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Purpose: For interventional cardiac procedures, anatomical and functional information about the
cardiac chambers is of major interest. With the technology of angiographic C-arm systems it is pos-
sible to reconstruct intraprocedural three-dimensional 3D images from 2D rotational angiographic
projection data (C-arm CT). However, 3D reconstruction of a dynamic object is a fundamental
problem in C-arm CT reconstruction. The 2D projections are acquired over a scan time of several20

seconds, thus the projection data show different states of the heart. A standard FDK reconstruction
algorithm would use all acquired data for a filtered backprojection and result in a motion-blurred
image. In this approach, a motion compensated reconstruction algorithm requiring knowledge of
the 3D heart motion is used. The motion is estimated from a previously presented 3D dynamic
surface model. This dynamic surface model results in a sparse motion vector field (MVF) defined25

at control points. In order to perform a motion compensated reconstruction, a dense motion vector
field is required. The dense MVF is generated by interpolation of the sparse MVF. Therefore, the
influence of different motion interpolation methods on the reconstructed image quality is evaluated.
Methods: Four different interpolation methods, thin-plate splines (TPS), Shepard’s method, a
smoothed weighting function, and a simple averaging, were evaluated. The reconstruction quality30

was measured on phantom data, a porcine model as well as on in vivo clinical data sets. As a
quality index, the 2D overlap of the forward projected motion compensated reconstructed ventricle
and the segmented 2D ventricle blood pool was quantitatively measured with the Dice similarity
coefficient and the mean deviation between extracted ventricle contours. For the phantom data set
the normalized root mean square error (nRMSE) and the universal quality index (UQI) were also35

evaluated in 3D image space.
Results: The quantitative evaluation of all experiments showed that TPS interpolation provided
the best results. The quantitative results in the phantom experiments showed comparable nRMSE of
≈ 0.047 ± 0.004 for the TPS and Shepard’s method. Only slightly inferior results for the smoothed
weighting function and the linear approach were achieved. The UQI resulted in a value of ≈ 99% for40

all four interpolation methods. On clinical human data sets the best results were clearly obtained
with the TPS interpolation. The mean contour deviation between the TPS reconstruction and the
standard FDK reconstruction improved in the three human cases by 1.52 mm, 1.34 mm and 1.55
mm. The Dice coefficient showed less sensitivity with respect to variations in the ventricle bound-
ary.45

Conclusions: In this work, the influence of different motion interpolation methods on left ven-
tricle motion compensated tomographic reconstructions was investigated. The best quantitative
reconstruction results of a phantom, a porcine and human clinical data sets were achieved with the
TPS approach. In general, the framework of motion estimation using a surface model and motion
interpolation to a dense MVF provides the ability for tomographic reconstruction using a motion50

compensation technique.

Keywords: cardiac motion, motion compensated reconstruction, interpolation methods, C-arm CT

∗ kerstin.mueller@cs.fau.de; http://www5.cs.fau.de/∼mueller

Kerstin Müller
Typewritten Text

Kerstin Müller
Typewritten Text
Preprint version of Medical Physics
Copyright by 2013 American Association of Physicists in Medicine



I. INTRODUCTION

A. Purpose of this Work

In interventional procedures, there is increasing in-55

terest in three-dimensional imaging of dynamic cardiac
shapes, e.g. the left ventricle (LV), for quantitative eval-
uation of cardiac functions such as ejection fraction mea-
surements and wall motion analysis. An angiographic
C-arm CT system is capable of multiple 2D projections60

while rotating around the patient. With this data a 3D
reconstruction of the imaged region is possible. Due to
the long acquisition time (a few seconds) of the C-arm,
imaging of dynamic structures presents a challenge. The
motion of the heart ventricle needs to be taken into ac-65

count in the reconstruction process. A standard cone-
beam reconstruction (FDK) algorithm [1] would use all
acquired projections for reconstruction. Consequently,
different heart phases cannot be distinguished. The re-
sult would be a motion blurred reconstruction of the70

