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Abstract—We present a novel machine learning-based system
for unstained cell detection in bright-field microscope images. The
system is fully automatic since it requires no manual parameter
tuning. It is also highly invariant with respect to illumination
conditions and to the size and orientation of cells. Images
from two adherent cell lines and one suspension cell line were
used in the evaluation for a total number of more than 3500
cells. Besides real images, simulated images were also used in
the evaluation. The detection error was between approximately
zero and 15.5% which is a significantly superior performance
compared to baseline approaches.

1. INTRODUCTION

Though fluorescence microscopy is widely used, many
applications require the use of unstained cell imaging. One of
motivating factors is that the signal obtained by fluorescence
microscopy cannot be guaranteed to cover the entire cell, and
therefore it is not suited for cell boundary segmentation [2].
Such shape information is important when studying cellular
processes like mitosis and apoptosis [35]. Furthermore, the
fluorescent dyes are sometimes considered non-neutral or even
toxic. For instance, cell-tracing dyes used in cell viability iden-
tification and cytotoxicity tests dramatically change the cell
stiffness and the cell-to-probe adhesion [24]. Phase-contrast
microscopy and bright-field microscopy can be used for un-
stained cell imaging. Compared to phase-contrast, bright-field
imaging does not need a specialized hardware and it is thus
cheaper and easier to implement [9].

Unstained cell recognition in bright-field images is a chal-
lenging problem [20], [21], [36], [38], [42]. Cells exhibit
a great diversity in shape and size. In addition, a simple
microscopy technique like bright-field does not always offer
sufficient contrast between cells and background [8], [36]. In
fact, adherent cells are almost invisible at focus [1], [2], [4].
The contrast can be improved by defocusing the microscope.
An image is considered positively defocused when the objec-
tive approaches the object and negative otherwise [1].
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In [4], a positively defocused image was segmented by
applying the watershed algorithm on the distance transform of
a thresholded image. An in-focus image was processed with
the self-complementary top-hat followed by thresholding and
watershed. A negatively defocused image was preprocessed
with a Canny edge detector before analyzed by anisotropic
contour completion [10]. These three results were then com-
bined in order to select micro-injection points inside the cells.

In [3], a positively defocused image was subtracted from a
negatively defocused one. The difference image was thresh-
olded and the result was post-processed with an appropriately
chosen size filter. Each connected component of the resulting
mask was used to initialize a level-set evolution.

The aforementioned techniques are based on heuristics. In
contrast, there is a family of methods for cell detection that
are learning-based. In these approaches, a classifier labels each
pixel as either a cell or a non-cell pixel. The output of the
pixel-wise classifier delivers a confidence map. The maxima
of the latter correspond to cell centers.
For training the classifier, features are extracted from a fixed-
size patch sampled in the neighborhood of the pixel under
investigation. Several papers share this common strategy de-
spite the differences in the classifier model and the image
modality. For example, [31] used principal component analysis
(PCA) features extracted from 15 x 15 sized patches which are
then analyzed by an artificial neural network. In [20], Fisher
discriminant analysis was used instead of PCA. In [21], a
support vector machine (SVM) replaced the neural network.
In [41], a bag of local Bayesian classifiers was used, each of
them trained on a cluster of the training data.

Most of these learning-based approaches require parame-
ter tuning. These parameters are related to thresholding the
confidence map, applying morphological operators on the
thresholding result, and/or searching for the maxima of the
confidence map. In all mentioned learning-based approaches,
the optimal size of the patch should conform to the mean cell
size which is not always known a priori. In addition, the square
neighborhood used in these methods, does not fit non-circular
cells.

We think that a good cell detection system should fulfill
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(a) A positively defocused input image. 
The contrast was improved for clarity.

(b) Each circle represents a keypoint. The 
radius lengths and angles correspond to 
the keypoint scale and orientation.

(c) Each keypoint is classified as either a 
cell keypoint or a background keypoint.

(d) A profile between each two nearby 
keypoints is classified as either "inner" or 
"cross" profile.

(e) The result of the agglomerative 
hierarchical clustering. 

(f) The detection result. Each sign marks a 
cell.

Fig. 1. A general overview of our automatic cell detection approach.

the following criteria: a) It should be invariant to cell size and
orientation. b) It should be invariant to illumination conditions.
c) It should be automatic, i.e. it does not need manual
parameter tuning. d) If tracking is required after detection, then
the detected cells should be equipped with trackable features.
e) Lastly, the degradation of the detection rate because of
the previous invariance requirements should be minimal. With
these criteria in mind, we developed a learning-based system
for automatic unstained cell detection in bright-field images.

We tested the system on three cell-lines: adherent CHO,
adherent L929, and Sf21 in suspension. The adherent cells
had very low contrast and were almost invisible at focus. In
addition, a cell simulation software [17] was used to generate
synthetic images with noise and illumination artifacts. All
analyses on the real and the simulated images were done
without any manual parameter tuning. The only difference
between these experiments was in the training data.

A. System overview

A cell is expressed in bright-field images as one or more
blobs in intensity. A blob is a maximum of the normalized
Laplacian in scale space [19]. It is also called an interest point
or a keypoint. SIFT [22] is a class of local image features
which characterize the neighborhood of each keypoint in a
scale- and orientation-independent way.

Our proposed cell detection algorithm is sketched in Fig-
ure 1. The starting point is the extraction of SIFT keypoints
from a defocused image. These keypoints are classified into
cell keypoints and background keypoints. For each cell key-
point, an intensity profile to each nearby cell keypoint is
extracted and classified into either inner or cross profile. A

profile between two keypoints is called inner if these two
keypoints belong to the same cell. Otherwise, it is called cross
profile. The output of the profile classifier is probabilistic.
The probability that a profile between two keypoints is an
inner profile can be seen as a similarity measure between the
keypoints. Based on this similarity measure, an agglomerative
hierarchical clustering of the keypoints with a customized
linkage method is applied. A weighted mean of the keypoint
coordinates inside each cluster marks the detected cell center.

No manual tuning of any parameters is required during
training or detection. The system learns its parameters auto-
matically in a scale- and orientation-invariant manner.

The rest of the paper is organized as follows: Section 2
describes the features and the classifier model of the keypoint
classifier. Section 3 discusses the different aspects of the
profile learning. In Section 4, the hierarchical clustering step is
explained. Section 5 provides details of the training phase. The
detection quality measures are defined in Section 6. Section 7
contains the results. The paper ends with a discussion in
Section 8 and a conclusion in Section 9.

