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ABSTRACT

Tissue perfusion measurement using C-arm angiography sys-

tems capable of CT-like imaging (C-arm CT) is a novel tech-

nique with potentially high benefit for catheter-guided treat-

ment of stroke in the interventional suite. New rapid scan-

ning protocols with increased C-arm rotation speed enable

fast acquisitions of C-arm CT volumes and allow for sampling

the contrast flow with improved temporal resolution. How-

ever, the peak contrast attenuation values of brain tissue lie

typically in a range of 5–30 HU. Thus perfusion imaging is

very sensitive to noise. In this work we compare different

denoising algorithms based on the algebraic reconstruction

technique (ART) and introduce a novel denoising technique,

which requires only iterative filtering in volume space and is

computationally much more attractive. Our evaluation using

a realistic digital brain phantom shows that all methods im-

prove the perfusion maps perceptibly compared to Feldkamp-

type (FDK) reconstruction. The volume-based technique per-

forms similarly to the ART-based methods: the Pearson cor-

relation of reference and reconstructed blood flow maps in-

creases from 0.61 for the FDK method to 0.81 for the best

ART method and to 0.79 for the volume-based method. Fur-

thermore results from a canine stroke model study are shown.

Index Terms— Perfusion imaging, iterative reconstruc-

tion, C-arm CT, stroke treatment

1. INTRODUCTION

Perfusion CT (PCT) is an important imaging modality for di-

agnosis in case of an ischemic stroke event. Time attenua-

tion curves (TACs) of contrast flow in tissue and vessels are

extracted from a time series of brain volumes acquired af-

ter a contrast bolus injection. Perfusion parameter maps cal-

culated from TACs, which represent quantities such as cere-

bral blood flow (CBF), cerebral blood volume (CBV), mean

transit time (MTT), and time-to-peak (TTP), provide infor-

mation about the extent of the affected tissue. They can be

used to identify potentially salvageable ischemic tissue that

could be reperfused by catheter-guided stroke therapy proce-

dures such as intra-arterial thrombolysis and mechanical clot

retrievement. For this purpose the patient is transported to an

interventional suite with a C-arm angiography system, where

perfusion measurement is commonly not yet available. Perfu-

sion measurement using C-arm systems would allow for as-

sessing the perfusion parameters directly before and during

the interventional procedure and help to determine the treat-

ment success and endpoint. Additionally, perfusion C-arm

CT (PCCT) can – in contrast to PCT – acquire 3D perfusion

maps in high resolution in z (axial) direction with full brain

coverage. However, PCCT is challenging: common C-arm

systems typically need 5 s to acquire one volume, which lim-

its the temporal resolution of the reconstructed TACs. Fur-

thermore perfusion imaging is highly sensitive to noise since

the peaks of the TACs inside the brain tissue typically lie in

a range of 5–30 HU. Recently, we proposed a dynamic it-

erative reconstruction technique [1] to reconstruct TACs with

increased temporal resolution from the acquired X-ray projec-

tions which uses a regularization based on joint bilateral fil-

tering (JBF) [2] to increase the contrast-to-noise (CNR) level

of the brain tissue TACs. However, this approach has a much

higher computational effort than FDK reconstruction and re-

quires subtraction of the static anatomic structures in pro-

jection space. A further possibility to improve the tempo-

ral sampling of the TACs is a rapid scanning protocol with

increased rotation speed of up to 100°/s using novel robotic

C-arm systems (Artis zeego, Siemens AG, Germany). For

the rapid scanning protocol we recently applied an iterative

tight frame (TF) wavelet-based reconstruction algorithm [3]

in a brain perfusion phantom study [4] to increase CNR in

the tissue TACs, which showed promising results to improve

the perfusion maps compared to FDK [5] reconstruction. In

this work, we compare the latter approach to the JBF and the

improved total variation (iTV) [6] regularization techniques.

However, all these approaches are based on ART [7] and thus

computationally expensive. As discussed in [8] analytical re-

construction followed by iterative denoising in volume space

can achieve similar results in noise reduction as the ART-

based approaches with much less computational effort. Thus

we also developed a pure volume-based denoising technique

and show that it provides similar results regarding perfusion

measures as the fully iterative algorithms.

