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Abstract— Electromyogenic or muscle artifacts constitute a
major problem in studies involving electroencephalography
(EEG) measurements. This is because the rather low signal
activity of the brain is overlaid by comparably high signal
activity of muscles, especially neck muscles. Hence, recording an
artifact-free EEG signal during movement or physical exercise
is not, to the best knowledge of the authors, feasible at the
moment. Nevertheless, EEG measurements are used in a variety
of different fields like diagnosing epilepsy and other brain
related diseases or in biofeedback for athletes.

Muscle artifacts can be recorded using electromyography
(EMG). Various computational methods for the reduction of
muscle artifacts in EEG data exist like the ICA algorithm
InfoMax and the AMICA algorithm. However, there exists no
objective measure to compare different algorithms concerning
their performance on EEG data.

We defined a test protocol with specific neck and body
movements and measured EEG and EMG simultaneously to
compare the InfoMax algorithm and the AMICA algorithm.
A novel objective measure enabled to compare both algo-
rithms according to their performance. Results showed that
the AMICA algorithm outperformed the InfoMax algorithm.
In further research, we will continue using the established
objective measure to test the performance of other algorithms
for the reduction of artifacts.

I. INTRODUCTION

Electromyogenic or muscle artifacts overlay human brain
activity. Normally, brain activity is measured in immobile
settings. The accurate, non-invasive recording of human brain
activity during overall movement or physical exercise could
bring several benefits [1], e.g. mental processes and body
interactions could be monitored and evaluated. There exists
a connection between brain activity and locomotion [2], [3].
Another aspect is the usage of biofeedback in training [4],
[5]. This means that the athlete instantly receives feedback
on his performance in his training process and hence can
directly adapt his movements to achieve better results.

Brain activity can be measured with non-invasive tech-
niques like functional magnetic resonance imaging, positron
emission tomography or EEG. EEG recordings consist of sur-
face electrodes that are placed on the scalp. These electrodes
measure the electrical manifestation of the electrical activity
of the brain [6]. EEG is the only non-invasive method that
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allows brain activity to be recorded during movement, as its
sensors are lightweight enough and easy to carry [2], [3].
Further, the temporal resolution of EEG is sufficiently high
to record brain activity during movement [3], [4].

Unfortunately, EEG is susceptible to various artifacts
like eye movements or eye blinks, power line interference,
high-frequency noise, and muscle artifacts [2], [4], [7]-[9].
Various solutions exist for the removal of eye artifacts, like
the regression model in the time domain proposed by Gratton
and coworkers [10] or in the frequency domain proposed by
Woestenburg et al. [11]. Power line interference and high-
frequency noise can be reduced with band-pass or notch
filtering.

Muscle artifacts can be recorded using EMG as a ref-
erence. EMG produces an amplitude of about 100uV to
1000 uV, considerably higher than that of EEG data (near
10pV to 100puV) [4]. Muscle artifacts that interfere with
EEG recordings are for example head movements. Muscle
artifacts are problematic in EEG data, as the frequency bands
of the EEG and EMG recording overlap. The frequency band
of normal brain activity lies between 0Hz and 30 Hz [6].
EMG recordings have a frequency distribution from 0 Hz to
200 Hz [9]. This overlapping is also the reason that muscle
artifacts are difficult to remove.

Various computational methods for the reduction of EMG
artifacts exists. These include methods like the General
Linear Model [8], linear or non-linear low-pass filtering [9],
Independent Component Analysis (ICA) [7], [8], [12], paral-
lel factor analysis (PARAFAC) [13], [14], Adaptive Mixture
of Independent Component Analyzers (AMICA) [15] or
blind source separation - canonical correlation analysis (BSS-
CCA) [16].

Although different methods exist to remove EMG artifacts
from EEG, it is unknown which method performs best. In this
work, we performed a study with specialized exercises like
isometric forward and backward contractions or isometric
right and left contractions of neck muscles. We also measured
sports activities such as treadmill running, ergometer cycling
or lifting weights. Besides the EEG data, we acquired EMG
data of the sternocleidomastoid and the trapezius muscle.
The simultaneously measured EMG and EEG recordings
should allow to remove muscle artifacts using computational
methods. This study aims at testing and comparing the two
algorithms InfoMax and AMICA with regard to their ability
to reduce the effect of EMG on the EEG data. We further
provide a novel objective measure on the basis of the SNR
to calculate how good each algorithm performs.



