, a lithium-ion battery and a Roving
Networks RN-42 Bluetooth module. Each node also contains
a Maxim Integrated DS2411 ID-chip, a Texas Instruments
CC2420 IEEE 802.15.04 wireless module and a Freescale
Semiconductors MMA7260Q 3-axis accelerometer with 6g
range. Additional extension boards are available for the record-
ing of GPS positions, kinematics and physiological signals.

To help developers, the Shimmer community provides
simple firmware examples for logging data on SD card and
for streaming data over Bluetooth. For data streaming the
custom ShimmerConnect protocol is employed, for which host
applications are provided as well. This includes support for
LabView, MATLAB and Android phones, which allows easy
implementation of applications using off-node processing.

For on-node processing, Shimmer supports applications
written for TinyOS [14], an embedded operating system pro-
viding all necessary hardware drivers. Applications for TinyOS
are written in nesC [19], a new component based programming
language derived from C. Due to this requirement, extending
or writing new applications is often quite challenging.

For testing without hardware, TinyOS provides a simulator
called TOSSIM [16]. However, it does not support all features
of the Shimmer platform necessary for BSN applications. For
example, it is not easily possible to simulate sensor data
or to establish Bluetooth connections, hence most on-node
processing applications can not be simulated and tested without
changing the code.

B. Contiki Operating System

The Contiki operating system (ContikiOS) is an embedded
operating system focused on sensor networks [15]. It is written
in C and designed for small wireless sensor nodes with limited
processing power and memory. Primary target platforms are
Texas Instruments MSP430 and Atmel AVR, but the operating
system has been extended to other platforms as well. Applica-
tions are written in plain C as a series of lightweight threads
and event callbacks. By default, the scheduler provides only
cooperative multitasking, however a preemptive scheduler is
available as an external library. As Contiki is a network centric
operating system, it provides a full stack for IPv4 and IPv6
and many example applications for web servers and clients.

Energy consumption is an important parameter for sensor
networks, hence Contiki supports energy efficient low-power
modes for the supported microcontrollers. Additionally the
operating system directly provides a number of energy estima-
tion routines [20]. These allow the user to measure run-time
spent in each of several predefined power levels (full-power
mode, low-power mode, communication receive, communi-
cation transmit, etc.), which can be used to estimate energy
consumption during execution of the application program.

C. Cooja Network Simulator

Besides the operating system ContikiOS, the Contiki
project also provides the network simulator Cooja [17] to speed
up development and testing of Contiki applications. Written in
Java, Cooja allows simulation of a single wireless sensor node
or a whole network of such nodes on a standard computer
without the sensor node hardware. Application execution,
network communication and peripherals are simulated in real-
time for as many nodes as needed. The user can interact
with the nodes using a graphical user interface (GUI), which
allows placement of sensor nodes, modifying sensor-inputs
and disturbing network communication by increasing the noise
level. Cooja supports different levels of simulation (network
level, code level and instruction-set level). Simulation on the
instruction-set level executes the compiled firmware binaries
using an external microcontroller simulator, e.g. MSPSim [21]
for MSP430 and AVRORA for the AVR platform. This allows
evaluation of the accuracy and run-time of the implemented
algorithms on a very detailed level. When using ContikiOS,
Cooja can additionally provide estimates on the energy con-
sumption of the running applications.

III. METHODS

A. Extension of ContikiOS

ContikiOS supports different hardware configurations by
providing the Platform abstraction. Each platform is a combi-
nation of a microcontroller and specifically wired sensors or
wireless modules. To add support for the Shimmer platform,
we extended the existing sky platform, as many components
including the MSP430 microcontroller were similar. Using
the TinyOS implementation as a reference, the new Shimmer
platform was then modified with the correct I/O-ports and
clock configuration. Driver support for all Shimmer-specific
peripherals was added. This included the CC2540 wireless
module, the RN-42 Bluetooth module, the ID-chip, the on-
board accelerometer and the serial connection to the dock.
Power saving and multiplexing of the serial bus between
the different peripherals was implemented as in the TinyOS
version. Support for all biophysical extension boards was
provided by the ADC implementation, while support for the
gyroscope of the kinematics extension board was added. The
GPS extension board was made available as a serial interface.