2. KEYPOINT LEARNING

In order to determine, whether the cells in the training data
tend to have a bright or a dark appearance, we perform a
calibration step before the actual cell detection procedure. In
the remainder of this paper, we call a set of keypoints one-
sided if all the keypoints in the set have positive difference-
of-Gaussians (DOG) values or all of them have negative DOG
values. In order to automatically detect the keypoint type
which fits the training data, the system uses the following
measure:
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PositiveFit =

∑Nc

i=1 s(pi)|DOG(pi)|H(DOG(pi))∑Nc

i=1 s(pi)|DOG(pi)|
(1)

where pi, i = 1..NC are the cell keypoints in the training data,
NC is their number, s is the scale, and H is the Heaviside step
function. If PositiveFit evaluates to more than 0.5, the system
ignores keypoints with negative DOG values during training
and detection. Otherwise, it ignores keypoints with positive
DOG values.

After that, the maximum |DOG| in each training cell is
computed and the first percentile of all the previous maxima
is considered a SIFT threshold. During training and detection,
SIFT keypoints which have lower |DOG| than this threshold
will be discarded.

In order to separate cell keypoints from non-cell keypoints,
we used several sets of features from the literature and adjusted
them. We utilized SIFT to make these features scale- and
orientation-invariant. We also made them invariant to local
shift of intensity. The importance of invariance to the local
shift of intensity is discussed in Section 8.

0.3 s 
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Fig. 2. Radial intensity stencil. The stencil is aligned with the keypoint
orientation. The distance between two successive nodes is 0.3 s, where s is
the keypoint scale.
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Fig. 3. Ray features adjusted to keypoints. This figure is an adapted version
of the pixel-based ray features in [34].

More specifically, the following set of features was extracted
for each keypoint:

1) Intensity stencil: We computed intensity stencils [12],
[26] around each keypoint. As shown in Figure 2,
we align the stencil with the keypoint orientation and
measure the distance between the sampling points in
units of scale instead of pixels. The result is a scale-
and orientation-invariant stencil. In order to make the
stencil invariant to the local shift of intensity, we sub-
tract the mean intensity of the stencil from all stencil
nodes. The intensity values at the stencil nodes after the
aforementioned subtraction form the stencil feature set.

2) Ray features: In order to compute ray features [34]
at a keypoint p (cf. Figure 3) in an image I, the
closest edge point p′ along a direction θk is found.
Ray features according to [34] are four sets of features.
The first three are: the distance Rd(p, θk) between p
and p′, the gradient norm Rn(p, θk) at p′, and the
gradient angle α = Ra(p, θk) at p′. If eight values
of the angle θ are used, i.e. k = 1..8, we obtain
24 features. The fourth set is the distance difference
Rdd(p, θk, θk′) = |Rd(p, θk) − Rd(p, θk′)|. Therefore,
for 8 angles, the fourth feature set is 8 · 7/2 = 28
features.
Ray features are well-designed but are sensitive to scale
and orientation. In order to make them orientation-
invariant, we define all angles, i.e. the eight θk angles
and the gradient angle feature Ra(p, θk), with respect
to the keypoint orientation.
In order to make the ray features scale-invariant, we
measure the distances Rd(p, θk) and Rdd(p, θk, θk′) in
terms of scale. Furthermore, we compute the gradient
using the following equation for its x component:

∂I(p′)

∂x
= I(p′x + τs(p), p′y)− I(p′x, p

′
y) (2)

where s(p) is the scale of the keypoint at p. τ is a
constant that we set to 1. A similar equation is used for
the y component. Before applying Eq. (2), the image
is smoothed using a Gaussian kernel with a standard
deviation equal to 1.
The edges are obtained using Canny edge detection [6].
The thresholds were set to the default values in the
Matlab implementation of Canny.

3) Variance map: Based on the variance map [40], we cre-
ated a keypoint-based scale-invariant version by taking
a variable-size neighborhood with a size proportional
to the keypoint scale. For each keypoint p, we extract
three variance map features VMap(p, 2), VMap(p, 4),
and VMap(p, 6) which correspond to variance map in
a square neighborhood of side length 2s(p), 4s(p), and
6s(p), respectively. The map is by construction invariant
to the local shift of intensity.

4) SIFT descriptors: SIFT features were used accord-
ing to the original publication [22], as they are in-
herently scale- and orientation-invariant and partially
illumination-invariant.

5) Other features: The values of the DOG and the princi-
pal curvatures ratio (PCR) at each keypoint were also
obtained from SIFT.
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We chose random forest (RF) [5] as a background-cell
classifier. It is an ensemble of classifiers, each of which is
a decision tree trained on a bootstrap sample of the training
data. During training, splits are based on a feature at each
node. In contrast to conventional decision trees, only a random
subset of the features is considered at each node of a RF tree.
In order to be able to deal with imbalanced class labels, we
chose a balanced random forest (BRF) [7]. Similar to [14],
we set the number of trees to 500 and the number of the
randomly selected features to FN/5 , where FN is the number
of features.

3. PROFILE LEARNING

The keypoints which were classified as background by the
keypoint classifier are discarded. The remaining ones are cell
keypoints. In order to resolve whether two cell keypoints
belong to the same cell, we extract an intensity profile f(v)
between them, where v = 1..NF are the sampling points along
the profile, and NF is the number of the points. We then extract
profile features and use them to classify the profile into either
inner or cross profile.

The following features are extracted for each intensity
profile f(v):
• The standard deviation, the skewness, and the kurtosis of

the profile.
• The standard deviation, the skewness, the kurtosis, the

maximum, the minimum, and the mean of the first
derivative df/dv and the second derivative d2f/dv2 of
the profile.

• Two other features:

V1 = max(f)−min(f) (3)

V2 = f(1)− 2max(f) + f(NF ) (4)

Fig. 4. Profile sets between different keypoints.

The profiles are sampled using a fixed number of points NF =
50. The derivatives are Gaussian derivatives with σ = 0.1NF .

As a classifier model, we use again BRF.
For the training of the profile classifier and during the

detection phase, the algorithm extracts a profile between two
keypoints only if they are nearby. In order to achieve this goal
in a scale-invariant manner, the algorithm learns the maximum
inner profile length from the training data.

Naturally, it is inappropriate to measure the profile length
in pixels. We use the average scale U(I) of all cell keypoints
inside the image as a profile length unit for this image.

During training, the maximum inner profile length Lk in
each training image Ik is computed in terms of U(Ik). Then
the maximum of all the Lk values is considered the maximum
inner profile length in the training data, L = max(Lk), k =
1..Nt, where Nt is the number of training images.

Given a cell keypoint p1 in an image I, another cell keypoint
p2 in I is considered nearby if the Euclidean distance between
the two keypoints, in units of U(I), is smaller than ζL. ζ is a
safety parameter that we set to 2.

The image area which is sampled by one intensity profile
is actually very small. It is thus plausible to expect an im-
provement in the detection accuracy when the profile captures
information from a wider image area.

