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Abstract—Tissue perfusion measurement using C-arm angiog- 3

raphy systems is a novel technique with potential high benefi 0 8%—J
for catheter-guided treatment of stroke in the interventional suite. )
However, perfusion C-arm CT (PCCT) is challenging: the slow 0.6
C-arm rotation speed only allows measuring samples of conast
time attenuation curves (TACs) every 5 — 6 s if reconstructin 0.4
algorithms for static data are used. Furthermore, the peakf the ’
tissue TACs typically lie in a range of 5 — 30 HU, thus perfusin g o
imaging is very sensitive to noise. Recently we presented a
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dynamic, iterative reconstruction (DIR) approach to recorstruct or [ RS v A IR
TACs described by a weighted sum of linear spline functions 0 5 10 15 20 25 30 35
with a regularization based on joint bilateral filtering (JB F). time t after starting acquisition [s]

In this work we incorporate statistical ray weighting into the

algorithm and show how this helps to improve the reconstruatd  rigyre 1. Basis functions for linear interpolation (redlidoand relative
cerebral blood flow (CBF) maps in a simulation study with a angular C-arm position (blue, dashed).

realistic dynamic brain phantom. The Pearson correlation ¢ the
CBF maps to ground truth maps increases from 0.85 (FDK), 0.87

(FDK with JBF), and 0.90 (DIR with JBF) to 0.92 (DIR with JBF L - : -
and ray weighting). The results suggest that the statistidaray we proposed a new dynamic, iterative reconstruction atigori

weighting approach improves the diagnostic accuracy of PcT  With @ joint bilateral filter (DIR-JBF) [2] to reconstruct T2s
based on DIR. from a PCCT acquisition with increased temporal resolution

and improved CNR in the brain tissue compared to standard
FDK reconstruction. In this work, we additionally introdua
|. INTRODUCTION statistical ray weighting to further improve the reconsteal
Perfusion CT (PCT) is an important imaging modality foperfusion maps. We investigate the noise statistics of sub-
diagnosis in case of an ischemic stroke event. Time atteuattracted projections and introduce a penalized weightest lea
curves (TACs) in tissue and vessels are extracted fromsauares (PWLS) formulation extending the DIR-JBF alganith
time series of brain volumes acquired after a contrast boligsthe DIRmaximum a-posteriori (DIR-MAP) algorithm. The
injection. Perfusion parameter maps calculated from TAC3¢w DIR-MAP algorithm is evaluated using a digital brain
which represent quantities such as cerebral blood flow (CBPhantom and compared to the DIR-JBF algorithm, classical
cerebral blood volume (CBV), and mean transit time (MTT};DK reconstruction and FDK' reconstruction followed by
provide information about the extent of the affected tissugenoising with JBF (FDK-JBF).
They can be used to identify potentially salvageable iségbem
tissue that may be reperfused by catheter-guided strokagie II. ALGORITHM
procedures such as intra-arterial thrombolysis. For thip@se A, Acquisition Protocol

the patient is transported to an interventional suite qugdp This section describes the C-arm perfusion acquisition

with a C-grm anglography system, yvhere perfusion megzqoincol used for the simulation study. The parameters are
surement is not yet available. Perfusmn measm_.lrement USBifen from an acquisition protocol available in statehw-t
C_-arm systems quld allow assessing the perf_u5|on paresnelg: c_arm systems (Artis zee, Siemens Healthcare, Germany)
directly before, during an_d after the interventional pidice Since currently available C-arm systems are not capable of
and thus help to determine treatment success and endpQ tinuous, uni-directional rotations, the C-arm is retain

[1]. C_urrintf-arm syste_ms .typ|cally reqdwrde apout 4 - 55 9 bi-directional manner in forward and backward direction
acquire the X-ray projection images needed to reconstmet 0during a perfusion scan. At first one C-arm rotation in fomvar

volume and a pause of abolts between two SUCCESSIVE3n one in backward direction acquires mask projection data

acquisitions, which limits the temporal sampling _Of the BAC Ju (M: mask) with the static anatomical structures. In each
and makes perfusion C-arm CT (PCCT) challenging. Recen tation 248 projections covering an angular range of 197.6
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pre-processing the pure contrast-enhanced projecticm plat - _;|n(i}is) |
is computed by subtracting the mask projectigisfrom the a7} - - - Affine approximation |
bolus projectiong®.