B. Extension of MSPSim

To allow instruction-set level simulation of the Shimmer
node, the platform had to be added to both MSPSim and
Cooja. In MSPSim, each platform is represented by a class
derived from Node. To represent the hardware on the Shimmer
node, a new class ShimmerNode was created. In this class,
the microcontroller type and its peripherals were configured.
Support was added for all hardware described in section III-A.

Additionally to the new ShimmerNode class, MSPSim
was extended to allow simulation of Bluetooth connections.
This was realized by mapping the communication over the
Serial Port Profile (SPP) of the RN-42 Bluetooth module to
a serial interface class. This provided a simple interface to
communicate with the simulated sensor node. The same was
done with the serial interface to the Shimmer dock, which is
commonly used for debugging.



To allow simulation of sensor inputs, both the accelerome-
ter and the gyroscope were represented as new types of Chip in
MSPSim. These classes allowed setting of virtual sensor values
in the simulator. Additionally, a helper class called SensorInput
was created, which read a text file containing sensor values
with timestamps and allowed automatic replay of the sensor
signals to the simulated Shimmer node. The timestamps in the
file were needed to synchronize the sampling rate of the signal
to the simulation time in MSPSim. This was realized using a
callback function, which got called after the required amount
of simulated time had passed. The callback function changed
the sensor input to the current value in the file, computed
the time offset to the next timestamp in the file and set the
callback-timer accordingly.

C. Extension of Cooja

In Cooja, each simulated sensor node has a specific Mote-
type, which represents the user interface to the node. After the
ShimmerNode class was available in MSPSim, a corresponding
ShimmerMote class was added to Cooja. It provided a basic
interface to the LEDs and buttons on the Shimmer node and
represented the node on the screen (Fig. 2, top). Additional
interface elements were added to allow manual setting of the
simulated sensor inputs (Fig. 2, middle), and to allow selection
of a file containing sensor signals (Fig. 2, bottom).

By default, the output of the serial dock interface and
the Bluetooth SPP connection are connected with the Cooja
console for debugging. Using the Cooja mote tool SerialSock-
etServer the Bluetooth connection of each simulated mote can
be mapped to a dedicated TCP port. This port can then be
mapped to a virtual SPP port, emulating a real sensor node

Fig. 2. Graphical controls for the simulated Shimmer node in the network
simulator Cooja, including LEDs (top), manual accelerometer controls (mid-
dle) and controls to automatically read sensor data from a file (bottom).

connected via Bluetooth. Any host application can use this
port to communicate with the simulated node in the same way
as with a real node.

D. Example Applications

In order to test the simulation framework and to provide
a complete Contiki-based software solution for the Shimmer
platform, three different example applications were created. All
applications were implemented in plain C using ContikiOS.

1) Basic Streaming: The first example application was
intended as a full emulation of the original TinyOS based Boil-
erPlate firmware for Shimmer. This BasicStreaming firmware
allowed streaming of sensor data over a Bluetooth connection,
as it would be done for off-node processing. The employed
ShimmerConnect protocol allowed different commands to be
sent from the host application to the sensor node. Commands
were available to toggle the LED on the node, to start/stop
streaming and to configure the streaming parameters, i.e. to
select the desired sensors, the sampling rate and the required
sensitivity range. The Contiki implementation supported all
sensors that are used in the original Shimmer firmware, includ-
ing accelerometer, gyroscope, magnetometer and biophysical
extension boards. As the ShimmerConnect protocol was used,
the Contiki based firmware was directly compatible with all
host applications using this protocol, including ShimmerCon-
nect itself and the Shimmer instrument drivers for LabView,
MATLAB and Android.

2) Filtered Downsampling: The second example appli-
cation FilteredDownsampling was built to provide a simple
example on how on-node pre-processing can be used to
reduce transmission over the wireless link. This application
was based on BasicStreaming and employed exactly the same
protocol and behavior. However, this application activated a
pre-processing algorithm after the toggle-LED command was
sent to the node. When this algorithm was active, instead of
returning the raw sensor values, the values were first processed
using a 4-point moving average filter, followed by a decimation
(down-sampling) by a factor of 4. This processing effectively
reduced the transmitted data rate by a factor of 4, while
possible aliasing artifacts were reduced using the simple low-
pass filter.