heart ventricle. A motion compensated tomographic re-
construction for the heart ventricle could overcome the
limitations of the FDK approach. In order to compensate
for the motion [2], the dynamics of the heart need to be
estimated. In this paper, the motion is estimated via a75

dynamic surface model providing a sparse motion vector
field (MVF) [3]. This sparse MVF needs to be interpo-
lated to a dense MVF. Different interpolation methods
for this motion compensated tomographic reconstruction
technique were investigated. We evaluated a thin-plate80

spline (TPS) interpolation [4, 5], Shepard’s method [6], a
simple averaging, and a method using a smoothed weight-
ing function. The interpolation methods were evaluated
by comparing the image results of the motion compen-
sated tomographic reconstructions with the gold stan-85

dard of the original segmented projection data. Addition-
ally, in a numerical phantom experiment the normalized
root mean square error (nRMSE) and universal quality
index (UQI) were evaluated.

B. State-of-the-Art90

Current analysis of heart ventricles is based on obser-
vations and measurements directly on the acquired 2D
projections [7]. As a first step in evaluation of the ventric-
ular motion in 3D, different approaches for recovering the
ventricular shape from angiographic data using biplanar95

angiographic systems have been described by the group
of Medina et al. [8, 9]. Ventricular shape reconstruction
from multi-view X-ray projections has been presented by
Moriyama et al. [10, 11]. However, with both methods,
only a surface model is extracted, providing no morpho-100

logical or structural information of the ventricle, such as
papillary muscles. Cardiologists could benefit from the
visualization of the morphological endocardium structure
visible in a tomographic reconstruction.
Other approaches use 2D projection data from a whole105

short-scan. In order to improve temporal resolution, an
electrocardiogram (ECG) signal is recorded synchronous
with the acquisition. The reconstruction is then per-
formed only with the subset of those projections that
lie inside a certain ECG window centered at the favored110

heart phase [12]. This retrospectively ECG-gated ap-
proach works well for sparse and high-contrast structures,
e.g. coronaries [13–16]. However, for the heart chambers,
an insufficient number of projections are acquired in a
single scan. As an example, for a 5 s acquisition time115

and 60 bpm, only five intervals contribute to one heart
phase. As a consequence, multiple sweeps of the C-arm
have to be performed in order to acquire enough projec-
tions to reconstruct each heart phase with a satisfactory
image quality [17, 18]. However, the longer imaging time120

results in a higher contrast burden and radiation dose
for the patient. For sick patients undergoing a cardiac
procedure, it might not be possible to hold their breath
for several seconds (more than 20 s).
In recent years, approaches using undersampled projec-125

tion data such as compressed sensing (CS) algorithms
have been developed [19]. A number of algorithms min-
imize an objective function related to the total varia-
tion (TV) [20]. In one approach called prior image con-
strained compressed sensing (PICCS), a-priori informa-130

tion of the same object is incorporated into the recon-
struction [21–23]. The PICCS algorithm was recently ap-
plied to interventional angiographic C-arm data [24, 25].
It was necessary to use a slower rotation of approximately
14 s to enable a PICCS reconstruction. Chen et al. found135

that a minimum of at least 14 projections are needed for
each heart phase to achieve a good reconstruction result
[24].
In this paper, a motion compensated tomographic recon-
struction is performed with projection data acquired in140

one single C-arm rotation (5 s – 8 s). As a first step, a
dynamic surface model of the LV is generated [3]. The
LV surface model is reconstructed from a set of ECG-
gated 2D X-ray projections such that the forward pro-
jection of the reconstructed LV model matches the 2D145

blood pool segmentation of the ventricle. In the second
step, a motion compensated tomographic reconstruction
is performed [2]. This requires knowledge of the ventri-
cle motion in 3D in the form of a dense motion vector
field (MVF). Thus, the sparse motion field provided by150

the dynamic surface model has to be interpolated. In or-
der to generate a dense MVF from scattered data several
interpolation methods can be applied [26]. For computed
tomography (CT) image reconstruction, different inter-
polation methods for cardiac motion were investigated by155

Forthmann et al. [27]. However, their main focus of the
reconstruction was on imaging of the coronaries. Further-
more, C-arm projection data displays different contrast
conditions and suffers from a lower temporal resolution
than a conventional CT scanner. Therefore, it is not evi-160

dent that the same interpolation methods yield the same
results.
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FIG. 1. Coordinate system of the C-arm system.