Instead of extracting one profile between the two considered
keypoints, one could extract a set of profiles, i.e. several
parallel profiles as demonstrated in Figure 4. The geometry of
the set can be described, for instance, in terms of the maximum
scale of the two keypoints. In Figure 4, the profile set contains
five parallel profiles, one profile every 0.75smax

ij . smax
ij is the

maximum scale of the two considered keypoints pi and pj .
Alternatively, smoothing is a well-known fast and simple

means of information consolidation. We make smoothing scale
adaptive by setting the standard deviation of the Gaussian
kernel which is used to smooth an image I to the mean scale
of the one-sided keypoints of I. We call this process scale
adaptive smoothing (SAS). A third approach is to combine
the previous two ones. In our algorithm, the SAS was used.

If the number of the inner profiles in the training data is
too small, the algorithm extracts artificial inner profiles until
the number of the inner profiles in the training data is at least
Ninner. If the number of the cross profiles in the training data
is too small, the algorithm generates artificial cross profiles
until the number of the cross profiles in the training data is
at least Ncross. They are generated by shifting the considered
training image I by βU(I) and then overlaying the original and
the shifted version. β was set to 6. Both Ninner and Ncross

were set to 15 in our experiments.

4. HIERARCHICAL CLUSTERING

In this section, we address the problem of combining the
results of the keypoint learning and the profile learning in order
to detect cells. One could employ a graph-based approach:
Assume a graph G with the cell keypoints as nodes. Two nodes
are connected if the profile between them is an inner profile.
The nodes of G are obtained from the keypoint classification
and the edges are obtained from the profile classification.
Intuitively, each connected component in G can be seen as
a detected cell. This technique will be referred to later in this
paper as the connected components (CC).

The utilization of the available information using CC is
suboptimal. Alternatively, one can think of clustering the
keypoints in an agglomerative manner starting from the most
reliable ones: the agglomerative hierarchical clustering (AHC)
of the keypoints. The AHC is characterized by a similarity
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measure and a linkage method. Two cell keypoints pi and
pj are similar if they belong to the same cell. Thus, it is
plausible to define the similarity between pi and pj as the
probability that the profile between them is an inner profile
Pinner(pi,pj). This is equivalent to defining Pcross(pi,pj) =
1−Pinner(pi,pj) as a dissimilarity measure between the two
cell keypoints.

A. Linkage method

One plausible choice for the linkage method is the group
average link. In order to incorporate more information, we use
a customized group average linkage instead of the traditional
one. According to this customized linkage, the dissimilarity
between two clusters A and B is:

Φ(A,B) =

NA∑
i=1

NB∑
j=1

ωij

ΩAB
φ(pi,pj) (5)

φ(pi,pj) = Pcross(pi,pj) (6)

ωij =
|DOG(pi)|s(pi)|DOG(pj)|s(pj)

‖pi − pj‖2
(7)

ΩAB =

NA∑
i=1

NB∑
j=1

ωij (8)

where pi is a keypoint in the cluster A. pj is a keypoint in
the cluster B. NA and NB are the cardinalities of A and B,
respectively. ωij is the weight of the dissimilarity between
pi and pj . This weight is proportional to the scale and the
absolute DOG of the two points and inversely proportional to
the squared Euclidean norm of the profile ‖pi−pj‖2. Indeed,
ωij is scale-invariant because the scale and the distance terms
in the numerator and the denominator have the same order.
ΩAB is the normalization factor of the weights.

The obtained dissimilarity from this customized linkage is
always in the range [0, 1]. The final clusters are obtained by
cutting the dendrogram at a cutoff equal to 0.5.

In the so-called combinatorial clustering strategies, the new
dissimilarities can be computed from the old ones using the
Lance-Williams dissimilarity update formula [15], [16]: If A
and B are merged into one cluster AB, then the dissimilarity
between any other cluster C and the cluster AB is given by:

Π(AB,C) = ψΠ(A,C) + γΠ(B,C)+

νΠ(A,B) + µ|Π(A,C)−Π(B,C)|
(9)

where ψ, γ, ν, and µ are the coefficients of this linear model.
The values of the coefficients are known for the standard link-
age methods like single, complete, average, median, centroid,
Ward, and McQuitty [30]. As we use a customized linkage,
we need to find the corresponding coefficient values. It can be
shown that the model coefficients for our customized linkage
are:

ψ =
ΩAC

ΩAC + ΩBC
(10)

γ =
ΩBC

ΩAC + ΩBC
(11)

ν = µ = 0 (12)

It is desirable to have monotonic clustering strategies as the
reversals caused by non-monotonic strategies are inconvenient
and hard to interpret [27], [29]. When µ is zero, the linear
model Π(AB,C) is monotonic under the condition ψ+γ+ν ≥
1 [16]. Obviously, this is fulfilled by our customized linkage
and the trees built by Φ in Eq. (5) are thus monotonic.

B. Finding the hit-point
Applying the hierarchical clustering will result in different

clusters of keypoints. Each cluster represents one cell. In order
to determine a single hit-point, we use the following equation:

ph =
1∑NL

j=1 λj

NL∑
i=1

λipi (13)

where NL is the number of keypoints inside the considered
cluster. pi is the keypoint i in the cluster. λi is a reliability
weight that we set to λi = |DOG(pi)|.

5. SYSTEM TRAINING

Equipped with the previously described methods, one is
now able to train the proposed system from a given set of
images and their cell segmentation (ground truth). First, the
system is calibrated to detect bright or dark cells according
to Eq. (1). Depending on the result of this step, the keypoints
with positive or negative DOG values will be discarded. After
that, a SIFT threshold is learned from the training data and
then applied as described in Section 2. Using the remaining
set of keypoints, the mean image scale is computed and
SAS is applied. Next, keypoints are detected in all training
images and their respective features are extracted. Based on the
segmentation, the class of each keypoint can be determined.
Using this information a BRF is trained on the keypoint
features. These steps enable the system to automatically extract
keypoints and to determine whether they belong to a cell or
the background.

Based on the cell keypoints, the profile learning process can
then be started. As a first step, we calibrate the maximum
inner profile length L from the training images and their
segmentation. Next, we train a BRF using the profile features.
As classes, we use inner profile and cross profile. This yields
a system that is automatically able to distinguish these two
types of profiles.

For the hierarchical clustering, no training is required. The
method can be applied directly on the output of the profile
BRF.

6. EVALUATION MEASURES

We use the following measures to evaluate the detection
quality: precision, recall, detection error, and centeredness
error. Precision is strictly defined. Therefore, if several hit-
points (cf. Eq. (13)) lie inside the mask of a cell, one of them
is considered correct and the others are false positives.