B. Dynamic Iterative Reconstruction Algorithm

The DIR-JBF algorithm [2] represents the basis method
used to reconstruct the contrast time attenuation curA&Sg)r
inside the volume of interest (VOI) from the dynamic projec- bl
. . 00 920 940 960 980 1000 1020 1040 1060 1080 1100
tion data denoted by vectgs € R”, which comprehends Photon Counts (i = 100000)
all rays during the contrast-enhanced acquisition afteskma
subtraction. Each TAC inside the VOI is described by Bigure 2. First order Taylor approximation of logarithmicegprocessing
weighted sum of asymmetric linear spline functions. Thetknoground_ a photon count (if: 1000 in the 3 op interval of the corresponding

. aussian random procesg99.7 % of measurements of 1000 photons will
of the splines are placed @25 - Tror and0.75 - Tyor Of €ach C-  pe inside the interval1000 — 3 op 1000 + 3 op] ; op = /1000).
arm rotation (Figure 1). Consider the 4D volume denoted by
vectorx describing the TACs sampled at the acquisition time
point of each acquired contrast-enhanced C-arm projectignodel into the DIR-JBF algorithm to extend it to the DIR-
We introduce the matriB, which interpolatesx from the MAP algorithm. The number of photons measured at the C-
weights of all basis functions denoted by vectorsuch that arm detector is considered as a Poisson random process to
x = Bw. The system matriA describes the dynamic forwardsimulate quantum noise. The number of photons reaching a de-
projectionp ~ Ax. The DIR-JBF algorithm reconstructstector pixel is related to the line integraby i = iSexp (—p),
the basis weightsv from p by minimizing the least-squareswherei® denotes the number of photons emitted at the source.
distance between the measured projection datand the Incorporating quantum noise, the number of actually messur
forward projected estimated 4D volume: photons is a Poisson random processy P (up = i) (P:

~ 1 9 photons). Since we do tomographic brain imaging we assume

W = argmin o |ABw — pl|;. (1) alarge number of counts; i.£> 1000. For such large counts a

&iussian process is an excellent approximation of the G®oiss
e

Line Integral

This large scale problem can be solved as described in
by using a gradient-based iterative procedure based on . ) i
Landweber scheme: i~ N (“P =Lop= Z) :

Cess:

The measured line integrals are also random variables and
related to the photon counts by(i) = —1In(¢/:%). As
The parameter3 controls the step size of the parametegiscussed in [4] for large photon counts we can simplify the

update in each iterationAB describes a linear interpola-jogarithmic processing by a first order Taylor series degwelo
tion followed by forward projection andB” AT represents ment of p Z) aroundpp = i:
a weighted backprojection of the error image onto the basis

wit = w* + 5. BTAT (p - ABw"). @)

weights. As described in [2] the gradient update step is N N N L
using a vessel-masked backprojection, where rays intémgec p (Z) ~ PP (z z)
with high contrast vessel structures are only backprojecte i i—1

onto voxels belonging to the vessel structures. The weight - _mi_s + i ®)
vector w is initialized from FDK reconstructions of the C'Figure 2 shows that the first order development is an appropri

arm rotations. Furthermore JBF is used for regularizatiog, approximation inside tHeop interval of ;. From Equation
JBF is an adapted version of the bilateral filter, where trée

N . . : . we see that the logarithmic processjh@) is mainly a scal-
range similarity image is computed using a guidance image. _ - _ o ’

In the DIR-JBF algorithm the temporal maximum intensity"d With —1/i and shifting with—In (i/i )+_1- Thus the line
projections of the reconstructed TACs are used as guidargigral random variablg can also be described as a Gaussian
image. We modify the JBF regularization compared to [2Process with meap, = pp/i —In(ifis) + 1 = —In(i/is)
after FDK initialization Nysr = 3 JBF iterations are applied. 2nd variancer. = op/i (L: line integrals):

During the DIR, JBF is applied once after every three gradien . _ N -

update steps. To show the benefits of the dynamic iterative re p~N (“'— = —In(i/is); oL = 1/\/2) : )
construction algorithm compared to pure FDK reconstructio \odeling the noise in line integral domain by Gaussian

followed by JBF the result of the initialization is includéd 5nqom processes allows to describe the subtraction of the
the evaluation. Applying only the initialization step isni#ed 35K measurements from the contrast-enhanced measusement

as the FDK-JBF algorithm. as a subtraction of two independent Gaussian random pro-
o o cesses. Thus a mask-subtracted contrast measurgient
C. Satigtical Ray W\eighting (p® — pM) (S: subtracted) is again a Gaussian process:

