
Proceedings of the 1st Biomedical Signal Analysis (Rio de Janeiro, October 21-24, 2013)  
 

Automatic detection of inertial sensor orientation for 
movement  analysis  in  Parkinson’s  disease 

 

Jennifer Maier, Samuel Reinfelder, Jens Barth, Jochen Klucken, Bjoern M. Eskofier 
Digital Sports Group, Pattern Recognition Lab, Department of Computer Science 

Friedrich-Alexander-University Erlangen-Nuremberg 
Erlangen, Germany 

jennifer.maier@medtech.stud.uni-erlangen.de 
 
 

Abstract—To analyze the gait of Parkinson's 
patients and to objectively rate their disease stage 
development all over the day, low cost inertial 
sensors can be used. A current challenge is to deal 
with the potentially unknown sensor position. 
When measurements are recorded over a longer 
time period and in an unsupervised environment, 
sensor position can vary. Therefore, it is necessary 
to detect the orientation of the sensors. In this 
study, an algorithm for the automatic orientation 
detection of an inertial sensor placed on the instep 
is presented. The detected orientation was used for 
a subsequent transformation of the sensor data to 
the coordinate system of recorded reference data. 
The systems showed a correlation of up to 0.99. 
Afterwards, a step segmentation of the recorded 
walking data was computed. Conclusively, the 
results of a sagittal angle comparison of the 
transformed gait data of different population 
groups are shown. With the presented methods, 
the feasibility of unsupervised long term 
monitoring of PD patients in daily life is increased.   

Keywords: long term monitoring, gait analysis, data 
transformation, sagittal angle.  

I. INTRODUCTION 
One of the most common neurologic diseases in 

modern times   is   Parkinson’s   disease (PD). PD is 
caused by slowly necrotizing neurons, causing motor 
symptoms like tremor, bradykinesia and rigidity. 
According to current medical knowledge, PD can not 
be cured. Therefore, the therapy mainly focuses on 
treating the symptoms of the patients with individual 
medication. This medication always has to be adjusted 
to   the   patient’s   current   disease stage, which is 
mirrored in the physical symptoms. 

To assess the continuous course of locomotive 
disorders in PD in everyday life over a longer time 
period, at present the only possibility is to rely on a 
patient’s   diary.   In   these diaries, the patient registers 
the current state of motion disorder at regular 

intervals. Since these ratings are always subjective, it 
is necessary to find a way to provide the physicians 
with objective parameters from long term studies. 

In previous studies, such as [1],   the   patient’s 
physical state was analyzed objectively in a controlled 
environment. An inertial sensor unit was attached to 
the lateral side of the shoe below the ankle. The 
movement of the patient was recorded during 10m 
walks and other standardized tests. Such a supervised 
data acquisition is not possible when data is recorded 
over a longer time period in daily life. To make an 
objective long term monitoring possible, it is therefore 
necessary  to  integrate  the  measurement  in  the  patient’s  
daily life. 

Especially   the   sensor’s   position   at the exterior of 
the foot may bother the patient in everyday activities, 
e.g.   the   patient’s   foot   could   get   caught   by a chair. 
Therefore, it is necessary to find a new position where 
the sensor does not handicap the patient. Placing the 
sensor on the instep and securing it with the straps of 
the shoe could be a possible solution. To use 
algorithms designed for the sensor on the exterior of 
the shoe, the new position of the sensor has to be 
detected and afterwards the recorded data has to be 
transformed. Furthermore, it is possible that the sensor 
is slightly moving during the recording of a day, 
therefore the position is not always the same. 

For the gait analysis in [2], Bamberg et al. used the 
gravitational vector to compute the angles of 
inclination of two of the accelerometer axes. These 
angles were subsequently used for the computation of 
gait parameters. A similar approach was used in this 
paper. In contrast to [2], all three accelerometer axes 
were used for the  detection  of  the  sensor’s  orientation.  

In [3], Wu et al. used a calibration method based 
on the motion   signature   to  detect   an   inertial   sensor’s  
orientation and to correct for sensor misplacement. For 
the classification of the current disease stage of a 
patient, it is necessary to compare the recorded gait to 
healthy subjects. However, the walking movements of 
PD patients and healthy subjects are different and have 
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a different motion signature. Therefore, this 
orientation detection can not be used for the presented 
problem. The method described in this paper does not 
rely on a motion signature and works for any subject.  

In this paper, an algorithm to detect the orientation 
of the sensor on the instep is described. Afterwards, 
recorded walking data from the instep is transformed 
to match the data from the side of the foot. A step 
segmentation algorithm is applied to the transformed 
data and the sagittal angles of the extracted steps of 
different groups are compared. 