Detection error is the arithmetic average of the precision
loss and the recall loss:

Detection error(I) =
1

2
(
ZU

Z
+
HB +HO

H
) (14)



6

where H is the total number of the hit-points. HB is the
number of the hit-points in the background. HO is the number
of the over-detected hit-points. For instance, if five hit-points
were detected in one cell, then one of them is considered
correct and the other four are considered over-detected hit-
points. Z is the total number of cells in the image I. ZU is
the number of the undetected cells, i.e. the cells which contain
no hit-points.

Since a hit-point can lie anywhere inside the cell mask,
another measure is needed in order to evaluate the centeredness
of the hit-point inside the detected cell. For this purpose, we
define a new measure:

Centeredness error(I) =
1

ZC

ZC∑
i=1

‖pi
h − pi

m‖
χi

(15)

where ZC is the number of the cells which were detected by
only one hit point. Therefore, the over-detected cells are not
considered by this measure. The numerator is the Euclidean
distance between pi

h the hit-point inside the cell i and pi
m

the center of mass of this cell. The denominator χi is the
major axis length of the ellipse which represents the covariance
matrix of the binary mask of the cell i. This normalization is
important in order to make the centeredness error independent
of the cell size.

7. RESULTS

A. Materials

We evaluated the system on both real and simulated images.
Table 1 shows a summary of the cell lines used for the
evaluation.

The first three rows of the table are real cell lines: CHO
adherent cells (cf. Figure 5(a)), L929 adherent cells (cf.
Figure 5(b)), and Sf21 suspension cells (cf. Figure 5(c)). By
the term adherent cell line, we mean that almost all cells were
adherent. Due to biological reasons, it was not possible to force
all cells to adhere. Figure 5(b) exemplifies this case where
some cells in the adherent cell line L929 are in suspension.

Two bioprocess engineering experts have manually labeled
the cells in the three real cell lines using the LabelMe
annotation framework [33]. The total number of the manually
labeled cells is 3510. The cell culturing process of these cell
lines is explained in Section 7-A1. While the image acquisition
details are described in 7-A2.

The last two rows of Table 1 are our simulated images.
SIMCEP [17] was used to simulate two cell lines. The first
(cf. Figure 5(d)) is simulated with high SNR, while the second
(cf. Figure 5(e)) is simulated under severe Gaussian noise con-
ditions. The simulation details are explained in Section 7-A3.

1) Cell culturing: CHO-K1 epithelial-like cells and L929
murine fibroblast cells were pre-cultured and maintained in
exponential growth phase in T-25 polystyrene culture flasks
(Sarsted 8318.10) using DMEM/Ham’s F-12 (1:1) (Invitrogen
21331-046) with 10% fetal calf serum (PAA A15-102) and
4 mM Glutamine (Sigma-Aldrich G7513-100ML) at 37◦C
and 7% CO2 containing atmosphere. For image acquisition,
cells were detached from the T-Flask using Accutase (Sigma-
Aldrich A6964-100ML) on the day before and seeded out in

Cell line Description Images Cells
CHO Real CHO adherent cells 6 1431
L929 Real L929 adherent cells 5 1078
Sf21 Real Sf21 cells in suspension 5 1001

Simulated A Simulated cells with SNR ≈ 63 100 15000
Simulated B Simulated cells with SNR ≈ 0.07 100 15000

TABLE 1
THE CELL LINES USED IN THE EVALUATION

(a) CHO adherent (b) L929 adherent

(c) Sf21 suspension (d) Simulated A, SNR ≈ 63

(e) Simulated B, SNR ≈ 0.07

Fig. 5. Examples cut from the evaluation images. The defocus distance in
(a), (b), and (c) is +30µm, +30µm, and +15µm, respectively.

24-well plate format using a working volume of 600 µl of the
mentioned medium composition. Cells were allowed to attach
and spread out in the well-plate for at least 18 hours but not
more than 30 hours.

Sf21 insect cells were maintained in exponential growth
phase in silicon solution treated shaker flasks in Ex-Cell 420
medium (Sigma-Aldrich: 24420C) at 27◦C and normal air CO2

level. On the day of investigation, an aliquot of this culture
was transferred to a 24-well plate in a final volume of 600 µl
and cells were allowed to sediment before image acquisition.

2) Real image acquisition: The images of the three real cell
lines in Table 1 were manually taken with an inverted Nikon
Eclipse TE2000U microscope using Nikon’s USB camera.
Cells were illuminated by a halogen light bulb for standard
bright-field microscopy. The used microscope’s objective has
20x magnification, 0.45 numerical aperture, and 7.4 mm
working distance. The image resolution is 1280 x 960 pixels
with 0.49µm / pixel.

The most important acquisition parameter is probably the
defocus distance. This distance was empirically set to +30µm
for the adherent cell lines and +15µm for the suspension cell
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line. For our approach, one focus level is sufficient. However,
we compare our system with other approaches which need
images at several focus levels. Therefore, in addition to the
previous focus level, we acquired images at levels 0 and
−30µm for the adherent cell lines and at levels 0 and −15µm
for the suspension cell line.

3) Image simulation: As mentioned above, the software
in [17] was used to simulate the two artificial cell lines in
Table 1. It is important to point out that this software was
designed for fluorescence microscopy. Nonetheless, we chose
to use it for the following reasons: Firstly, to the best of
our knowledge, there is no simulation software available for
bright-field microscopy. Secondly, if the cytoplasm is excluded
from the simulation, the cell nuclei resemble the negatively
defocused bright-field images even though this resemblance is
partial due to differences at the cell borders.

Cells were generated according to a shape model described
in [17] with dynamic range equal to 0.3 of the allowed image
bins number. Then an illumination field with scale 10 was
added to each image. This scale is the ratio between the
illumination energy (sum of squared values) and the ideal
image energy. Afterwards, white Gaussian noise was added
so that the signal to noise ratio is approximately 63 in the
first cell line (cf. Figure 5(d)) and 0.07 in the second (cf.
Figure 5(e)). The SNR is the ratio between the ideal image
energy and the noise energy. The illumination energy does not
contribute to the SNR.

In Section 7-B, all cell lines of Table 1 were used to
evaluate the detection accuracy. The real cell lines were used
in Section 7-C to assess the contribution of the different
components of our algorithm to the overall detection accuracy.
In Section 7-D, we compare our system with two other
approaches. For this comparison, the CHO cell line was used
first as is, and then perturbed with illumination and scale
changes. In Section 7-E, we perturb the three real cell lines
with orientation, scale, and illumination changes in order
to assess the system’s invariance to these factors. Detection
time was evaluated in Section 7-F. Finally, the ability of
the algorithm to learn to detect cells when the training data
contains several cell lines was evaluated in Section 7-G.