II. METHODS
A. Data acquisition

The used hardware consisted of the QuickAmp-72 ampli-
fier (Brain Products GmbH, Gilching, Germany), the elec-
trode positioning system ELPOS (zebris, Medical GmbH,
Isny i. Allgdu, Germany), the h/p/cosmos quasar treadmill
(h/p/cosmos sports & medical gmbh, Nussdorf-Traunstein,
Germany), and the ergometer sanabike 250F (MESA Medi-
zintechnik GmbH, Benediktbeuern, Germany). The 72 chan-
nels of the QuickAmp amplifier were divided into 64 unipo-
lar EEG channels, four bipolar channels and four auxiliary
inputs. The four bipolar channels were employed as the
EMG electrodes. The four auxiliary inputs were not used
in this study. The electrode positions were registered with
ELPOS in combination with the Electrode Guide ElGuide
software (zebris Medical GmbH, Isny i. Allgdu, Germany).
The actiCAP 64 Channel (Brain Products GmbH, Gilching,
Germany) was used as EEG cap. The EMG was measured
on the left and right sternocleidomastoid muscle and on the
left and right sagittal plane of the trapezius muscle (Fig. 1).

Five healthy male subjects (age 25 4+ 2 years, mean =+
standard deviation (SD)) were recruited for the study. All
subjects were in good physical condition and gave written
informed consent. The study was approved by the ethics
committee of the University Erlangen-Nuremberg.

The subjects performed eight exercises with a pause be-
tween consecutive exercises. The experiments started with a
baseline measurement to obtain clean datasets. This baseline
measurement was followed by seven different specialized
exercises. The complete experimental procedure is explained.
In all, 35 datasets with specialized exercises of five different
subjects were measured.

The baseline measurement consisted of two minutes in
supine position without any movement. The eyes were closed
to minimize ocular artifacts. Next, four isometric contraction
exercises (performed in randomized order) were executed
eight times for 15s each. A pause of 30s occurred between
two contractions. During the exercises, the subjects pressed
their head against an immovable object. The four contrac-
tion exercises were: isometric forward contraction (Isoforw),
isometric backwards contraction (Isoback), isometric right
contraction (Isoright), and isometric left contraction (Isoleft).
The next exercise consisted of running on a treadmill at
the constant speed of 2.316 ms~!. This is 20% above the
average speed where people, with normal fitness, switch
from walking to running [17]. This speed guaranteed that the
treadmill exercise was physically demanding. The inclination
was set to 1% to simulate the air resistance existent during
outdoor running [18]. Next, cycling on an ergometer (Cycle)
with a cycling frequency of half the step frequency and a
resistance level of 50 W was performed. The treadmill and
the ergometer exercises lasted for two minutes each. In the
last exercise, the subjects performed a strength exercise on a
chest press. The weight of the chest press was above 70% of
the maximum weight the subject was capable of lifting. The
subjects rested for two minutes between two executions.
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Fig. 1. Positioning of the EMG electrodes. EMG electrode labels: 65, 66,
and 67; EEG electrode labels: B32 and B23; C7: seventh cervical vertebra;
The electrodes 65 and 67 recorded the activity of the trapezius muscle, the
electrodes 66 and 68 (not visible) recorded the sternocleidomastoid muscle.

B. Preprocessing

The BrainVision Analyzer 2 software (Brain Products
GmbH, Gilching, Germany) was used for data preprocessing.
First the data were band-pass filtered in the frequency range
of 0.5Hz to 70 Hz. Then a notch filter of 50 Hz was applied
to remove power line interference, followed by an ICA based
ocular artifact correction to remove blinks and eye artifacts
[10]. Afterwards, the data was imported into EEGLAB [19],
an open source toolbox for Matlab (MathWorks Inc., Natick,
USA), and EMG-artifact free epochs (the pauses between
subsequent exercises) were manually removed.

C. Algorithms

In this work, we compared the ICA algorithm InfoMax
[12], [20], [21] to the AMICA algorithm [22]. Both algo-
rithms are mathematical transforms with the goal of finding
the statistically independent sources inside a mixture of these
sources.

In 1996, Makeig et al. [12] applied the InfoMax algorithm
of Bell and Sejnowski [21] to EEG data for the first time.
This algorithm is available in the EEGLAB toolbox [19]. We
employed this algorithm to the data. Further, we applied the
AMICA algorithm [23] implemented by Palmer [22]. The
AMICA algorithm is an asymptotic Newton algorithm to
calculate the maximum likelihood estimate for a mixture
model of independent components. Every algorithm was
applied to the data twice. Each time five components were
removed according to the localization of the main activity
and the power spectral density. A high power in frequencies
higher than 30 Hz indicated EMG artifacts [6].

The AMICA algorithm has four parameters, which need
to be set prior to the decomposition: the number of ICA
models to be trained, the number of mixture components to
be assumed in the input data, the initial learning rate for the
newton method and the initial learning rate for the natural
gradient. We optimized these parameters in a grid search
regarding the improvement in artifact reduction (Sec. II-D)
over one dataset with consistent muscle contribution.



