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Abstract—Tissue perfusion measurement using C-arm angiog-
raphy systems is a novel technique with potential high benefit
for catheter-guided treatment of stroke in the interventional suite.
However, perfusion C-arm CT (PCCT) is challenging: the slow
C-arm rotation speed only allows measuring samples of contrast
time attenuation curves (TACs) every 5 – 6 s if reconstruction
algorithms for static data are used. Furthermore, the peaksof the
tissue TACs typically lie in a range of 5 – 30 HU, thus perfusion
imaging is very sensitive to noise. Recently we presented a
dynamic, iterative reconstruction (DIR) approach to reconstruct
TACs described by a weighted sum of linear spline functions
with a regularization based on joint bilateral filtering (JB F).
In this work we incorporate statistical ray weighting into t he
algorithm and show how this helps to improve the reconstructed
cerebral blood flow (CBF) maps in a simulation study with a
realistic dynamic brain phantom. The Pearson correlation of the
CBF maps to ground truth maps increases from 0.85 (FDK), 0.87
(FDK with JBF), and 0.90 (DIR with JBF) to 0.92 (DIR with JBF
and ray weighting). The results suggest that the statistical ray
weighting approach improves the diagnostic accuracy of PCCT
based on DIR.

I. I NTRODUCTION

Perfusion CT (PCT) is an important imaging modality for
diagnosis in case of an ischemic stroke event. Time attenuation
curves (TACs) in tissue and vessels are extracted from a
time series of brain volumes acquired after a contrast bolus
injection. Perfusion parameter maps calculated from TACs,
which represent quantities such as cerebral blood flow (CBF),
cerebral blood volume (CBV), and mean transit time (MTT),
provide information about the extent of the affected tissue.
They can be used to identify potentially salvageable ischemic
tissue that may be reperfused by catheter-guided stroke therapy
procedures such as intra-arterial thrombolysis. For this purpose
the patient is transported to an interventional suite equipped
with a C-arm angiography system, where perfusion mea-
surement is not yet available. Perfusion measurement using
C-arm systems would allow assessing the perfusion parameters
directly before, during and after the interventional procedure
and thus help to determine treatment success and endpoint
[1]. Current C-arm systems typically require about 4 – 5 s to
acquire the X-ray projection images needed to reconstruct one
volume and a pause of about1 s between two successive
acquisitions, which limits the temporal sampling of the TACs
and makes perfusion C-arm CT (PCCT) challenging. Recently
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Figure 1. Basis functions for linear interpolation (red, solid) and relative
angular C-arm position (blue, dashed).

we proposed a new dynamic, iterative reconstruction algorithm
with a joint bilateral filter (DIR-JBF) [2] to reconstruct TACs
from a PCCT acquisition with increased temporal resolution
and improved CNR in the brain tissue compared to standard
FDK reconstruction. In this work, we additionally introduce a
statistical ray weighting to further improve the reconstructed
perfusion maps. We investigate the noise statistics of sub-
tracted projections and introduce a penalized weighted least
squares (PWLS) formulation extending the DIR-JBF algorithm
to the DIRmaximum a-posteriori (DIR-MAP) algorithm. The
new DIR-MAP algorithm is evaluated using a digital brain
phantom and compared to the DIR-JBF algorithm, classical
FDK reconstruction and FDK reconstruction followed by
denoising with JBF (FDK-JBF).

II. A LGORITHM

A. Acquisition Protocol

This section describes the C-arm perfusion acquisition
protocol used for the simulation study. The parameters are
taken from an acquisition protocol available in state-of-the-
art C-arm systems (Artis zee, Siemens Healthcare, Germany).
Since currently available C-arm systems are not capable of
continuous, uni-directional rotations, the C-arm is rotated in
a bi-directional manner in forward and backward direction
during a perfusion scan. At first one C-arm rotation in forward
and one in backward direction acquires mask projection data
pM (M: mask) with the static anatomical structures. In each
rotation 248 projections covering an angular range of 197.6°
are acquired. After contrast agent injection the C-arm is rotated
Nrot = 7 times in bi-directional manner as shown in Figure 1
and acquires the projectionspB (B: bolus) following the con-
trast bolus flow. Each rotation takesTrot = 4.3 s with a pause
of Tstop = 1.2 s between any two of them. After logarithmic



pre-processing the pure contrast-enhanced projection data p

is computed by subtracting the mask projectionspM from the
bolus projectionspB.