3) Activity and Fall Detection: The third example was a
separate application implementing a complete classification
system to distinguish between rest and activity and to detect
falls [7]. The ActivityFallDetection application sampled the 3D
accelerometer at 100 Hz and applied a 3-point median filter to
remove acceleration spikes. Then a high-pass filter with a cut-
off frequency of 0.25 Hz was used to remove the gravitational
component from the accelerometer signal. According to [7],
the resulting signal was split into 1-second intervals and used
to compute the sum over all absolute accelerometer values
in this interval. Using a predefined threshold, the 1-second
interval was then classified into either low or high activity.
Additionally the euclidian norm of the acceleration vector was
computed for each sample. A fall is detected if this value was
over a separate threshold for at least two consecutive samples
[7]. If a Bluetooth connection was present, the result of the
classification decision was transmitted every second as either
0 (low activity), 1 (high activity) or 2 (fall).



Fig. 3. The Cooja simulator is streaming sensor data from a file to a simulated
Shimmer sensor node running the BasicStreaming firmware. Data is then
received by the original ShimmerConnect host application using a simulated
Bluetooth connection (bottom).

IV. EVALUATION

A. Basic Streaming

The goal of the first evaluation was to show if the Contiki
implementation of the BasicStreaming application (section
III-D1) was able to stream data from the sensors to all
host applications using the ShimmerConnect protocol. For this
a Shimmer node was programmed with the BasicStreaming
application and was used to stream data to a host using
Bluetooth. While streaming, the Shimmer node was worn
on the ankle and the subject was walking back and forth.
Testing was performed using different sensor configurations
(accelerometer, gyroscope, magnetometer, biophysical sensor)
and sampling rates (10 Hz, 50 Hz, 100 Hz, 200 Hz, 500 Hz).
Data was recorded on a laptop PC using the ShimmerCon-
nect host application. After recording, the sensor values were
visually inspected and timestamps were inspected to check
for missing samples. Additionally, streaming was tested with
the Shimmer MATLAB instrumentation driver and an Android
application running on a mobile phone.

B. Cooja Simulation

To test the Cooja modifications, a simulated Shimmer node
was created inside the Cooja simulator running on a standard
laptop PC (Intel Core i5, 2.4 GHz, 4GB RAM). Both the
original TinyOS streaming application as well as the new
BasicStreaming application were tested on this node. Sensor
data was simulated using a previously recorded file containing
60 seconds of accelerometer and gyroscope signals during
gait recorded at 200 Hz. The original ShimmerConnect host
application was then used to connect to the virtual Bluetooth
serial port and to stream and record the sensor data from the
simulated sensor node (Fig. 3). The recorded files were then
compared to the original file.

C. Filtered Downsampling

The FilteredDownsampling application (section III-D2)
was tested in the simulator using the same sensor data file
as in the previous test. The processed results were recorded
using the ShimmerConnect host application. After recording,
both the original file and the recorded file were imported into
MATLAB. The original sensor data was then processed in
MATLAB using a 4-point moving average filter and down-
sampled by a factor of 4. The result was compared to the
data processed by the Shimmer application. Additionally, the
application was tested on a real Shimmer node.

D. Activity and Fall Detection

To test the ActivityFallDetection application (section
III-D3), a recording was performed with one subject wearing
a Shimmer node at the belt. The subject performed multiple
trials containing resting, walking and simulated falls. The
recorded data was then used in the simulator as input for
the activity detection application. Using Cooja, the output of
the application was recorded and compared to ground truth.
Additionally, the application was tested on a real Shimmer
node.

V. RESULTS

A. Basic Streaming

The BasicStreaming application was able to correctly
stream data in all configurations. The firmware worked with
all tested host applications, including the MATLAB instru-
mentation driver and the Android application. Recorded data
quality was equivalent to previous recordings using the TinyOS
firmware and did not show any signs of missing samples.

B. Cooja Simulation

Run-time of all simulations was faster than real-time. The
comparison of the recorded files from the simulated nodes to
the original file showed that both files contained exactly the
same sensor data. As the start of the playback and the recording
was not synchronized, the file recorded from the simulated
node contained additional values before and after the simulated
signals.



C. Filtering and Downsampling

The signals processed by the FilteredDownsampling appli-
cation and the signals processed by MATLAB were identical
except for small rounding errors. In every case, the correlation
between both signals was 0.999998 with an absolute root-mean
square raw value error of less than 0.5, which translates to less
than 1 mG for the accelerometer. The test on the real Shimmer
node showed that processing was done in real-time and that the
data rate was reduced by a factor of 4 as soon as processing
was activated.