D. Evaluation methodology

For the evaluation of the different algorithms, an objective
measure was necessary. Hence, we suggested a new objective
measure on the basis of the signal-to-noise ratio (SNR). The
improvement factor for the SNR was calculated as:

_ SNRbefore (1)
SNRafter

As SNR values were unknown for real-world data, an ap-
proximation for evaluating the performances was necessary.

The clean data (as reference obtained from the baseline
measurement), data before artifact reduction and data after
artifact reduction were used in our procedure. We divided
this procedure into five steps (Fig. 2):

msNr = 1

1) Feature extraction

2) Determining the reference value

3) Calculation of Euclidean distances to reference value

4) Averaging the Euclidean distances

5) Calculation of the improvement factor

In the first step, we extracted three features on an em-
pirically defined window size of 2000 samples of all three
datasets. The features were: Normalized power between
13Hz and 100Hz, normalized power between 30Hz and
100Hz, and the mean value of the squared derivative. In
the second step, we determined the reference value by
averaging all feature vectors from clean data. In the third
step, Euclidean distances between the reference value and
each feature vector were calculated. This was done separately
for the data before artifact reduction and the data after artifact
reduction. In the fourth step, the Euclidean distances of the
third step were averaged over both datasets (before and after
artifact reduction). This resulted in two distances, dpcfore
and dgfser. In the last step, the novel objective improvement
factor was calculated. We defined the objective improvement
factor as following:

m=1

dafter
— 2
dbefore ( )

III. RESULTS

The optimized AMICA parameters for muscle artifact re-
duction were: one ICA model was trained and three mixture
components were assumed in the input data. 1.0 was chosen
as initial learning rate for the newton method and 0.1 for
the natural gradient. Further settings were the rejection of
time points based on log likelihood and the dimensionality
reduction by the number of rejected components of the first
run for the second AMICA run.

Of our 35 datasets, four datasets had to be excluded due
to too much non muscle related artifacts like high amplitude
noise in multiple channels or severe electrode movement
artifacts. Further, two more exercises, the isometric left and
right exercises from one subject, were also not suitable. In
total, both algorithms were applied to 29 of 35 datasets.

AMICA converged in all of the remaining datasets. Info-
Max only converged in 23 cases. Fig. 3 illustrates the number
of measurements that converged for both algorithms for each
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Fig. 2. Flow chart of the evaluation methodology procedure.

exercise. The remaining datasets were used for the calcula-
tion of the averaged improvement rates (Fig. 4). These were
four datasets of the chest press exercise and the isometric
right contraction and three datasets of the remaining five
exercises (compare Fig. 3). The algorithms were performed
on each exercise separately for every subject. After averaging
over all subjects, the averaged improvement rate for each
exercise was obtained. In two exercises, both algorithms
performed the same. The AMICA algorithm outperformed
the InfoMax algorithm in the remaining five exercises.

IV. DISCUSSION

The AMICA optimization was performed on one of the
datasets and therefore did not necessarily fit all EEG record-
ings best. Further, the AMICA algorithm was only performed
with one ICA model. Therefore, unexploited potential lay in
this algorithm, especially as soon as more irregular artifacts
are considered.

Six datasets had to be excluded due to the existence of too
much non-muscle related artifacts. The InfoMax algorithm
did not converge for all remaining datasets. Only 23 datasets
were used for the evaluation of the algorithms. In future
research, we have to increase the number of datasets, espe-
cially with the problem of non-convergence of the InfoMax
algorithm.

We applied each algorithm twice on the data and after the
performance of one algorithm, we rejected five components
after each application. The number of components was
chosen heuristically. The decision on how many components
to reject from the data should lie in the hand of a human
or in a human trained classification system, as this greatly
impacts the result [19]. We decided to reject five components
to maintain comparability between the used algorithms. The
results are therefore not purely dependent on the effective-
ness of the algorithm, but also on the competence of the
researcher.



Numer of measurements

Chestpress Cycle I;)left Is:right Isoback Isoforw Treadmill

Fig. 3. Number of convergent measurements of the InfoMax and the
AMICA algorithm. AMICA converged in all datasets.
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Fig. 4. Averaged improvement rates for both algorithms. Only datasets
were both algorithms converged are considered.

The datasets consisted of data from young, male, and
physically fit adults. Our results do therefore not account
for any differences between males and females or different
age groups. In further studies, subjects of either sex and a
variety of ages should be considered.

We suggested an objective improvement parameter for the
evaluation of different artifact reduction algorithm on EEG
data. We further applied the InfoMax algorithm InfoMax and
the AMICA algorithm and calculated for each exercise an
improvement measure. In summary, the AMICA algorithm
outperformed the InfoMax algorithm. Based on our study,
we therefore recommend to use AMICA for the reduction of
muscle artifacts in EEG data instead of InfoMax. In further
research, we will continue using our novel objective measure
to test the performance of other artifact removal algorithms.
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