B. Dynamic Iterative Reconstruction Algorithm

The DIR-JBF algorithm [2] represents the basis method
used to reconstruct the contrast time attenuation curves (TACs)
inside the volume of interest (VOI) from the dynamic projec-
tion data denoted by vectorp ∈ RN , which comprehends
all rays during the contrast-enhanced acquisition after mask
subtraction. Each TAC inside the VOI is described by a
weighted sum of asymmetric linear spline functions. The knots
of the splines are placed at0.25 ·Trot and0.75 ·Trot of each C-
arm rotation (Figure 1). Consider the 4D volume denoted by
vectorx describing the TACs sampled at the acquisition time
point of each acquired contrast-enhanced C-arm projection.
We introduce the matrixB, which interpolatesx from the
weights of all basis functions denoted by vectorw such that
x = Bw. The system matrixA describes the dynamic forward
projection p ≈ Ax. The DIR-JBF algorithm reconstructs
the basis weightsw from p by minimizing the least-squares
distance between the measured projection datap and the
forward projected estimated 4D volume:

w̃ = argmin
w

1

2
‖ABw− p‖2

2
. (1)

This large scale problem can be solved as described in [3]
by using a gradient-based iterative procedure based on the
Landweber scheme:

wk+1 = wk + β ·BTAT
(

p−ABwk
)

. (2)

The parameterβ controls the step size of the parameter
update in each iteration,AB describes a linear interpola-
tion followed by forward projection andBTAT represents
a weighted backprojection of the error image onto the basis
weights. As described in [2] the gradient update step is
using a vessel-masked backprojection, where rays intersecting
with high contrast vessel structures are only backprojected
onto voxels belonging to the vessel structures. The weight
vector w is initialized from FDK reconstructions of the C-
arm rotations. Furthermore JBF is used for regularization.
JBF is an adapted version of the bilateral filter, where the
range similarity image is computed using a guidance image.
In the DIR-JBF algorithm the temporal maximum intensity
projections of the reconstructed TACs are used as guidance
image. We modify the JBF regularization compared to [2]:
after FDK initializationNJBF = 3 JBF iterations are applied.
During the DIR, JBF is applied once after every three gradient
update steps. To show the benefits of the dynamic iterative re-
construction algorithm compared to pure FDK reconstruction
followed by JBF the result of the initialization is includedin
the evaluation. Applying only the initialization step is denoted
as the FDK-JBF algorithm.

C. Statistical Ray Weighting

In this section we discuss how we model the noise in the
subtracted projection datap and include a statistical noise
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Figure 2. First order Taylor approximation of logarithmic pre-processing
around a photon count ofi = 1000 in the 3σP interval of the corresponding
Gaussian random processî (99.7 % of measurements of 1000 photons will
be inside the interval[1000 − 3 σP 1000 + 3 σP] ; σP =

√

1000).

model into the DIR-JBF algorithm to extend it to the DIR-
MAP algorithm. The number of photons measured at the C-
arm detector is considered as a Poisson random process to
simulate quantum noise. The number of photons reaching a de-
tector pixel is related to the line integralp by i = iS exp (−p),
whereiS denotes the number of photons emitted at the source.
Incorporating quantum noise, the number of actually measured
photons is a Poisson random process:î ∼ P (µP = i) (P:
photons). Since we do tomographic brain imaging we assume
a large number of counts; i.e.i > 1000. For such large counts a
Gaussian process is an excellent approximation of the Poisson
process:

î ∼ N
(

µP = i;σP =
√
i
)

.

The measured line integrals are also random variables and
related to the photon counts bŷp

(

î
)

= − ln
(

î/iS
)

. As
discussed in [4] for large photon counts we can simplify the
logarithmic processing by a first order Taylor series develop-
ment of p̂

(

î
)

aroundµP = i:

p̂
(

î
)

≈ p̂ (i) + p̂′ (i)
(

î− i
)

= − ln
i

iS
+

i− î

i
. (3)

Figure 2 shows that the first order development is an appropri-
ate approximation inside the3 σP interval of î. From Equation
3 we see that the logarithmic processingp̂

(

î
)

is mainly a scal-

ing with −1/i and shifting with− ln
(

i/iS
)