D. Activity and Fall Detection

The ActivityFallDetection application assigned 98 % of the
labels correctly when evaluating the collected data set in the
simulator. On a real node, classification was running in real-
time with a wireless transmission rate of one byte per second.

VI. DISCUSSION

The main goal of this paper was to provide faster and
easier development and testing of on-node pre-processing
algorithms. This was realized by creating a complete Cooja
based simulation framework for the Shimmer platform. The
software is available on request and it is planned to integrate
it into the Contiki open-source project.

The implemented toolset is ready to be used for rapid
development and testing of BSN applications. Debugging is
simplified, as the simulator allows simple output of debugging
messages and full debugger support is provided without ded-
icated and expensive hardware. Using sensor data read from
a file allows reliable and reproducible testing of processing
algorithms without altering the firmware. This simulated sensor
data can be pre-recorded real data or artificial data, enabling
test-driven development and easy evaluation of on-node pro-
cessing algorithms. Using Cooja, the workflow for develop-
ment and testing of such applications is greatly improved. If
an error in the algorithm is found, it can be corrected in the
source file and a simple click in the Cooja GUI triggers a
reload. This automatically recompiles the application, loads it
onto the simulated sensor node and repeats the test case with
the previous sensor input. Many data sets can be evaluated
quickly, as the simulator can run the application simultaneously
on multiple sensor nodes or even simulate the nodes faster than
real-time. Additionally, the simulator can give feedback on the
feasibility of algorithms on the low-power microcontroller as
well as estimate the impact of the processing on the battery
life.

The implementation of Shimmer as a Contiki platform
was successful and all peripherals were usable. As Contiki
is written in plain C, it is now easier to extend functionality
and to create applications for the Shimmer platform without
having to learn nesC. Additionally, the port to Contiki enables
the use of a full IPv6 stack and tools for energy estimation.
However, the energy estimation routines must be calibrated for
each hardware platform, which was not yet done for Shimmer.
This will be subject of future work. As no schematics were
available for the Shimmer hardware, some parts could only
be implemented by reverse-engineering the provided TinyOS
implementation. Especially the correct multiplexing of the SD-
card and the dock proved to be complex and difficult to

implement. As not all possible use-cases have been tested,
there might still be some unidentified problems and the SD-
card had to be disabled to avoid data corruption. As the
SD card is important for many BSN projects, this has to be
addressed in future work.

The provided implementation of Shimmer as a mote and
node in Cooja and MSPSim was almost complete and worked
as intended in all tested cases. Complete magnetometer and
GPS modules are still missing, but they can easily be added in
future work. The evaluation showed that the simulator was able
to simulate the tested firmware images correctly and faster than
real-time. The instruction-set level simulation provides a high
accuracy on the run-time and accuracy of the tested algorithms.
However, one has to keep in mind that the simulation is not
perfectly accurate in all cases and some driver-related bugs
could only be reproduced on real hardware. But this is often
only a problem for the developer of the hardware abstraction
layer and should not be a problem for the development of
applications and pre-processing algorithms. The replay of
sensor data was reliable and no samples were missed. However,
to allow fully reproducible test-cases a synchronization feature
must be added to start the replay of the sensor data at a
consistent time point, e.g. 2 seconds after reset.

The implementation of the Bluetooth connection as a serial
interface was quite simplistic, however it was sufficient to
connect and communicate with the simulated sensor nodes.
In future work this could be extended by incorporating a
full Bluetooth simulation, but this is quite complex and not
necessary for most applications. One drawback with the current
implementation is that an additional mapping from the TCP
port to a virtual serial device is necessary to work with most
host applications. Additionally, it is not yet possible to use the
simulated sensor nodes from an Android phone or from the
Android simulator without altering the Android application.
This problem could be solved by modifying the Android
simulator to allow streaming from a TCP port to a virtual
Bluetooth serial port.