II. MATERIALS AND METHODS

A. Image Acquisition and C-arm CT Geometry

The basic C-arm CT geometry is illustrated in Figure165

1. Parameter S denotes the X-ray source and S′ is its
perpendicular projection onto the detector plane D. The
detector origin is denoted with O, and u and v are its row
and column vector. Vectors uS′ and vS′ are the detector
coordinates of the source projection S′. The origin of the170

3D world-coordinate system (xw,yw, zw) is set to the C-
arm isocenter I, i.e. the center of rotation. The zw axis
is oriented along the rotation axis. The surface model
control points as well as the motion vector field are given
in world coordinates.175

B. Surface Model

The proposed motion compensated reconstruction uses
an MVF estimate given by a dynamic 3D surface model
of the ventricle generated from the 2D projection data180

[3]. First, a standard FDK reconstruction is performed
using all available 2D projections. This reconstruction
still exhibits artifacts due to cardiac motion, but the re-
construction quality is sufficient for extraction of a static
and preliminary 3D LV endocardium mesh using an al-185

gorithm proposed by Zheng et al. [28]. In the next step,
the projections are assigned to a certain heart phase ac-
cording to the acquired ECG signal. The static mesh
is then projected onto the 2D projections belonging to
a certain heart phase. The projected mesh silhouette is190

adjusted in the direction normal to each control point in
order to match the ventricle border extracted by a learn-
ing based boundary detector [28]. The 2D deformation
vector is then transformed into the 3D space and the 3D
mesh is updated accordingly. As a result a 3D mesh is195

generated for every heart phase φk with its control points
pi(φk) ∈ R

3, with i = 1, . . . , N where N is the number
of control points [3]. For reconstruction a reference heart
phase φ0 is selected. The displacement or motion vec-
tors point into the direction of the motion of the sparse200

control points between different heart phases. They are
denoted as di(φk) ∈ R

3 describing the distance of every
control point between the reference heart phase φ0 and
the current heart phase φk. They can then be computed

(a)Surface model for two
different heart phases at

end-diastole (transparent) and
end-systole (solid).

(b)Sparse motion vectors
di(φk) between reference heart

phase at
end-diastole (transparent) and

current phase at
end-systole (solid).

FIG. 2. Illustration of the extracted surface model of the left
ventricle.

as follows205

di(φk) = pi(φk)− pi(φ0). (1)

An example of the left ventricle surface model for two
different heart phases at end-diastole and end-systole is
illustrated in Figure 2(a). In Figure 2(b) the sparse mo-
tion vectors di(φk) are shown between reference heart210

phase and current heart phase.

C. Interpolation Methods

In order to perform a motion compensated tomo-
graphic reconstruction, a dense motion vector field215

(MVF) needs to be generated from the sparse MVF. Dif-
ferent interpolation methods were evaluated.

1. Thin-Plate Splines (TPS)

The deformation over time can be represented by a
TPS transformation. The TPS approach assumes that220

the bending and stretching behavior of the left ventri-
cle is similar to the bending of a thin plate. Thin-plate
splines have already been applied to estimate cardiac vas-
cular motion for CT data [29] and ventricular motion for
MRI data [30]. Furthermore, they are widely used for225

elastic image registration of medical images [31, 32].
The TPS coordinate transformation with its displace-
ments for an arbitrary point x ∈ R