II. METHODS 

A. Sensor Setup 
The inertial sensor produced by Shimmer [4] was 

mounted on the instep of the shoe secured by the 
shoestrings. For the validation of the developed 
algorithm, another sensor unit was placed on the 
exterior of the shoe below the ankle as seen in Fig. 1. 
Each sensor unit consisted of a three axial 
accelerometer and a three axial gyroscope with a range 
of ±6g and ±500°/s at a sampling frequency of 
204.8Hz. 

B. Study Design 
For the validation of the algorithm, walking data of 

three groups was recorded. In the first group were 
Parkinson patients (aged 62.83 ± 8.11) with movement 
impairments rated with the Unified Parkinson's 
Disease Rating Scale – Part III (UPDRS motorscore) 
of 16.8 ± 2.10. The second group consisted of elderly 
healthy subjects (aged 66.33 ± 8.04), the third group of 
young healthy probands (aged 24.5 ± 1.89). Each 
group consisted of 6 subjects. The performed exercise 
was a 40m walk with a turn every 10m. The subjects 
had to stand still at the beginning of every recording to 
gather the data needed for the estimation of the 
orientation of the sensor on the instep. 

C. Orientation detection and data transformation 
 The orientation detection of the sensor on the 

instep was used to transform the data recorded at this 
position to the coordinate system of the sensor on the 
exterior. For this purpose, it was assumed that one of 
the axes of the Shimmer unit placed on the exterior 
was normal to the horizontal plane and one axis was 
aligned with the walking direction (see vectors 𝒏 and 
𝒘 in Fig. 1). 

When the subject was standing still and the sensor 
on the instep was in its resting position, the 
accelerometer measured the   earth’s   gravitation   of 
9,81m/s  resp. 1g, split into its three axes. This 
gravitation vector  𝒈 (see Fig. 1) was therefore used as 
a normal for the horizontal plane and as the first base 
vector for the new coordinate system. The two other 
axes were not defined by  𝒈. By using only the 
gravitational vector 𝒈, it was therefore not possible to 
calculate the direction that the sensor was pointing to. 
For this study, prior knowledge was used to address 
this problem. The x-axis of the sensor that was placed 
on the instep was assumed to be lying in the sagittal 
plane   of   the   proband’s   body   just   as   the   axis   of   the  

sensor on the side of the shoe that was aligned with the 
walking direction (see Fig. 1). Hence, to get the 
second base vector  𝒙′ of the new coordinate system, 
the x-part of the gravitation vector was orthogonally 
projected onto the horizontal plane defined by the 
gravitational vector: 

𝒙′ = 𝒙 − 〈𝒈,𝒙〉
‖𝒈‖𝟐

∙ 𝒈  

The third base vector for the new coordinate 
system was then computed as the cross product of  𝒈 
and  𝒙′. 

Once the base vectors of the target coordinate 
system were estimated, the recorded data could be 
transformed using a direction cosine matrix (DCM) 
[5]. This matrix allows the transformation of three 
dimensional data from an inertial coordinate system to 
a target coordinate system, if the base vectors of both 
systems are known. 

In order to validate the presented data 
transformation, the correlation coefficient between the 
data recorded on the exterior of the foot and the 
transformed data from the instep was computed for 
each axis of the accelerometer and the gyroscope. First 
this correlation was calculated for every subject 
individually, then the mean value of the correlation for 
each group and the mean over all subjects were 
computed. 

D. Computation of the sagittal angles 
After the transformation of the data, the angle 

progression of the foot during a step was computed. 
The movement during walking is mainly taking place 
in  the  sagittal  plane  of  the  subject’s  body.  Hence, the 
gyroscope axis that measures the angular velocity in 
the sagittal plane was used to compute the mean 
course of the sagittal angle of the three compared 
groups. 

For this purpose, the pipeline shown in Fig. 2 was 
executed. First, the step sequences in the data were 
extracted using Subsequent Dynamic Time Warping 
(DTW) as described in [6] and [7]. Since the accuracy 
of this method is between 87% and 99% [6], the 
results were corrected manually. 

The executed Subsequent DTW yields steps that 
start and end with a peak close to the toe off, where 

 

Figure 1: View on the sagittal plane of the foot symbolized by 
the black frame. Sensors are displayed as orange boxes with 
dashed lines. n: normal vector of the horizontal plane, w: 
walking direction, x, y, z: axes of sensor on instep, g: 
gravitation vector 
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the foot is leaving the ground. Gyroscope 
measurements are always afflicted with drift, which 
can only be subtracted out in phases where the angular 
velocity is zero. This is the case in stance phases, 
where  the  subject’s  whole  foot  touches the ground. In 
walking data, only at these stance phases the zero 
velocity update can be performed [8]. For that reason, 
the extracted steps of the DTW could not directly be 
used for the computation of the angle course. They 
could, however, be used to get the step sequences 
where the subject was walking on a straight line 
without turning. In these step sequences, the 
beginnings of the stance phases could be detected 
using a threshold based method. A step in an extracted 
step sequence was then defined as the movement 
between two beginnings of stance phases. For the 
subsequent comparison of the individual steps, each 
extracted step was linearly interpolated to a length of 
250 samples. 