The provided example applications demonstrated how to
use Contiki to build applications for off-node processing,
simple on-node pre-processing and full on-node processing.
The evaluation has shown that the BasicStreaming application
was fully compatible with the ShimmerConnect protocol and
that it was usable as a reliable drop-in replacement for the
TinyOS based BoilerPlate application. It was compatible with
all available host applications for MATLAB, LabView and
Android. While the used protocol ensures maximum compat-
ibility with existing applications, it is not the most efficient
or extensible protocol. In the future, it should be replaced
by a more sophisticated protocol, e.g. supporting activation
and deactivation of on-node pre-processing algorithms. During
testing, we have also found that the ShimmerConnect host
application was not very reliable for recording at high sam-
pling rates. Recording at 500 Hz was only possible with the
visualization turned off.

The FilteredDownsampling application also worked as in-
tended. The resulting signals were identical to the exact values
except for small rounding errors. Using this application, the
data rate can be reduced by a factor of 4, increasing battery
life while maintaining a high sampling rate. This could be
beneficial if high frequencies are present in the input signal,



which would lead to aliasing artifacts with lower sampling
rates. In the tests, the rounding error was almost exactly 0.5,
which is due to the use of integer values for the sensor data.
While this was no problem for the implemented mean filter,
especially IIR filters will require higher precision to be stable.
For this floating or fixed point arithmetic is required in the
Shimmer firmware, which will increase processing demand.

The ActivityFallDetection application was intended as a
simple demonstrator how to implement a complete classifi-
cation system on Shimmer using Contiki. The algorithm was
a simplified version of [7] and had a high classification rate
during the short test. By implementing the whole algorithm
on the node, communication was reduced to one byte per
second, compared to the 1.2 kByte/s of raw sensor data.
This shows how on-node processing can reduce or eliminate
wireless communication and extend battery life. Development
was straightforward, as only few lines of C-code were required
to implement the algorithm. Testing of the algorithm and
adaptation of the threshold values was done using the simulator
and the recorded sensor data. As the classification results were
immediately visible in the simulator, no real Shimmer nodes
were needed during development.

VII. SUMMARY AND OUTLOOK

In this paper we have presented an implementation of a
complete Contiki simulation framework for the Shimmer plat-
form. The network simulator Cooja was extended to support
Bluetooth connections and the simulation of sensor data. The
presented Contiki example applications are directly usable as
drop-in replacements for the standard Shimmer firmware and
work with all host applications supporting the ShimmerCon-
nect protocol. As they are written in plain C, they can easily
be extended using custom algorithms for signal processing and
classification. Together with the Cooja simulator, this allows
faster and easier development and testing of on-node pre-
processing algorithms for wireless sensor nodes.

In the future this will allow rapid development of BSN
applications while extending the battery life of the nodes.

ACKNOWLEDGMENT

We wish to thank Moritz Strübe from the Distributed Sys-
tems and Operating Systems Group, Erlangen. This work was
supported by the Embedded Systems Institute (ESI) Erlangen,
the Bavarian Ministry for Economic Affairs and the European
Fund for Regional Development. Additional financial support
was provided by the adidas AG, Herzogenaurach, Germany.

REFERENCES

[1] M. Johnson, M. Healy, P. Van de Ven, M. Hayes, J. Nelson, T. Newe,
and E. Lewis, “A comparative review of wireless sensor network mote
technologies,” in IEEE Sensors 2009, 2009, pp. 1439–1442.

[2] B. Latré, B. Braem, I. Moerman, C. Blondia, and P. Demeester, “A
survey on wireless body area networks,” Wireless Networks, vol. 17,
no. 1, pp. 1–18, 2011.

[3] J. Klucken, J. Barth, P. Kugler, J. Schlachetzki, T. Henze, F. Marxreiter,
Z. Kohl, R. Steidl, J. Hornegger, and B. Eskofier, “Unbiased and Mobile
Gait Analysis Detects Motor Impairment in Parkinson’s Disease,” PLoS
ONE, vol. 8, no. 2, p. e56956, 2013.

[4] M. Hanson, H. Powell, A. Barth, K. Ringgenberg, B. Calhoun, J. Aylor,
and J. Lach, “Body Area Sensor Networks: Challenges and Opportuni-
ties,” Computer, vol. 42, no. 1, pp. 58–65, 2009.

[5] H. Mamaghanian, N. Khaled, D. Atienza, and P. Vandergheynst, “Com-
pressed Sensing for Real-Time Energy-Efficient ECG Compression
on Wireless Body Sensor Nodes,” IEEE Transactions on Biomedical
Engineering, vol. 58, no. 9, pp. 2456–2466, 2011.