+1. Thus the line
integral random variablêp can also be described as a Gaussian
process with meanµL = µP/i − ln (i/iS) + 1 = − ln (i/iS)
and varianceσL = σP/i (L: line integrals):

p̂ ∼ N
(

µL = − ln (i/iS) ;σL = 1/
√
i
)

. (4)

Modeling the noise in line integral domain by Gaussian
random processes allows to describe the subtraction of the
mask measurements from the contrast-enhanced measurements
as a subtraction of two independent Gaussian random pro-
cesses. Thus a mask-subtracted contrast measurementp̂S =
(

p̂B − p̂M
)

(S: subtracted) is again a Gaussian process:

p̂S ∼ N
(

µS
L = pB − pM;σS

L =
√

1/iB + 1/iM
)

. (5)



Parameter FDK FDK-JBF DIR-JBF DIR-MAP

σK 1.25 0.25 0.25 0.25
σD 1.5 mm 1.5 mm 1.5 mm
σR0 0.001 0.001 0.001
σR 1.25 · 10−4 1.25 · 10−4 1.25 · 10−4

β 3 12
NJBF 3 3 3
NDIR 12 12
σK : smoothness of FDK filter kernel for initial reconstruction,

σD: spatial bandwidth of JBF,σR0: range bandwidth of initial JBF,
σR: range bandwidth of JBF,β: DIR update step size,

NJBF: number of initial JBF iterations,
NDIR: number of DIR-JBF/DIR-MAP iterations

Table I
PARAMETERS OF ALGORITHMS.

The maximum likelihood (ML) estimation of the weightsw
from projection data with Gaussian noise is provided by the
corresponding log-likelihood function [5], which combines
Equation 1 with the diagonal weighting matrixD to the
squared Mahalanobis distanceD (w):

D (w) =
1

2
(ABw − p)T D (ABw − p) , (6)

whereD = diag
{

1/
(

σS
L,1

)2
, . . . , 1/

(

σS
L,N

)2
}

, with N de-
fined in subsection II-B. Note that in the case of non-subtracted
projections the ML estimation would be the same as in well-
known statistical reconstruction algorithms [6]. However, our
derivation also allows to describe the noise in subtracted
projections.

Elad [7] showed that the bilateral filter is related to Bayesian
noise removal. Thus we can combine the ML estimate of
the weights with a JBF penalty functionRJBF(w) resulting
in the maximum a-posteriori (MAP) estimate, which can be
formulated as a PWLS problem :

w̃ = argmin
w

D (w) + λRJBF(w) . (7)

The weights are then updated by the following gradient-based
iterative procedure:

wk+1 = wk + β ·BTATD
(

p−ABwk
)

. (8)

Analogous to the DIR-JBF algorithm, the weights are initial-
ized from FDK reconstructions and filteredNJBF = 3 times
after FDK initialization and once after every three gradient
update steps. Also vessel masking is applied in the backpro-
jection step. In this work we use the approximationD =
diag

{

exp
(

−pM
1

)

, . . . , exp
(

−pM
N

)}

. The contrast attenuation
is very small compared to the attenuation of the anatomic
structures and thusσS

L,i ≈
√

2/iMi =
√

2/ (iS exp (−pM
i )),

which results in the above weighting matrix after omitting the
constants.

III. M ATERIALS & M ETHODS

We evaluate the different approaches using the realistic
digital brain perfusion phantom, which was originally de-
scribed in [8] and extended for C-arm perfusion imaging in
[9]. The phantom is based on segmentation of a human MR
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Figure 3. Artifacts in CBF maps (units: ml/100 g/min) comparing DIR-MAP
and FDK-JBF reconstructions to the reference for two different slices. In the
second row, zoomed views of the CBF maps shown in Figure 4 are provided
as indicated by the rectangular regions in the lower left image.

FDK FDK-JBF DIR-JBF DIR-MAP

RMSE 8.4 4.6 6.2 3.7
PC (n =1815) 0.85 0.87 0.90 0.92

Table II
QUANTITATIVE RESULTS OF CBF MAPS FROM DIGITAL BRAIN PERFUSION

PHANTOM DATA RECONSTRUCTED WITH DIFFERENT APPROACHES

(RMSE:ROOT MEAN SQUARE ERROR IN[ML /100ML /MIN ], PC: PEARSON
CORRELATION TO REFERENCE MAPS WITH SAMPLE SIZE N).