The rapid scanning protocol consists of two acquisition

sequences: the first sequence acquires one sweep in forward



and one in backward C-arm rotation before bolus injection

to reconstruct baseline volumes with static anatomical struc-

tures. The second sequence then acquires Nrot = 7 consec-

utive sweeps with alternating forward and backward C-arm

rotations after bolus injection to reconstruct a time series of

contrast-enhanced volumes. Each sweep acquires 133 projec-

tions in a 200° angular range and requires Tr = 2.8 s for

data acquisition with a pause of Tw = 1.2 s between the

sweeps. Thus TACs can be sampled with a temporal reso-

lution of Ts = Tr + Tw = 4 s.

2. DENOISING TECHNIQUES

2.1. Iterative Algebraic Reconstruction Algorithms

Algorithm 1 General ART reconstruction framework

1. x0 = 0

2. For k = 1 . . . NART

3. Data consistency: xk = OS-ART
(

xk−1
)

(3 iterations)

4. Regularization: xk = T
{

xk
}

5. Assure positivity: xk = max
{

xk,0
}

6. End For

The ART-based methods reconstruct the 3D volume X ∈
R3 represented as a column vector x from the measured pro-

jection data p by minimizing:

argmin
x

‖Ax− p‖
2
+ λR (x) . (1)

The system matrix A describes the cone-beam acquisi-

tion geometry of the C-arm system and R (x) is a penalty

term incorporating prior knowledge about volume smooth-

ness, where scalar λ controls its influence. Each baseline and

contrast-enhanced scan is reconstructed separately. Equation

1 is solved using Algorithm 1 by alternately minimizing the

data consistency term ‖Ax− p‖
2

and the regularization term

R (x) for a fixed number of iterations NART. In step 3 of Al-

gorithm 1 data consistency is enforced by applying three it-

erations of the GPU-based Ordered Subsets-ART (OS-ART)

method presented in [9]. In step 4 prior knowledge about the

reconstructed volume is incorporated by applying operator T
to the current volume estimation to reduce the penalty term

R(x). All negative values in x are set to zero in step 5 to

obtain a physically correct solution.

In this work we evaluate three different regularizers

R (x). First, we investigate the iTV approach [6], where

the regularization term is the total variation norm RTV (x) =
‖x‖TV. In this case operator T is given by an iterative gradient

descent procedure with automatic adaption of the TV gradient

step size to assure improved data consistency after one itera-

tion of Algorithm 1. Second, we apply the TF Shrink method,

a wavelet-based regularization approach described in [3] with

RTF(x) = ‖Ψx‖
0
, where Ψ denotes a wavelet decomposi-

tion into the high pass coefficients of a redundant, piecewise

linear 3D TF representation [10]. The sparsity is enforced by

T with a soft shrinkage operation on the high pass wavelet

coefficients [3]. As in [4] the high contrast vessel structures

are excluded from the regularization. Third, we use the JBF

regularization from [1] based on the bilateral filter (BF) [11]

(ART-JBF method). The BF is a non-linear denoising filter

using a combination of domain and range filtering, which is

extended to the JBF by computing the range similarity using a

guidance image [2]. As in [1] we use the temporal maximum

intensity projection (MIP) M of the TACs as guidance image.

The MIP M is computed as shown in steps 1–4 of Algorithm

2: in steps 1 and 2 the baseline and contrast-enhanced sweeps

are reconstructed using a short-scan FDK algorithm with a

sharp Shepp-Logan filter kernel to preserve high frequent

structures. In step 3 the baseline volumes are subtracted from

the contrast-enhanced volumes to get pure-contrast volumes,

where volumes acquired with the same rotation direction (for-

ward or backward) are always subtracted from each other to

eliminate streaking artifacts. From all pure-contrast volumes

the maximum intensity of each voxel is computed. After ap-

plying a BF with range variance σ2
R0 and domain variance σ2

D

in step 4 to reduce noise, the guidance volume M is obtained,

which properly describes the different structures of contrast

flow (such as vessels as well as healthy and stroke-affected

tissue) in the scanned brain. As discussed in [12] the BF –

initially proposed as an intuitive tool – is related to Bayesian

noise removal and can be expressed with a regularization

term R (x). We define the regularization operator T as one

application of the JBF, T (x) = JBF {x}σD,σR
, with range

variance σ2
R and domain variance σ2

D.

2.2. Iterative Denoising in Volume Space

The ART-based algorithms exhibit a high computational

complexity due to the repeated forward and back projections.

Thus we introduce and evaluate the FDK-JBF method (Al-

gorithm 2) as a computationally much faster volume-based

denoising strategy: in steps 1–2 an FDK reconstruction with

a sharp filter kernel of the baseline and the contrast-enhanced

sweeps is applied to compute the MIP in steps 3–4 and to

create initial volumes with high data consistency. Then NV

iterations (step 5) are carried out, applying the JBF on all

reconstructed volumes (step 6), followed by recomputing M

from the filtered volumes (step 7).