3 is given as:

d(x, φk) =

N
∑

i=1

G(x− pi(φk))ci(φk) +A(φk)x+ b(φk),

(2)
where ci(φk) ∈ R

3 are the unknown spline coefficients of230

the TPS, d(x, φk) is the displacement vector at the point
x and pi(φk) ∈ R

3 are the control points. The matrix
A(φk) ∈ R

3×3 and the vector b(φk) ∈ R
3 specify an

additional affine transformation. The transformation’s
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kernel matrix G(x) ∈ R
3×3 of a point x ∈ R

3 for a 3D235

TPS is given according to [5]:

G(x) = r(x) · I, (3)

r(x) = ||x||2 =
√

x2

1
+ x2

2
+ x2

3
, (4)

where I ∈ R
3×3 is the identity matrix. In order to

solve Equation 2 for each φk, set d(x, φk) = di(φk) for240

x = pi(φk). Farther away from the control points, the
distance from the point to all control points is quite large,
hence the first part of Equation 2 becomes a multiple of
the average of ci(φk) and reduces to an affine transfor-
mation. Since Equation 2 is linear in ci(φk),A(φk), and245

b(φk), it can be solved in a straightforward manner [5].
The resulting spline coefficients and affine parameters are
inserted in Equation 2 in order to evaluate the spline at
any arbitrary 3D point. A motion vector can therefore
be computed for every voxel in the reconstructed volume.250

2. Linear Interpolation

For linear interpolation, surface control points around
the point x are determined and the resulting displace-
ment vector d(x, φk) is a weighted sum of the correspond-
ing displacement vectors:255

d(x, φk) =

N
∑

i=1

G∗(x− pi(φk))di(φk), (5)

G∗(x) = f(x) · I, (6)

where f is a weighting function. Function f weights the
displacement vectors according to the distance between
the control point pi(φk) and the point x. Three weight-260

ing functions are investigated.
a. Shepard’s Method. Here an inverse distance

weighting is applied according to the distance from the
considered point to the n closest control points [6]. The
function f is therefore defined as:265

f(x) =
||x||−1

2
∑n

j=1
||xj ||

−1

2

, (7)

with xj = x−pj(φk). We empirically set n to 30 in this
paper. Due to the density of the grid points, the number
n = 30 corresponds to a range of approximately 2 cm
around the grid point x. Forthmann et al. evaluated n =270

1 and n = 128 neighbors and stated that the number of
points can be selected to be quite small, but one neighbor
point may not be sufficient [27].
b. Smoothed Weighting Function. Here the function

f is a cosine-based smoothing function:275

f(x) =

{

1

N (1 + cos( ||x||2·π
R

)) ||x||2 ≤ R

0 otherwise,
(8)

where N denotes a normalization constant so that
∑N

j=1
f(xj) = 1, and with xj = x− pj(φk). The radius

(a)Between reference heart
phase at end-diastole and

current phase at end-systole.

(b)Between reference heart
phase close to end-diastole and
current phase at end-diastole.

FIG. 3. Illustration of a dense MVF of the human data set
computed with TPS. The number of vectors displayed has
been reduced in order to permit visualization of MVF char-
acteristics.

R is empirically set to 2 cm. We picked 2 cm because it
seemed reasonable and included ≈ 30 points, but depen-280

dence on the region of interest size has not been investi-
gated and is beyond the scope of this paper.
c. Simple Averaging. Here the resulting displace-

ment vector d(x, φk) is a simple average of the displace-
ment vectors at the surrounding control points. Thus285

the function f , with M denoting the number of control
points located within a sphere of radius R around x is
defined as:

f(x) =

{

1

M
||x||2 ≤ R

0 else.
(9)

In this study an empiric radius R = 2 cm is used. We290

picked the same radius as in Paragraph IIC 2 b.