By integrating the measured angular velocity of a 
step over time, its angle course was computed. To 
subtract the drift, a linear dedrifting was applied on the 
computed step angles. 

This pipeline was executed for every subject of 
each group. Afterwards the mean angle course and the 
95% confidence interval for each group over all angle 
courses of the group were computed. 

III. RESULTS 

A. Accuracy of the data transformation 
The computed correlations over all subjects were 

0.844, 0.297 and 0.548 for the accelerometer axes 
(AX, AY, AZ) and 0.843, 0.969 and 0.984 for the 
gyroscope axes (GX, GY, GZ). A detailed overview of 
the correlations for the three groups is shown in Table 
1. 

B. Comparison of the sagittal angles 
The mean angle course and the 95% confidence 

interval for each group scaled to 250 samples per step 
are plotted in Fig. 3. The angle courses start with the 
stance phase, which lasts on average 68 samples for 
the patients, 75 for the elderly and 49 for the young 
subjects. The angle courses then have two extrema, a 
minimum when the foot was swung to the back and a 
maximum shortly before the foot was touching the 
ground again after the swing phase. These extrema 
have a mean amplitude of -68.6 and 18.4 degrees for 
the patients, -62.5 and 21.8 degrees for the elderly and 
-74.8 and 27.6 degrees for the young subjects. 

IV. DISCUSSION AND OUTLOOK 
Tab. 1 shows that, on average, the correlation 

coefficients for the gyroscope axes (0.81 to 0.99) are 
higher than the values for the accelerometer axes (0.20 
to 0.85). This observation can be explained by 
considering the different positions of the two sensors. 
The foot is assumed to be a rigid body and the motion 
of the foot while walking mainly is a turning 
movement. The measured angular velocity is 
independent of the distance of the sensor from the 
turning axis and is thereby the same for every point on 
a rigid body. This does not apply to the acceleration, 
which is highly dependent on the distance from the 
turning axis because of the leverage. Since the sensor 
on the instep was not only differently oriented than the 
sensor on the exterior, but was also located at a 
different position, the two sensor units did not measure 
the same acceleration. Hence, the acceleration can not 
easily be transformed using the described method. A 
very low correlation is observed especially in the 
accelerometer y-axis, which is lying in the sagittal 
plane, where the main movement takes place while 
walking. During one step, the axis the foot is turning 
around in the sagittal plane moves from the toe over 
the midfoot to the heel. Therefore the distances of the 
two sensors to this axis also change during a step, 
leading to the recording of different accelerations. 

The comparison of the sagittal angle courses of the 
different test groups shows that the stance phase of the 
young subjects lasts shorter than the one of the elderly 
subjects and patients. With progressing age, the human 

 

 

Figure 3: Pipeline for the computation of the sagittal angle 
course 
 

TABLE I.  CORRELATION BETWEEN THE TRANSFORMED 
INSTEP DATA AND THE DATA FROM THE SIDE. 

 
Correlation coefficient 

AX AY AZ GX GY GZ 

Patient 0.834 0.203 0.499 0.834 0.960 0.980 

Elderly 0.845 0.305 0.546 0.884 0.975 0.990 

Young 0.852 0.384 0.599 0.813 0.971 0.984 

Overall 0.844 0.297 0.548 0.843 0.969 0.984 

 

 

Figure 2: mean angle courses and their confidence intervals for 
the three groups. Patients: solid line, elderly healthy subjects: 
dashed line, young healthy subjects: line composed of dots and 
dashes 
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gait becomes more insecure and unbalanced [9], hence 
the elderly subjects and patients may have tried to 
leave the foot on the ground longer to better keep their 
balance. Furthermore the amplitude of the extrema is 
higher for the young subjects than for the other two 
groups. A reason for this could lie in the reduced 
mobility of elderly people [10] restraining them from 
swinging their feet further. Between the patients and 
elderly subjects the only significant differences are 
that the absolute value of the minimum angle is 6.1 
degrees higher for the patients, whereas the maximum 
angle is 3.4 degrees higher for the elderly people. The 
fact that there is only a small difference between 
patients and elderly subjects can be explained by 
considering the UPDRS of the participating patients. 
On a scale from 0 (no disability) to 199 (total 
disability), the patients’ scales lie on average at 16.8 
corresponding to an early stage of PD. 

In further studies, the problems with the 
transformation of the acceleration data should be 
addressed. It may be possible to detect the position of 
the turning axis to compute a transformation that 
makes the accelerations from different positions 
comparable. Furthermore the sensors mounted onto 
the shoes are not always aligned with the walking 
direction as assumed in this paper. An exact alignment 
using the recorded data could improve the results of 
the transformation algorithm. Moreover, the number of 
probands for upcoming studies should be increased to 
get more representative data.  
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