B. Evaluation of the overall detection accuracy

We evaluated the detection accuracy of the proposed system
on the five cell lines given in Table 1. For each cell line,
only one image was used for training and the others were
used for testing. For the real cell lines, this was repeated for
each image. For the simulated cell lines, this was repeated five
times. Table 2 shows the results of this cross validation. The
detection quality measures are defined in Section 6

Table 2 shows that the error was close to zero for the high
SNR simulated images. Even under severe Gaussian noise
conditions with SNR ≈ 0.07, the error was only 4 %. It is also
clear from the table, that the system achieved higher detection
rates with suspension cells compared to adherent cells. This is
plausible, as the latter have considerably lower contrast than
suspension cells.

C. Evaluation of the system components

We also evaluated the contribution of specific components
of the system to the detection accuracy. Tables 3, 4, and
5 summarize this evaluation on the L929, CHO, and Sf21
respectively. In the first column, the outputs of the two random
forests were combined using the connected components as
described in Section 4. The same was done in the second
column but the keypoints were thresholded according to Sec-
tion 2. This thresholding is also used in columns 3 to 8. In the
third column, the agglomerative hierarchical clustering with
the group average linkage was used instead of the connected
components. In the fourth one, our customized linkage method
was used instead. This customized linkage is also used in
columns 5 to 8. In the fifth column, Eq. (13) was used to
find the hit-points instead of the simple arithmetic average of
the coordinates of the keypoints inside each cluster. Eq. (13) is
also used in columns 6 to 8. In the profile expansion columns,
three strategies were tested: The first is using parallel profile
sets. The second is using SAS. The third is combining both
of them.

The estimates in tables 3, 4, and 5 are cross validation
estimates, where one image per cell line is used for training
and the remaining ones are used for testing.

An important result of these tables is that SAS achieves
higher detection scores than the profile set. On the other hand,
using SAS together with the profile set delivers a bit higher
detection rate than using SAS alone. Nevertheless, we sacrifice
this small improvement in the detection rate in favor of better
detection times. All other experiments in this paper were done
with SAS alone. Therefore, the SAS columns in tables 3, 4,
and 5 correspond to the estimates in Table 2.

As shown in Figure 5, simulated cells tend to form negative
DOG blobs, whereas real cells tend to form positive DOG
blobs in the positively defocused images. The system was able
to automatically detect the right type of blobs in each case
using Eq. (1).

We did not conduct a thorough analysis of the feature impor-
tance. However, the random forest has an internal mechanism
to rank its features: the mean classification rate increase [5]. A
random image from each cell line was used to train the system
and the feature with the highest rank was recorded. Table 8
shows the result. The last column displays the highest ranked
feature when the previous five images are used together to
train the system. According to this table, at least one keypoint
feature from each of the five keypoint feature sets was ranked
the best. This does not imply that all feature sets are necessary
to obtain the detection rate reported in Table 2. However, it
gives an indicator that all keypoint feature sets are informative.
Regarding profile features, Table 8 shows that the mean value
of the second derivative and V2 (cf. Eq. (4)) are the two highest
ranked features.

D. Comparison with other approaches

We compared our system with [4] and [3] (cf. Section 1).
Table 6 summarizes the required input for each approach.
In [3], there is a well-developed segmentation approach. It
is, however, worth pointing out that only the detection part
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CHO L929 Sf21 Simulated A Simulated B
Precision 77.7±8.0 82.8±4.4 97.3±0.9 98.9 ±0.7 95.4 ±2.1

Recall 92.9±3.0 92.6±2.9 96.4±3.2 99.4 ± 0.7 96.5 ±1.6
Detection error 0.147±0.03 0.123±0.01 0.031±0.01 0.008 ±0.005 0.040 ±0.01

Centeredness error 0.477±0.13 0.377±0.07 0.164±0.02 0.173 ±0.10 0.222 ±0.11

TABLE 2
CELL DETECTION ACCURACY ON DIFFERENT CELL LINES.

CC SIFT Threshold AHC average AHC custom Weighted avg. Profile expansion
Profile sets SAS Both

Precision 67.1±4.2 76.8±4.2 72.6±5.1 76.0±4.5 76.9±4.4 78.9±5.1 82.8±4.4 83.4±4.0
Recall 66.2±5.9 73.2±3.4 91.0±4.5 90.2±4.4 91.0±4.6 91.7±4.0 92.6±2.9 92.6±3.0

Detection error 0.334±0.04 0.250±0.01 0.182±0.01 0.169±0.01 0.161±0.01 0.147±0.02 0.123±0.01 0.120±0.01
Centeredness error 0.528±0.08 0.381±0.09 0.484±0.11 0.406±0.08 0.382±0.07 0.382±0.07 0.377±0.07 0.369±0.07

TABLE 3
THE CONTRIBUTION OF THE DIFFERENT SYSTEM COMPONENTS TO THE DETECTION ACCURACY (L929)

CC SIFT Threshold AHC average AHC custom Weighted avg. Profile expansion
Profile sets SAS Both

Precision 70.5±5.3 76.8±5.9 68.5±10.7 73.4±8.8 74.0±8.6 76.4±8.4 77.7±8.0 78.8±7.8
Recall 58.7±6.4 65.5±4.7 91.4±3.9 90.1±4.4 90.7±4.8 91.9±4.3 92.9±3.0 93.1±3.2

Detection error 0.354±0.05 0.288±0.04 0.201±0.03 0.183±0.02 0.177±0.02 0.159±0.02 0.147±0.03 0.141±0.03
Centeredness error 0.472±0.20 0.432±0.07 0.652±0.24 0.503±0.14 0.501±0.14 0.455±0.10 0.477±0.13 0.446±0.11

TABLE 4
THE CONTRIBUTION OF THE DIFFERENT SYSTEM COMPONENTS TO THE DETECTION ACCURACY (CHO)

CC SIFT Threshold AHC average AHC custom Weighted avg. Profile expansion
Profile sets SAS Both

Precision 89.0±2.2 93.1±1.9 90.9±1.6 94.1±0.9 94.3±0.8 95.0±1.5 97.3±0.9 97.4±0.9
Recall 78.6±2.4 83.3±4.1 95.8±0.9 95.1±0.9 95.2±1.2 96.3±1.1 96.4±3.2 96.8±3.1

Detection error 0.162±0.02 0.118±0.03 0.066±0.01 0.054±0.00 0.053±0.01 0.043±0.01 0.031±0.01 0.029±0.01
Centeredness error 0.132±0.00 0.180±0.01 0.216±0.01 0.189±0.02 0.163±0.01 0.157±0.01 0.164±0.02 0.162±0.02

TABLE 5
THE CONTRIBUTION OF THE DIFFERENT SYSTEM COMPONENTS TO THE DETECTION ACCURACY (SF21)

is used in the comparison. [4] utilizes three algorithms at
three different focus levels and combines the results. In our
evaluation, instead of combing the results of these three
algorithms, we select the one which has the minimum error.
This strategy gave better results on our images.

