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Abstract. Some cell detection approaches which deal with bright-field
microscope images utilize defocussing to increase the image contrast.
The latter is related to the physical light phase through the transport
of intensity equation (TIE). Recently, it was shown that it is possible to
approximate the solution of the TIE using a modified monogenic signal
framework. We show empirically that using the local phase of the previ-
ous monogenic signal in place of the defocused image improves the cell-
background classification rate. The evaluation was performed on L929
adherent cell line with more than 1000 manually labeled cells. The im-
provement was 6.8% using a random forest classifier and 10% using a
support vector machine classifier with a radial basis function kernel.

1 Introduction

Detecting cells in microscope images is a crucial step in the cell image anal-
ysis. Several approaches in different image modalities tackle the problem as a
classification problem. A fixed-size square patch is sampled at each pixel and
used to train a cell-background classifier. The features can be either the patches
themselves as in [1] or the patches after applying traditional feature extraction
schemes as in [2],[3],[4].

It is known that bright-field microscopy delivers insufficient contrast at focus
especially for the adherent cells [5],[6]. More contrast can be obtained by defo-
cussing the microscope [5]. Moreover, in quantitative phase microscopy (QPM)
approaches, the physical light phase can be reconstructed computationally from
the amplitude information in order to get both more contrast and more object
details.

A QPM approach in [7] suggests approximating the TIE (section 2.1) solu-
tion in the monogenic signal (section 2.2) domain. In fact, the obtained results
approximate the local phase and the local energy of the physical light phase.

It is expected that the defocused image delivers higher discrimination be-
tween the background and the cells compared to the at-focus image. In this
paper, we show that using the previously mentioned local phase instead of the
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defocused image yields even higher discrimination power for the cell-background
classification problem. Section 2.3 discusses the details of the used classifier mod-
els and features.

The experiments were performed on bright-field images of an unstained ad-
herent L929 cell culture. Section 2.4 clarifies the acquisition and the labeling
details. Section 3 shows the results of these experiments which are further dis-
cussed and summarized in section 4.

2 Materials and Methods

2.1 Transport of intensity equation

As mentioned in the introduction, defocussing a bright-field microscope yields
more contrast in the acquired images. In fact, there is a relation between this
contrast and the physical phase of light. The transport of intensity equation TIE
[8] models this relation:

2π

λ

∂I

∂z
= −∇.I∇φ (1)

Where λ is the wavelength of light, I is the intensity image at the defocus distance
z, and φ is the physical phase of light.

2.2 Monogenic signal

The monogenic signal is a 2D generalization of the analytic signal [9]. Like its 1D
counterpart, it is computed in practice by convolving the signal with a band-pass
quadrature filter yielding the local phase and local energy of the input.

In [7], a link between the physical phase and the local phase was established
using the monogenic signal. According to [7], it is possible to use the mono-
genic signal framework to approximate the solution of equation (1) under two
conditions: First, the derivative image, i.e. the left side of equation (1), is used
as an input instead of the image itself. Second, a low-pass filter is used in the
monogenic signal framework instead of the band-pass filter.

2.3 Learning

We want to investigate the discriminative power of the local phase as defined in
section 2.2 compared to the defocused images in the cell-background separation
problem. Obviously, it is possible to measure the discriminative power difference
by learning a classifier for each of them and then comparing the test errors.

As a classifier model, we use the support vector machine (SVM) and the
random forest (RF). The kernel of the SVM was set to the radial basis function
(RBF) kernel. The cost parameter and the RBF γ parameter were set to the
default parameters in LibSVM. The trees number in the RF and the number of
the randomly selected variables at each node were set following [10] to 500 and
N/5, respectively. N is the feature number.
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The feature vectors are 5X5 patches. Therefore, the number of features is 25.
We did not conduct a thorough analysis of the effect of the patch size. However,
cell areas in our data are considerably larger than the chosen patch area.

The data was z-scored for the SVM, while it was used without normalization
for the RF.

Cutting patches at each pixel is computationally expensive. Therefore, only
P patches are randomly sampled from each image. P was set to 100.

2.4 Materials

The evaluation was performed on L929 adherent cells. The images were acquired
with an inverted Nikon Eclipse TE2000U microscope using Nikon USB camera.
The used microscope objective has a numerical aperture of 0.45, a working dis-
tance of 7.4 mm, and 20x magnification. Image resolution is 1280 X 960 pixels
with 0.49 µm/pixel.

The acquired data consists of five pairs of images. Each pair consists of an
image at focus (figure 1(a)) and another positively defocused image (figure 1(b))
of the same scene at distance +30 µm. The total number of cells is 1078. All
of them were labeled by two bioprocess engineering experts. This was done by
manually delineating the borders of the cells in the defocused images.

The software SePhaCe [6] was used to generate the local phase (figure 1(c))
and the local energy (figure 1(d)) images for each image pair.

(a) At-focus (b) Defocused

(c) Local phase (d) Local energy

Fig. 1. Examples cut from evaluation images. The histograms of all four cuts were
linearly stretched for the clarity.
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3 Results

One of the five at-focus images was used to train both the SVM and the RF,
then the learned models were applied on the other at-focus images. This was
repeated for each at-focus image and the mean test error was computed. The
previous experiment was repeated 10 times with one mean test error obtained
from each repetition. The mean and the standard deviation of all these mean
test errors are shown in the first column of table 1.

The same was done on the positively defocused images and the results are
shown in the second column of the table.

The third and the fourth columns show the results when the same process
applied on the local phase and the local energy, respectively.

The results show that the defocused image contains more discriminative
power than the at-focus image, while the local phase contains more discrimi-
native power than the defocused image.

at-focus defocused phase energy

RBF SVM 39.9%±3.6% 32.8%±2.5% 22.8%±1.7% 33.6%±3.4%

RF 45.0%±3.3% 32.0%±2.6% 25.2%±1.1% 37.6%±2.4%

Table 1. Comparing the discriminative power of the at-focus, the defocused, and the
monogenic output using classification test errors.

4 Conclusion and discussion

We have empirically showed that the pixelwise cell-background classification
yields considerably better results when the local phase as obtained in [7] is used
instead of the defocused image. Nevertheless, the defocused image still delivers
better results compared to the at-focus image.

More than 1000 manually labeled adherent cells were used in the evalua-
tion. This relatively large number of cells supports the soundness of the paper
statement.

One might criticize the evaluation as being done using one defocus distance,
i.e. the distance of 30 µm described in section 2.4. Actually, the very short dis-
tances do not deliver sufficient contrast. On the other hand, very long distances
smash out the image information due to the excessive blurring by the point
spread function of the optical system. Therefore, there is an optimal distance
which maximizes the contrast. During the image acquisition, we tried to pick
out this optimal distance experimentally. However, this was judged subjectively.
We are currently developing methods to choose this distance objectively. In fact,
other factors should be considered for the defocus distance selection because it
is used to estimate a derivative image. Further research will tackle this issue.
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