D. Cutting

In order to reduce the computational complexity we
assume that the left ventricle is the central moving organ
inside the scan field of view. This assumption is justified295

due to the acquisition protocol where for the most part
only the left heart ventricle is filled with contrast during
the procedure. Therefore, a dense MVF is estimated in
the neighborhood of the ventricle. The considered set of
points P for which a motion vector is estimated is given300

as:

P = {x | ||x− px(φk)||2 ≤ l} , (10)

where px(φk) is the closest surface control point to the
current point x. The distance l was heuristically set to
2 cm around the surface model in the heart phase φ0. In305

Figure 3(a), an MVF of the human data set h1 between
the reference heart phase at end-diastole and the current
heart phase at end-systole is illustrated for the TPS. The
MVF of h1 between the reference heart phase close to
end-diastole and the current heart phase at end-diastole310

is illustrated for the TPS in Figure 3(b).
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FIG. 4. A simplified scheme of the voxel-based motion com-
pensation.

E. Motion Compensation

The motion compensated reconstruction algorithm
used here is based on the FDK formulation. The esti-315

mated motion vector field is incorporated into a voxel-
driven filtered backprojection reconstruction algorithm.
The motion correction is applied during the backprojec-
tion step by shifting the voxel to be reconstructed accord-
ing to the motion vector field. In Figure 4, a schematic320

illustration of the motion compensated backprojection is
given. Parameter S denotes the X-ray source, D the de-
tector plane and O the origin of the image plane. The
motion vector d(x, φk) at voxel position x given in world
coordinates indicates a 3D motion to the point xd. x′

325

and x′
d are the perspective projections of x and xd with

viewpoint S. Instead of accumulating the 2D projection
value at position x′ to the position x, the value at x′

d is
backprojected. A more detailed explanation of the algo-
rithm can be found in Schäfer et al. [2].330

III. EXPERIMENTAL SETUP

A. Phantom Data

The algorithm presented here has been applied to a
ventricle data set comparable to the XCAT phantom335

[33, 34]. The bloodpool density of the left ventricle was
set to 2.5 g/cm3, the density of the myocardium wall to
1.5 g/cm3 and the blood in the aorta to 2.0 g/cm3. It is
assumed that all materials have the same absorption as
water. We simulated data using a clinical protocol with340

the following parameters: 395 projection images simu-
lated equi-angularly over an angular range of 200◦ at a
frame rate of 60 fps with a size of 620× 480 pixels at an
isotropic resolution of 0.62mm/pixel. The distance from
source to detector was 120 cm and from source to isocen-345

ter 78 cm, leading to a resolution of about 0.4mm in the
isocenter. The surface model consisted of 40 heart phases
between subsequent R-peaks and 957 control points uni-

formly distributed over the left ventricle. The image
reconstruction was performed on an image volume of350

(25.6 cm)3 distributed on a 2563 voxel grid. Electrophysi-
ological parameters extracted from the surface model are
given in Table I.

B. Porcine Data

The porcine data set was acquired on an Axiom Ar-355

tis dTA C-arm system (Siemens AG, Healthcare Sector,
Forchheim, Germany). We acquired data using the same
clinical protocol as described in Section IIIA. The con-
trast agent was administered by a pigtail catheter di-
rectly into the left heart ventricle. The surface model360

consisted of 30 heart phases between subsequent R-
peaks and 961 control points equally distributed over
the left ventricle. Due to memory restrictions, image
reconstruction was performed on an image volume of
(21.8 cm)3 distributed on a 2563 voxel grid with a res-365

olution of 0.85mm. Electrophysiological parameters ex-
tracted from the surface model are given in Table I.

C. Clinical Human Data

The first data set h1 was acquired on an Artis zee
C-arm system (Siemens AG, Healthcare Sector, Forch-370

heim, Germany). It consists of 133 projection images
acquired over an angular range of 200◦ in 5 s with a
size of 960× 960 pixels at an isotropic resolution of
0.18mm/pixel (about 0.12mm in isocenter) at a frame
rate of 30 fps. The distance from source to detector was375