Due to the difficulty of the manual parameter tuning, this
comparative evaluation was performed using only one cell line,
CHO, and without cross validation. One image was randomly
chosen and used to train our system. The same image was used
for parameter tuning of [4] and [3]. The rest of the images were
used for testing.

The software of [4] was obtained from its authors while
we implemented the cell detection part of [3] ourselves. The
optimal value of the single parameter of [3] was found by
scanning the parameter domain and selecting the value which
minimizes the detection error. On the other hand, we optimized
the parameters of [4] manually. The result of the comparison
is shown at the left hand side of Table 7.

In order to investigate how the three approaches perform
under illumination and scale change, we did the following
experiment: The comparison was applied on the CHO cell
line, but after perturbing the images. An illumination field was
applied on all CHO images. The same field was applied on
all testing and training images. In addition, the testing images

were resampled using the following scales: 0.5, 0.75, 1, 1.25,
and 1.5. The results are shown at the right hand side of Table 7.

[3] [4] Our approach
Required number of images 2 3 1
Manually tuned parameters 1 > 9 0

TABLE 6
INPUT REQUIREMENTS FOR [3], [4], AND OUR APPROACH

E. Evaluation of illumination, orientation, and scale invari-
ance

The simulation software in [17] can generate illumination
artifacts on simulated images. In order to make the experiment
more realistic, we applied the simulated illumination field on
our real cell lines. Figure 6 shows how the detection error
changes with the illumination scale, i.e. the ratio between the
illumination energy and the image energy. Figure 7 shows
the difference between an image at illumination scale zero
and another one at illumination scale 100. The detection error
change between these two extreme cases, as shown in Figure 6,
was 8% in the worst case.

Only one image in each cell line was used for training. It
is an image at illumination scale zero. The other images in
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CHO CHO with illumination and scale change
Our approach [3] [4] Our approach [3] [4]

Precision 88.1 ± 2.3 56.1 ± 11.1 80.9 ± 3.2 80.8 ± 3.7 81.0 ± 12.7 43.0 ± 16.2
Recall 87.6 ± 4.2 91.8 ± 3.5 61.3 ± 9.3 91.4 ± 2.5 36.5 ± 18.9 23.4 ± 10.6

Detection error 0.122 ± 0.024 0.260 ± 0.067 0.288 ± 0.042 0.138 ± 0.021 0.412 ± 0.060 0.668 ± 0.041
Centeredness error 0.373 ± 0.342 0.552 ± 0.396 0.495 ± 0.581 0.469 ± 0.276 0.665 ± 0.729 1.350 ± 2.03

TABLE 7
COMPARISON WITH OTHER APPROACHES

CHO L929 Sf21 Simulated A Simulated B All
Keypoint features Rn(p, π) SIFT descriptor feature SIFT descriptor feature Stencil feature VMap(p, 6) DOG

Profile features mean(d2f/dv2) V2 V2 mean(d2f/dv2) V2 mean(d2f/dv2)

TABLE 8
HIGHEST RANKED FEATURES ACCORDING TO THE RANDOM FOREST MEAN CLASSIFICATION RATE INCREASE.

the cell line were used for testing at each of the following
illumination scales: 0, 20, 40, 60, 80, and 100.

Figure 8 depicts the system’s invariance to image scale. In
this experiment, the system was trained using one image per
cell line and tested on other up- or down-sampled images from
the same cell line. The figure shows that the detection error
change is in the range of 4% excluding a sudden increase in
the detection error of Sf21 at scale 0.5. This indicates that
scale invariance is limited from the bottom. The reason is that
downsampling reduces the number of SIFT keypoints due to
the structure degradation.

Finally, Figure 9 shows the degree of invariance with
respect to cell orientation. Rotating the images in order to
test the system invariance to the orientation change is not
the best choice because of the diversity of cell orientations
in each image. Therefore, we simulated cell images so that
all cells inside the same image have the same orientation. The
shape model in the simulation software [17] cannot generate
elongated cells with dominant orientation. Therefore, for this
experiment, we replaced its shape model with an elliptical one.
The system was trained using one image at orientation zero
and tested on five images at each of the following orientations:
0◦, 30◦, 60◦, 90◦, 120◦, and 150◦. Each image contained 150
simulated cells.

F. Evaluation of the detection time

In order to investigate the feasibility of the algorithm, we
measured the detection time for all cell lines. The evaluation
was done on a Dell laptop with 8 GB RAM and an Intel Core
i7-2720QM processor with clock speed 2.20 GHz. The imple-
mentation details are as follows: The feature extraction was
implemented in Matlab, the classification was done using the
R package randomForest [18], the clustering was implemented
in Java, and SIFT features were obtained from VlFeat [39].
All modules were put together in a single Matlab application.

The system was trained and tested as described in Sec-
tion 7-B. The detection times are reported in the upper part
of Table 9. The lower part of the table shows the results
when the same experiment was applied on subsampled images
(subsampling factor 0.5). As can be seen in the table, the
detection time is approximately in the range [30, 46] seconds
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Fig. 6. Illumination invariance: An image at illumination scale 0 was used
for training and the other images were used for testing at different illumination
scales.

per image and drops to the range [5, 14] seconds per image
after subsampling.

G. Evaluation of the generalization on multiple cell lines

In Section 7-B, the system was trained separately for each
cell line. In fact, it is more challenging to learn to detect
cells when images from different cell lines are used in the
training. In this experiment, one image from each cell line
was randomly chosen. The five chosen images were used to
train the system. The rest of the images were used for testing.
This process was repeated five times. As the images are of
different dynamic ranges and/or modalities, each image was
normalized to [0, 1]. The simulated images were also inverted
in order to have one-sided cell keypoints in the training data.
Table 10 shows the results. Comparing Table 10 to Table 2,
one can see a relatively considerable increase of the detection
error for Sf21 and Simulated B. Nevertheless, the maximum
detection error is still 15.5%.

In order to investigate whether similar cells are more suited
for joint training, we conducted two additional experiments.
Table 11 shows the results of the same process described
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CHO L929 Sf21 Simulated A Simulated B
Detection time (seconds/image) 45.88 ± 13.60 36.69 ± 5.59 40.65 ± 7.13 30.47 ± 0.33 31.00±1.88

Detection error 0.147±0.03 0.123±0.01 0.031±0.01 0.008 ±0.005 0.040 ±0.01

Detection time on subsampled images (seconds/image) 13.75 ± 2.11 12.68 ± 0.93 8.97 ± 1.07 7.91 ±0.34 4.93 ±0.26
Detection error on subsampled images 0.128 ± 0.01 0.112 ± 0.01 0.071±0.02 0.009 ±0.001 0.043 ±0.004

TABLE 9
EVALUATION OF THE DETECTION TIME. RESOLUTION OF CHO, L929, AND SF21 IMAGES IS 1280 X 960 PIXELS. RESOLUTION OF SIMULATED A AND B

IS 1200 X 1200 PIXELS. ALL RESOLUTIONS ARE GIVEN BEFORE SUBSAMPLING.