In this section we discuss how we model the noise in the S S 5 vos : :
subtracted projection datp and include a statistical noise p NN(ML =p —plop=1/®+ 1/1'\")- (5)



[Parameter] FDK | FDKJBF | DIRJBF | DIR-MAP |

oK 1.25 0.25 0.25 0.25
op 1.5 mm 1.5 mm 1.5 mm
ORO 0.001 0.001 0.001
OR 1.25-10% | 1.25-10% 1.25-10%
B 3 12
NjBr 3 3 3
NpIr 12 12

ok . smoothness of FDK filter kernel for initial reconstruction
op: spatial bandwidth of JBRyro: range bandwidth of initial JBF,
oR: range bandwidth of JBF3: DIR update step size,
Njgr: number of initial JBF iterations,
Npjr: number of DIR-JBF/DIR-MAP iterations

Table |
PARAMETERS OF ALGORITHMS

Reference FDK-JBF DIR-MAP

The maximum likelihood (ML) estimation of the weighﬁs Figure 3. Artifacts in CBE maps (units: ml/100 g/min) co_rripgr_DIR-MAP
f . d ith . . . ided b and FDK-JBF reconstructions to the reference for two diffiérslices. In the
rom projection data with Gaussian noise is provide y ths%cond row, zoomed views of the CBF maps shown in Figure 4 raneded

corresponding log-likelihood function [5], which combge as indicated by the rectangular regions in the lower leftgena
Equation 1 with the diagonal weighting matri® to the

squared Mahalanobis distan®e(w): | | FDK [ FDK-JBF [ DIR-JBF | DIR-MAP ]
1 RMSE 8.4 4.6 6.2 3.7
T PC (n =1815)| 0.85 0.87 0.90 0.92
D(w) = (ABw-p)'D(ABw-p),  (6) nss
Table Il
. 2 2 . QUANTITATIVE RESULTS OF CBF MAPS FROM DIGITAL BRAIN PERFUSION
whereD = d|ag{1/ (05,1) yoes 1/ (UEN) }, with N de- PHANTOM DATA RECONSTRUCTED WITH DIFFERENT APPROACHES

fined in subsection 11-B. Note that in the casé of non-sulgic (RMSE:ROOT MEAN SQUARE ERROR INML/100ML/MIN], PC: PEARSON
. . . . . CORRELATION TO REFERENCE MAPS WITH SAMPLE SIZE)\I

projections the ML estimation would be the same as in well-

known statistical reconstruction algorithms [6]. Howewaur

derivation also allows to describe the noise in subtracted

pr(l)zjrltgti07ns.h d that the bil | filter i lated to B . brain scan and simulates TACs inside a stroke-affectedhbrai
ad [7] showed that the bilateral filter is related to Bagesi The phantom is available online [10]. Different regionshwit

noise r_emoval_. Thus we can comb|r_1e the ML eSt'mate Peduced blood flow and volume were annotated in the brain
Fhe We'ghFS with a ‘]BF. pgnalty fUﬂCt!ORJBF (w).resultlng likewise as in [9]. The dynamic C-arm projection data was
in the maximum a-posteriori (MAP) estimate, which can be created by forward projecting the 4D phantom according to
formulated as a PWLS problem : the acquisition protocol. Poisson-distributed noise wddea
to the projections assuming an unattenuated X-ray density o
2.1 - 10° photons per mrh at the detector. The CBF maps
were calculated from the reconstructed TACs using a standar
S§econvolution-based approach [11]. In this study we coexgbar
simple FDK reconstruction with the FDK-JBF, DIR-JBF, and
DIR-MAP approaches with the parameters shown in Table I.
wil =wh 4+ - BTATD (p - ABw"). @ we computed the RMSE and Pearson correlation (PC) of the
Analogous to the DIR-JBF algorithm, the weights are initiarésulting CBF maps to reference maps created from ground
ized from FDK reconstructions and filtered;gr = 3 times truth data using an automated ROI analysis [1]. Each of the 18
after FDK initialization and once after every three gradierslices with stroke annotation of the CBF volume was divided
update steps. Also vessel masking is applied in the backpl©® quadratic ROIs of sizes x 8 mm? and the mean of
jection step. In this work we use the approximatibn = €ach ROI was consider_ed as a measurement for RMSE and
diag{exp (—p¥") ,...,exp (—p¥)}. The contrast attenuation PC computation. ROls including voxels ogt3|de the brain or
is very small compared to the attenuation of the anatonigSsels were ignored. The slow C-arm rotation speed alss lea
structures and thusS, ~ /2/iM = /2/ (iSexp (—p")), © artifacts aroun_d arterleslwnh high contrast dynamlchBP- _
which results in the above weighting matrix after omittihgt tyPe reconstruction algorithms are used [12]. A qualitativ
constants. comparison of DIR to FDK reconstruction with respect to such
artifacts was performed.