120 cm and from source to isocenter 78 cm. The contrast
agent was administered by a pigtail catheter directly into
the left heart ventricle. The surface model consisted of 26
heart phases between subsequent R-peaks and 961 con-
trol points equally distributed over the first section of the380

left ventricle. Image reconstruction was performed on an
image volume of (14.1 cm)3 distributed on a 2563 voxel
grid. The data sets h2 and h3 were acquired on an Ar-
tis zeego C-arm system (Siemens AG, Healthcare Sector,
Forchheim, Germany). They consist of 133 projection385

images acquired over an angular range of 200◦ in 5 s with
a size of 960× 960 pixels at an isotropic resolution of
0.31mm/pixel (about 0.2mm in isocenter). The frame
rate, source-detector and source-isocenter distances were
the same as for h1. The left heart ventricle was again390

filled with contrast directly by a pigtail catheter. The
surface model consisted of 25 and 30 heart phases be-
tween subsequent R-peaks for h2 and h3 respectively and
906 control points equally distributed over the left ven-
tricle. Image reconstruction was performed on an image395

volume of (19.2 cm)3 distributed on a 2563 voxel grid.
Electrophysiological parameters for h1, h2 and h3 ex-
tracted from the surface model are given in Table I.
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TABLE I. Electrophysiological data parameters extracted
from the surface model: ejection fraction (EF), stroke
volume (SV), end-diastolic volume (EDV), end-systolic vol-
ume (ESV).

heart rate [bpm] EF [%] SV [ml] EDV [ml] ESV [ml]

Phantom ≈75 30 42.03 135.82 93.79

Porcine ≈103.3±24.2 46 40.05 87.44 47.40

Human h1 ≈61.6±1.7 75 50.43 67.50 17.07

Human h2 ≈62.9±2.9 59 74.63 125.88 51.24

Human h3 ≈55.3±9.3 63 103.03 167.38 61.56

(a)Standard FDK
reconstruction of the
dynamic phantom.

(b)Gold standard FDK
reconstruction of the
static heart phantom
of heart phase 40%

and ROI (red contour)
used for evaluation.

FIG. 5. Transverse slice of a reconstructed image of the dy-
namic FDK reconstruction result and the gold standard re-
construction of the phantom left ventricle. The ROI used
for image quality metric measurements is shown as the red
contour.

D. Quantitative Evaluation400

1. Phantom Image Quality in 3D Image Space

For the dynamic phantom data set the 3D error and a
quantitative 3D image metric can be evaluated. In order
to measure only the artifacts introduced by the heart mo-
tion, the FDK reconstruction of the static heart phantom405

of the same heart phase is used as gold standard. Heart
phases from 10% to 100% with 10% increment were eval-
uated. The reconstruction of the static phantom is done
with the same geometric reconstruction parameters as
the motion compensated reconstructions and the stan-410

dard FDK reconstruction of the dynamic phantom (see
Figure 5(a)). The ground truth of the phantom is not
used due to the fact that only the artifacts coming from
the heart motion should be measured and evaluated by
using FDK as a gold standard. Other cone-beam or trun-415

cation artifacts are identical in the images and can be
neglected. Let y = {yi | i = 1, 2, . . . , N} be the gold
standard image and x = {xi |, i = 1, 2, . . . , N} the mo-
tion compensated or standard FDK reconstructed image.
The error as well as image quality metric were evaluated420

in a region of interest (ROI) around the ventricle. An
example of the ROI is illustrated in Figure 5(b).

a. Normalized Root Mean Square Error (nRMSE).
The nRMSE was used to quantify the 3D reconstruction425

error of the motion compensated reconstructions or stan-
dard FDK reconstructions compared to the gold standard
FDK of the static phantom. The nRMSE can be com-
puted as follows

nRMSE =
1

max(y)−min(y)

√

√

√

√

1

N

N
∑

i=1

(xi − yi)2, (11)430

where N denotes the number of voxels inside the region
of interest (ROI). All results were averaged over the heart
phases, resulting in the overall nRMSE.
b. Universal Quality Index (UQI). The 3D image

quality was evaluated with the universal image qual-435

ity index (UQI) [35]. The UQI ranges from −1 to 1,
where 1 is the best value achieved when yi = xi for all
i = 1, 2, . . . , N . The UQI is defined as

UQI =
4 · σxy · x · y

(

σ2
x + σ2

y

)

[(x)2 + (y)2]
, (12)

where x, y represent the mean values, σ2

x, σ
2

y the vari-440

ances, and σxy the cross correlation inside the ROI. All
results were averaged over the heart phases, resulting in
the overall UQI.