CHO L929 Sf21 Simulated A Simulated B
Precision 77.7±7.2 79.6±8.0 73.2±2.4 98.9±0.1 81.8±5.7

Recall 92.2±4.3 89.4±6.6 99.7±0.1 98.3±0.4 97.6±0.3
Detection error 0.150±0.02 0.155±0.01 0.136±0.01 0.014±0.00 0.103±0.03

Centeredness error 0.498±0.08 0.438±0.12 0.179±0.04 0.177±0.00 0.256±0.01

TABLE 10
JOINT TRAINING: FIVE IMAGES WERE RANDOMLY CHOSEN, ONE FROM EACH CELL LINE. THEY WERE USED TO TRAIN THE SYSTEM AND THE REST

WERE USED FOR TESTING. THIS PROCESS WAS REPEATED FIVE TIMES.

(a) CHO image at illumination scale = 0

(b) CHO image at illumination scale = 100

Fig. 7. Illumination invariance example: The upper image was used for
training, and the lower for testing.

above, but training and testing were applied only on the
adherent cell lines. The same applies for Table 12, but for
the simulated cell lines. The detection error in both tables is
very close to the detection error in Table 2.
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CHO L929
Precision 76.8±5.0 80.7±5.1

Recall 94.3±2.2 92.0±3.6
Detection error 0.145±0.01 0.137±0.01

Centeredness error 0.497±0.13 0.462±0.06

TABLE 11
JOINT TRAINING: TWO IMAGES WERE RANDOMLY CHOSEN, ONE FROM CHO AND ANOTHER ONE FROM L929. THEY WERE USED TO TRAIN THE SYSTEM

AND THE REST WERE USED FOR TESTING. THIS PROCESS WAS REPEATED FIVE TIMES.

Simulated A Simulated B
Precision 98.8±0.2 93.3±1.0

Recall 98.1±0.4 97.0±0.3
Detection error 0.015±0.00 0.048±0.00

Centeredness error 0.173±0.00 0.229±0.01

TABLE 12
JOINT TRAINING: TWO IMAGES WERE RANDOMLY CHOSEN, ONE FROM SIMULATED A AND ANOTHER ONE FROM SIMULATED B. THEY WERE USED TO

TRAIN THE SYSTEM AND THE REST WERE USED FOR TESTING. THIS PROCESS WAS REPEATED FIVE TIMES.

8. DISCUSSION

Several approaches [2], [3], [4], [28] utilize, though in dif-
ferent ways, images at two or three focus levels to improve the
contrast. This is appealing as it is possible to get considerably
higher contrast from the intensity change with the defocus
distance. The drawback is that at least two images are needed.
As this is not always available, our system was developed to
work with a single defocused image. In fact, using one image
has another important advantage: It facilitates extending the
algorithm in the future for more image modalities.

We found that the approach in [32] on phase-contrast mi-
croscopy has a partial conceptual similarity with our approach.
This similarity lies in the use of two classifiers which have
goals analogous to the goals of our keypoint and profile
classifiers. However, our features were carefully designed
and heavily tested for the rotation-, scale-, and illumination-
invariance. Another difference is that the whole system is fully
automatic and its internal details, e.g. learning the maximum
inner profile length, were designed for automation and invari-
ance. In addition, the use of hierarchical clustering in order to
optimally aggregate the second classifier results was a novel
contribution which proved to be effective, especially using our
customized linkage method. Lastly, the system is adapted to
low contrast bright-field microscopy. In fact, compared to the
bright-field approaches in [4] and [3] which need both multiple
images and manual parameter tuning, our approach delivered
higher detection accuracy and higher invariance degree to
illumination and scale changes.

Before using the classifiers, the system must be trained.
For the training, a set of images with ground truth is required.
Due to the invariance of the extracted features and the use of
random forests, the system can learn from a relatively small
amount of training data. Only one image per cell line was used
for training in our experiments.

The ground truth is segmentation that may have been
performed with any manual, semi-automatic, or automatic
method. For the this study, we chose a manual segmentation
as we did not want to introduce a bias into the system
performance caused by suboptimal training data. The images
should be defocused and the same defocus distance should be

used for training and detection. This defocus can be either in
the positive or the negative direction. The defocus is important
for at least two reasons: Firstly, as already mentioned, some
adherent cells are totally invisible at focus. Secondly, the
defocus smooths out the tiny details which degrade the system
performance in terms of time and detection accuracy.

SIFT keypoints in bright-field images result from cell struc-
tures, but also from debris, noise in the background, and other
image artifacts. It is possible to eliminate some irrelevant
keypoints by imposing a high DOG threshold or a low PCR
threshold [23]. However, some cell keypoints may have high
principal curvatures ratio because of the elongation of the
cells. Other cell keypoints may have low DOG value due
to cell adherence or insufficient contrast of the considered
image modality. Consequently, it is not always possible to
separate cell keypoints from non-cell keypoints using these
two features. Nevertheless, it is possible to reduce the number
of irrelevant keypoints by computing the maximum |DOG|
in each training cell, then considering the minimum of these
maxima as a threshold. Therefore, in our experiments, we
set the DOG threshold to the previous value and the PCR
threshold to infinity.

Cell keypoints have either positive or negative DOG val-
ues when they form valley-like or mountain-like structures,
respectively. We have found in preliminary experiments (data
not shown) that using one-sided keypoints leads to a better
profile learning. For this reason, our system considers either
the positive DOG keypoints or the negative, but not both.

In [12], the intensity is sampled using a stencil instead of
a patch and used for neuron detection in electron microscopy.
A similar idea was used in a completely different field [26],
where a radial sampling pattern was employed to sample 3D
vessels. Both methods used fixed-size stencils. In our case,
the scale and orientation of the keypoint deliver additional
information. This can then be used to make the stencil scale-
and orientation-invariant. In order to make it invariant to the
local shift of intensity, one can subtract the minimum or the
mean intensity of the stencil from all stencil nodes. We chose
the mean because it is less sensitive to outliers.

In [34], it was shown that ray features are better than Haar-
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like features for cell recognition. Thus, we used ray features in
our work. Our contribution to this feature set is that we made
it scale- and orientation-invariant. In order to achieve scale-
invariance for such features, computing the distances with
respect to scale is insufficient. In fact, the gradient computation
has to be additionally performed with respect to scale. If the
gradient is computed using conventional kernels like Sobel or
Prewitt, its norm Rn(m, θk) will be scale-dependent. We use
a gradient computation that handles this issue correctly.