[6] S. Gradl, P. Kugler, and B. Eskofier, “Real-time ECG monitoring and
arrhythmia detection using Android-based mobile devices,” in Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society EMBC 2012, 2012, pp. 2452–2455.

[7] D. Karantonis, M. Narayanan, M. Mathie, N. Lovell, and B. Celler,
“Implementation of a real-time human movement classifier using a
triaxial accelerometer for ambulatory monitoring,” IEEE Transactions
on Information Technology in Biomedicine, vol. 10, no. 1, pp. 156–167,
2006.

[8] B. Eskofier, P. Kugler, D. Melzer, and P. Kuehner, “Embedded clas-
sification of the perceived fatigue state of runners: Towards a body
sensor network for assessing the fatigue state during running,” in Ninth
International Conference on Wearable and Implantable Body Sensor
Networks (BSN), 2012, pp. 113–117.

[9] B. Eskofier, M. Oleson, C. DiBenedetto, and J. Hornegger, “Embedded
surface classification in digital sports,” Pattern Recognition Letters,
vol. 30, no. 16, pp. 1448–1456, 2009.

[10] L. M. Stirling, V. von Tscharner, P. Kugler, and B. Nigg, “Classification
of muscle activity based on effort level during constant pace running,”
Journal of Electromyography and Kinesiology, vol. 21, no. 4, pp. 566–
571, 2011.

[11] M. A. Hanson, H. C. Powell, Jr., A. T. Barth, and J. Lach, “Application-
Focused Energy-Fidelity Scalability for Wireless Motion-Based Health
Assessment,” ACM Transactions on Embedded Computer Systems,
vol. 11, no. S2, pp. 50:1–50:21, 2012.

[12] F.-T. Sun, C. Kuo, and M. Griss, “PEAR: Power efficiency through
activity recognition (for ECG-based sensing),” in 5th International
Conference on Pervasive Computing Technologies for Healthcare (Per-
vasiveHealth), 2011, pp. 115 –122.

[13] L. Au, M. Batalin, T. Stathopoulos, A. Bui, and W. Kaiser, “Episodic
sampling: Towards energy-efficient patient monitoring with wearable
sensors,” in Annual International Conference of the IEEE Engineering
in Medicine and Biology Society EMBC 2009, 2009, pp. 6901 –6905.

[14] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, “TinyOS:
An Operating System for Sensor Networks Ambient Intelligence,” in
Ambient Intelligence, W. Weber, J. M. Rabaey, and E. Aarts, Eds., 2005,
ch. 7, pp. 115–148.

[15] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in 29th Annual
IEEE International Conference on Local Computer Networks 2004,
2004, pp. 455–462.

[16] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accurate and
scalable simulation of entire TinyOS applications,” in Proceedings of the
1st international conference on Embedded networked sensor systems,
ser. SenSys ’03, 2003, pp. 126–137.

[17] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
Level Sensor Network Simulation with COOJA,” in Local Computer
Networks, Proceedings 2006 31st IEEE Conference on, 2006, pp. 641–
648.

[18] A. Burns, B. Greene, M. McGrath, T. O’Shea, B. Kuris, S. Ayer,
F. Stroiescu, and V. Cionca, “SHIMMER - A Wireless Sensor Platform
for Noninvasive Biomedical Research,” IEEE Sensors, vol. 10, no. 9,
pp. 1527–1534, 2010.

[19] D. Gay, M. Welsh, P. Levis, E. Brewer, R. V. Behren, and D. Culler,
“The nesC language: A holistic approach to networked embedded
systems,” in In Proceedings of Programming Language Design and
Implementation (PLDI), 2003, pp. 1–11.

[20] J. Eriksson, F. Osterlind, T. Voigt, N. Finne, S. Raza, N. Tsiftes, and
A. Dunkels, “Demo abstract: Accurate power profiling of sensornets
with the COOJA/MSPsim simulator,” in IEEE 6th International Con-
ference on Mobile Adhoc and Sensor Systems, 2009, pp. 1060–1061.

[21] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes, A. Dunkels, T. Voigt,
R. Sauter, and P. J. Marrón, “Cooja/mspsim: interoperability testing
for wireless sensor networks,” in Proceedings of the 2nd International
Conference on Simulation Tools and Techniques, ser. Simutools ’09,
2009, pp. 27:1–27:7.