brain scan and simulates TACs inside a stroke-affected brain.
The phantom is available online [10]. Different regions with
reduced blood flow and volume were annotated in the brain
likewise as in [9]. The dynamic C-arm projection data was
created by forward projecting the 4D phantom according to
the acquisition protocol. Poisson-distributed noise was added
to the projections assuming an unattenuated X-ray density of
2.1 · 105 photons per mm2 at the detector. The CBF maps
were calculated from the reconstructed TACs using a standard
deconvolution-based approach [11]. In this study we compared
simple FDK reconstruction with the FDK-JBF, DIR-JBF, and
DIR-MAP approaches with the parameters shown in Table I.
We computed the RMSE and Pearson correlation (PC) of the
resulting CBF maps to reference maps created from ground
truth data using an automated ROI analysis [1]. Each of the 18
slices with stroke annotation of the CBF volume was divided
into quadratic ROIs of size8 × 8 mm2 and the mean of
each ROI was considered as a measurement for RMSE and
PC computation. ROIs including voxels outside the brain or
vessels were ignored. The slow C-arm rotation speed also leads
to artifacts around arteries with high contrast dynamics ifFBP-
type reconstruction algorithms are used [12]. A qualitative
comparison of DIR to FDK reconstruction with respect to such
artifacts was performed.

IV. RESULTS

Figure 4 shows the resulting CBF maps reconstructed with
the different approaches. The quantitative results are shown
in Table II. Figure 3 shows the artifacts around high contrast
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Figure 4. CBF maps (units: ml/100 ml/min) from digital brainperfusion phantom data reconstructed with different approaches.
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Figure 5. AIFs reconstructed with different approaches compared to ground
truth AIF.

vessels in detail for the evaluated algorithms. Figure 5 shows
the resulting arterial input functions (AIFs) of the discussed
approaches. The reconstructions were performed on a laptop
computer with an Intel i7 M 6202 × 2.72 GHz CPU, 8 GB
RAM, and an Nvidia Quadro FX 880M graphics chip set. The
reconstruction of a typical 4D volume of size256× 256× 86
voxels and 14 spline weights per voxel took about25 min us-
ing the DIR-MAP approach and about1.5 min using the FDK
approach, where the projection pre-processing and perfusion
parameter computation is not included.

V. D ISCUSSION& CONCLUSIONS

The CBF maps in Figures 4 and 3 and the AIFs in Figure 5
show how the new DIR-MAP algorithm helps to improve the
reconstructed blood flow maps and AIFs in comparison to the
other evaluated techniques. The FDK maps have clearly the
poorest quality: they are very noisy and the vessels are blurred
into the soft tissue due to the very smooth reconstruction
kernel. This also leads to a severe underestimation of the AIF
and an overestimation of the perfusion values. Furthermore
the stroke-affected areas are not well separated from the
healthy tissue. The edge-preserving filter in the FDK-JBF
reconstruction provides a highly improved noise level in the
tissue without blurring the vessels. However, due to low C-arm
rotation speed artifacts around high contrast vessels are visible
and the AIF is still considerably underestimated. The DIR-JBF
algorithm keenly reduces the FBP artifacts around the vessels
by including the contrast dynamics into an iterative reconstruc-
tion approach and the temporal resolution of the reconstructed
AIF is perceptibly improved. However, the resulting perfusion
maps look more noisy. By including a statistical noise model,
the new DIR-MAP compensates for this drawback. The DIR-
MAP technique provides improved results with low noise
level, reduced artifacts, improved AIF reconstruction, and

physically correct perfusion values. This corresponds to the
quantitative results in Table II. The DIR-MAP algorithm yields
the best results of all algorithms. Comparing DIR-MAP to
standard FDK reconstruction, the RMSE is reduced from 8.4
ml/100 ml/min to 3.7 ml/100 ml/min and PC is increased from
0.85 for standard FDK reconstruction to 0.92 on a sample size
of n = 1815 ROIs.

In this work we extended our DIR-JBF algorithm [2] by in-
cluding a statistical ray weighting to the DIR-MAP algorithm.
We showed that the DIR-based algorithms help to increase the
temporal resolution of the reconstructed TACs and provide
an improved estimation of the AIF compared to FDK-type
approaches. Furthermore the artifacts around vessels withhigh
contrast are keenly reduced. However, we also found that the
recently presented DIR-JBF algorithm produces more noisy
perfusion maps than the FDK-JBF technique. By introducing a
statistical ray weighting, we can compensate for this drawback.
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