In [40], it was shown that variance maps can distinguish
cells from background. The variance map value at a pixel is
simply the variance of intensities in a neighborhood centered
at this pixel. The neighborhood size is fixed and based on the
cell size [40]. We expanded this concept and made it scale-
invariant.

The number of the keypoints inside each cell depends on
the noise level, the cellular details level, the defocus distance,
the cell shape, and the SIFT parameters (the PCR and the
DOG value). The goal of the profile learning was to connect
the keypoints which belong to the same cell together so that
they are recognized as one cell.

We mentioned that the derivatives which are used in the
profile features are Gaussian derivatives with σ = 0.1NF . As
the scale of the derivative, i.e. the previous sigma, is measured
in units of points, not in pixels, the derivative signal is to a
large extent scale-invariant. Note that, all profile features are
also invariant to the local shift of intensity and that the mean,
the maximum, and the minimum of the profile do not belong
to the profile feature set because they are sensitive to this shift.

If cells are circular and noise-free, we may get almost one
keypoint per cell. Therefore, in such case, we’ll get very few
or even zero inner profiles for training. If the cells are too
far from each other, we may get very few or even zero cross
profiles for training. This occurs because the algorithm extracts
profiles between nearby keypoints only. Both cases occurred in
some preliminary experiments on data which was not shown in
this study. The algorithm handles these two cases which makes
the training robust against odd situations in the training data.

A main disadvantage of using a set of profiles is the
computational cost. Furthermore, it turned out that SAS leads
to a higher detection rate as shown in the results section.
This is, probably, due to the fact that SAS serves also as
a preprocessing step. For instance, we noticed that the SAS
improved the edges drastically. Consequently, the edge-based
features like the ray features, gained higher discriminative
power.

In our experiments, we achieved robustness to low fre-
quency changes in the illumination by using features that are
locally invariant to an offset in intensity. In a small region
of the image, this local shift of intensity can be interpreted
as a constant. We regard this as an important feature of our
system, as many real world images suffer from inhomogeneous
illumination. It is worth pointing out that images with illumi-
nation artifacts should be used without normalization, because
the image measures which are usually used in normalization
like mean, standard deviation, maximum, and minimum of the
image intensity depend on the illumination information.

If the distance between the two keypoints of a profile is

large, then the illumination artifacts at this profile cannot be
approximated by a constant. In other words, the invariance
to the local-intensity shift is beneficial only if the profiles
are extracted between nearby keypoints. Therefore, the sys-
tem should somehow avoid extracting profiles between far
keypoints. In order to achieve this goal, the algorithm learns
the maximum inner profile length L in a scale-independent
manner from the training data. This contributes to the partial
illumination-invariance of the profile learning and reduces the
detection and training times. In fact, learning L is particularly
useful because this length is a cell characteristic. Whereas, for
instance, learning the cross profile length does not make sense
because it depends on the distribution of the cells in the cell
culture.

We used RF as a classifier model for the keypoint and the
profile learning. The RF does not need parameter tuning which
was one of our design goals. It is also inherently a multi-
class classifier. This makes extending the keypoint learning in
further research for debris and agglomeration detection easier.
The previous two points can be considered as advantages of the
RF over some other state-of-the-art classifiers like the SVM.
In fact, some empirical studies [13], [14] showed that the RF
outperformed the SVM in terms of area under ROC (AUC)
on imbalanced data, even though that was not always the case
[25]. Moreover, the immunity of the RF against overfitting
grants the system the ability to learn from small training data
sizes. This last point makes it favorable over classifiers like
the probabilistic boosting trees [37].

There is, in general, no guarantee that the cell and the
background classes are balanced. The same applies for the two
classes in the profile learning. The imbalance problem can be
solved by using a balanced random forest BRF or a weighted
random forest WRF [7]. Both have similar ROC curves. But,
according to the same reference, the BRF is computationally
more efficient and less vulnerable to noise.

The output of the two classifiers can be seen as a graph
whose nodes are the cell keypoints and whose edges are the
inner profiles. Therefore, the connected components of this
graph can be regarded as the detected cells. However, our
results show that higher detection rates can be achieved when
the probabilistic output of the profile classifier is used as a sim-
ilarity measure in an AHC step. Moreover, the detection rate
was further improved by using our customized linkage method
where more application-specific information was involved. In
fact, it is plausible to expect that the AHC is more robust than
the CC because it starts aggregating the most reliable cases.
Furthermore, the decision about the less reliable cases does
not depend on a single classification but on the average of
several profile classifications.

We pointed out in the introduction that a good cell detection
approach should facilitate tracking when the latter is required.
The output of our system after the clustering stage is a set of
keypoints where each one is assigned to a cell and equipped
with a set of features. A subgroup of these features has been
used in tracking applications. See, for example, the use of the
SIFT descriptor for tracking in [11].

We evaluated the system with respect to runtime on our
image database and on a subsampled version of it. We noticed
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that, on our data, the detection time of the subsampled images
was 3-4 times shorter than the detection time of the original
images. This suggests that the detection time is proportional to
the number of pixels in the considered image. Moreover, with
the exception of Sf21, the detection error was not increased
by subsampling. In fact, for the adherent cell lines, it was
decreased. This is probably caused by the sampling-induced
smoothing of the cellular details which could otherwise mis-
lead the detection algorithm and degrade its precision. How-
ever, this observation cannot be generalized without taking the
original image resolution into account. In our experiments, the
real cell line images before subsampling had a resolution of
1280 x 960 pixels with objective’s magnification equal to 20x.

The system was also tested for its generalization ability. The
results show that it can learn to detect cells even when several
cell lines of different visual appearance are used for training.
However, the detection error was smaller when only similar
cell lines are used for training. Therefore, we propose to use
different classifiers for different cell lines.

9. CONCLUSION

We have presented a novel system for cell detection in
bright-field microscope images. The system is fully automatic
as no manual parameter tuning is needed in training or in
detection.

For the evaluation, three real cell lines were used: CHO,
L929, and Sf21. CHO and L929 were adherent cells while
Sf21 were cells in suspension. Adherent cells had very low
contrast and were almost invisible at focus. In addition,
simulated cells with both high and very low SNR were used in
the evaluation. In total, more than 3500 real cells and 30000
simulated cells were used.

The system was designed with special care for robustness
to illumination artifacts and invariance to cell size and orien-
tation. It was trained with specific image scale, orientation,
and illumination conditions. It was then tested on images of
different scale, orientation, and illumination conditions. Our
results show that the system yields a high detection accuracy
and high invariance scores in reasonable computation time.

All experiments on real and simulated images were done
without any manual parameter tuning. Because of this gen-
erality, we are currently investigating the system’s ability in
detecting molecules in scanning tunneling microscope images.
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