W = argmin D (w) + AR5 (w). (7)

iterative procedure:

Ill. M ATERIALS & M ETHODS

We evaluate the different approaches using the realistic IV. RESULTS

digital brain perfusion phantom, which was originally de- Figure 4 shows the resulting CBF maps reconstructed with
scribed in [8] and extended for C-arm perfusion imaging ithe different approaches. The quantitative results arevisho
[9]. The phantom is based on segmentation of a human MR Table Il. Figure 3 shows the artifacts around high contras



FDK-JBF

Figure 4. CBF maps (units: ml/200 ml/min) from digital brgierfusion phantom data reconstructed with different apgies.

Reference

500

DIR-JBF DIR-MAP

Reerence physically correct perfusion values. This correspondshi t
400 = FDK-JBF guantitative results in Table Il. The DIR-MAP algorithm lgde
B the best results of all algorithms. Comparing DIR-MAP to

0 5 10 15
time [s]

standard FDK reconstruction, the RMSE is reduced from 8.4
ml/100 ml/min to 3.7 ml/100 ml/min and PC is increased from
0.85 for standard FDK reconstruction to 0.92 on a sample size
of n = 1815 ROls.
In this work we extended our DIR-JBF algorithm [2] by in-
20 25 30 cluding a statistical ray weighting to the DIR-MAP algorith
We showed that the DIR-based algorithms help to increase the
Figure 5. AlIFs reconstructed with different approaches mared to ground temporal resolution of the reconstructed TACs and provide

truth AIF. an improved estimation of the AIF compared to FDK-type
approaches. Furthermore the artifacts around vesselsigith

vessels in detail for the evaluated algorithms. Figure Svsho
the resulting arterial input functions (AIFs) of the dissed
approaches. The reconstructions were performed on a IapP
computer with an Intel i7 M 62Q@ x 2.72 GHz CPU, 8 GB
RAM, and an Nvidia Quadro FX 880M graphics chip set. The
reconstruction of a typical 4D volume of si266 x 256 x 86 a
voxels and 14 spline weights per voxel took ab®&itmin us-
ing the DIR-MAP approach and about min using the FDK
approach, where the projection pre-processing and perfusi
parameter computation is not included. 2]

V. DIScUSSION& CONCLUSIONS

The CBF maps in Figures 4 and 3 and the AlFs in Figure %l
show how the new DIR-MAP algorithm helps to improve the
reconstructed blood flow maps and AlFs in comparison to thg]
other evaluated techniques. The FDK maps have clearly the
poorest quality: they are very noisy and the vessels aredalur 5
into the soft tissue due to the very smooth reconstructiofs]
kernel. This also leads to a severe underestimation of tfre Al
and an overestimation of the perfusion values. Furthermor[
the stroke-affected areas are not well separated from the
healthy tissue. The edge-preserving filter in the FDK-JBHS!
reconstruction provides a highly improved noise level ia th
tissue without blurring the vessels. However, due to low@-a
rotation speed artifacts around high contrast vesselsisitdes (%]
and the AIF is still considerably underestimated. The DB¥-J
algorithm keenly reduces the FBP artifacts around the \®sse
by including the contrast dynamics into an iterative retts H%
tion approach and the temporal resolution of the recontstduc
AIF is perceptibly improved. However, the resulting peifus
maps look more noisy. By including a statistical noise mpd I12]
the new DIR-MAP compensates for this drawback. The DIR-
MAP technique provides improved results with low noise
level, reduced artifacts, improved AIF reconstructiondan

contrast are keenly reduced. However, we also found that the
recently presented DIR-JBF algorithm produces more noisy
erfusion maps than the FDK-JBF technique. By introducing a
Rtistical ray weighting, we can compensate for this dexkb
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