3. MATERIALS & METHODS

To evaluate the denoising approaches a realistic digital 4D

brain perfusion phantom [13, 4] is used. The digital brain

phantom based on MR data does not have the sparse struc-

tures of classical CT phantoms, which favor algorithms apply-



Algorithm 2 FDK-JBF denoising algorithm

1. FDK reconstruction of baseline rotations:

x0
F = FDK {pF} ,x

0
B = FDK {pB}

2. FDK reconstructions of contrast-enhanced rotations:

x0
i = FDK {pi} , i = 1 . . . Nrot

3. Compute maximum intensity projection:

M∗ = max
{

x0
i − x0

F/B|i = 1 . . . Nrot

}

4. Bilateral filtering:

M1 = BF {M∗}σD,σR0

5. For k = 1 . . . NV

6. JBF of all volumes with guidance image Mk:

xk
F = JBF

{

xk−1

F

}

σD,σR
,xB = JBF

{

xk−1

B

}

σD,σR

xk
i = JBF

{

xk−1

i

}

σD,σR
, i = 1 . . . Nrot

7. Update MIP:

Mk+1 = max
{

xk
i − xk

F/B|i = 1 . . . Nrot

}

8. End For

pF : projection data of baseline forward acquisition

pB : projection data of baseline backward acquisition

pi : projection data of i-th contrast-enhanced acquisition

ing typical non-linear regularizers. Consequently, our brain

phantom allows for a realistic numerical evaluation of the de-

noising algorithms. Ellipsoid ROIs simulating tissue with re-

duced and severely reduced perfusion were annotated in the

brain phantom (see [4] for details). We created dynamic C-

arm projection data by forward projection according to the

rapid scanning protocol. Afterwards Poisson distributed noise

was added to the projection data simulating an emitted X-ray

density of 3.3 · 105 photons per mm2 at the detector and a

monochromatic photon energy of 60 keV corresponding to

a system dose of about 0.56 µGy / projection. The projec-

tion data was reconstructed using the different approaches

discussed in Section 2 with the parameters shown in Table

2 in the appendix and σR0 = 80 HU, σR = 20 HU, σD =
1.5 voxels, and NART = 8. Then baseline volumes were

subtracted from the contrast-enhanced volumes to create the

pure-contrast volumes. Afterwards contrast TACs were sam-

pled with a temporal resolution of 1 s by linear interpolation

between the pure-contrast volumes. The CBF, CBV, and MTT

maps were calculated from the TACs using the truncated SVD

algorithm [14]. For quantitative evaluation the root mean

square error (RMSE) over time between the reconstructed and

the ground-truth TACs was computed for the arterial input

function (AIF) and the TACs of the brain tissue. To evaluate

the reconstructed perfusion maps, reference perfusion maps

were created from the ground truth TACs. We calculated the

Pearson correlation (PC) between the reconstructed and the

reference maps by applying an automated ROI analysis: the

maps were partitioned slice-wise into quadratic areas of 4×4

FDK iTV TFShrink ART-JBF FDK-JBF

PC CBF 0.61 0.80 0.79 0.81 0.79

PC CBV 0.55 0.75 0.76 0.77 0.76

PC MTT 0.49 0.74 0.72 0.78 0.81

PC TTP 0.55 0.74 0.73 0.78 0.77

CT 1 36 39 30 3

Table 1. Quantitative results of digital brain phantom study

(CT: computation time).
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Fig. 1. Reconstructed CBF perfusion maps from digital brain

perfusion phantom data (units: ml/100g/min).

pixels and the average perfusion values of the ROIs belong-

ing to the brain tissue were used as measurement variables for

the PC computation. ROIs containing vascular structures or

air were ignored. The FDK and FDK-JBF techniques were

also used to reconstruct 3D perfusion maps from an animal

study, where an ischemic stroke was induced in a healthy ca-

nine under an institutionally approved protocol and a PCCT

acquisition was conducted using the rapid scanning protocol.

4. RESULTS

Table 1 shows the quantitative comparison between the recon-

struction algorithms with respect to PC and the total compu-

tation time for reconstruction of all volumes. For more de-

tailed results also including the RMSE of the reconstructed

TACs see Table 2 in the appendix. The volumes had a size of

256×256×86 voxels and were reconstructed on a laptop com-

puter with an Intel i7 M 620 2 x 2.7 GHz CPU, 8 GB RAM,

and an Nvidia Quadro FX 880M graphics chip set. Figure 1

illustrates the reconstructed CBF perfusion maps using FDK,

ART-JBF, and FDK-JBF algorithms. The CBV, MTT, and

TTP maps are shown Figure 3 in the appendix. The 3D canine

study CBF perfusion maps are shown in Figure 2. Addition-

ally the TTP maps are shown in Figure 4 of the appendix.
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Fig. 2. 3D CBF perfusion maps from canine stroke model

(units: ml/100g/min).

5. DISCUSSION & CONCLUSIONS

The quantitative results in Table 1 and Table 2 show that

all denoising strategies improve the RMSE of reconstructed

TACs and the PC of the reconstructed perfusion maps com-

pared to native FDK reconstruction. The best results are

achieved using the JBF-based approaches, where the FDK-

JBF result is very close to the ART-JBF result with a computa-

tion time reduced by a factor of ten. Comparing the perfusion

maps shown in Figure 1 and Figure 3 reconstructed with the

JBF approaches to the FDK approach, the JBF approaches

show several advantages: the stroke-affected areas are much

better separated from the healthy tissue and their shape is

much closer to their shape in the reference maps. Also the

area of increased perfusion values around the vessels in the

CBF and CBV maps (red pixels) due to smoothing is much

higher in the FDK than in the JBF maps. The perfusion values

in the brain tissue are in a range of 20–60 ml/100g/min for

CBF resp. 2–6 ml/100g for CBV in the JBF maps which is the

same range as in the reference maps, but the range in the FDK

maps is 40–120 ml/100g/min for CBF resp. 4–12 ml/100g for

CBV. This also holds for the 3D canine CBF maps from real

data shown in Figure 2: the vessels are less blurred and the

perfusion value range is closer to physiologically expected

values in the FDK-JBF CBF map than in the FDK CBF map.

Furthermore the FDK-JBF maps are smoother in XZ and YZ

viewing directions.

In this work we evaluated the use of different denoising

methods for perfusion C-arm CT with a rapid scanning pro-

tocol. All evaluated methods showed a perceptible improve-

ment compared to standard FDK-type reconstruction. How-

ever, using ART-based approaches this comes for the price

of a much higher computational effort. Thus we introduced

a pure volume-based denoising technique with much smaller

computational complexity and showed that it performs sim-

ilarly to the ART-based approaches. One problem of JBF-

based approaches might be streak artifacts, which cannot be

handled well by a bilateral filter. Due to the low number of

133 projections they appear in the reconstructed volumes but

vanish after subtraction of the baseline volumes. However,

in real patient acquisitions they might not be always repro-

ducible and the elimination of such artifacts represents a di-

rection of future research. Furthermore hardware improve-

ments involving rotation speed and detector read out rate are

also worth of investigation.
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FDK iTV TF Shrink ART-JBF FDK-JBF

Parameters σK = 1.0 σK = 1.25 σK = 1.5 NTV = 3 µ = 20 NV = 1 NV = 3 NV = 4

RMSE AIF 121.40 143.85 165.70 35.83 35.72 27.73 47.34 47.34 47.34

RMSE Tissue 3.87 3.24 2.97 2.55 2.53 1.99 2.25 1.98 2.03

PC CBF 0.60 0.61 0.60 0.80 0.79 0.81 0.78 0.79 0.76

PC CBV 0.53 0.55 0.55 0.75 0.76 0.77 0.74 0.76 0.73

PC MTT 0.43 0.49 0.53 0.74 0.72 0.78 0.72 0.81 0.81

PC TTP 0.47 0.55 0.61 0.74 0.73 0.78 0.78 0.77 0.76

CT 1 1 1 36 39 30 2 3 3

Table 2. Quantitative results of digital brain phantom study (σK: smoothness of FDK filter kernel, NTV: TV minimization

iterations in each regularization step, µ: soft-shrinkage threshold, NV: number of denoising iterations in volume space, RMSE:

root mean square error over time in HU, PC: Pearson correlation, CT: computation time in minutes, bold numbers indicate best

result in row).
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Fig. 3. CBF (units: ml/100g/min), CBV (units: ml/100g), MTT (units: s), and TTP (units: s) perfusion maps from digital brain

perfusion phantom data reconstructed with FDK (σK = 1.25), ART-JBF, and FDK-JBF (NV = 3) algorithms.
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Fig. 4. 3D CBF (units: ml/100g/min) and TTP (units: s) perfusion maps from canine stroke model.