2. Dice Similarity (DSC) Coefficient in 2D Projection
Space445

In order to compare the reconstruction quality of
the motion compensated reconstruction algorithm, max-
imum intensity forward projections (MIPs) of the com-
pensated LVs were generated. Binary mask images
BFW (φk) were created from the MIPs by thresholding450

where only the left ventricle is visible. A value equal
to zero defines background and a non-zero value defines
the ventricle shape. These binary images were compared
to the segmented 2D projections from which the origi-
nal surface model and the MVF were built, denoted as455

BGS(φk). The overlap of the binarized image and the
segmented 2D projections was analyzed with the Dice
similarity coefficient (DSC) [36]. The DSC is defined in
the range of [0, 1], where 0 means no overlap and 1 de-
fines a perfect match between the two compared images.460

All results were averaged over the heart phases, resulting
in the overall Dice coefficient. The DSC is defined as

DSC =
2|BFW (φk) ∩ BGS(φk)|

|BFW (φk)|+ |BGS(φk)|
(13)

3. Mean Contour Deviation ǫ in 2D Projection Space

Since the motion compensated reconstruction mainly465

improves the accuracy of the ventricle contour, the sim-
ilarity of the contours was evaluated. The contour
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(a)Gold standard
segmentation of the ventricle

bloodpool in 2D.

(b)Extracted contour
CFW (φk) of the MIP
projection image.

(c)Euclidean distance
transformed image

Φ(CFW (φk)). Dark color
represents smaller distance
and lighter color a larger

contour distance.

(d)Euclidean distance
transformed image

Φ(CFW (φk)) overlaid with
the contour CGS(φk). For the
computation of ǫ(φk) only
the underlying values of
Φ(CFW (φk)) are used.

FIG. 6. Different contour projection images for quantitative
evaluation.

CFW (φk) and CGS(φk) of the binary masks of the for-
ward projection BFW (φk) and the gold standard projec-
tion BGS(φk) were extracted. The contour CFW (φk) is470

extracted by morphological operations from BFW (φk).
The contour CGS(φk) is given by the dynamic 3D surface
model generation (see Section II B). In Figure 6(a) the
boundary CGS(φk) of the left ventricle is illustrated which
is used as gold standard. Figure 6(b) shows CFW (φk). A475

distance transform Φ(CFW (φk)) of the binary contour im-
ages CFW (φk) is defined by computing the Euclidean dis-
tance of every pixel to the contour CFW (φk). An example
of a distance transformed image Φ(CFW (φk)) is shown in480

Figure 6(c). An overlay of CGS(φk) and Φ(CFW (φk)) is
shown in Figure 6(d). The distance transformed image is
sampled only at the indices where CGS(φk) is non-zero:

ǫ(φk) =
1

Nc

Nc
∑

n=1

Φ(CFW (φk))n, (14)

where Nc denotes the number of pixels where CGS(φk) is485

non-zero. All results were averaged over the heart phases,
resulting in the overall mean contour deviation ǫ. A small
ǫ denotes similar contours over all heart phases.490

IV. RESULTS AND DISCUSSION

A. Phantom Data

The quantitative 3D results of the dynamic phan-
tom model are presented in Table II. The smallest495

nRMSE is attained by the TPS and Shepard’s method,

TABLE II. The nRMSE and the UQI of the dynamic phantom
model. Expressed as mean value ± standard deviation. The
best values are marked in bold.

Phantom

nRMSE UQI [%]

TPS 0.047± 0.004 98.5± 0.3

Shepard 0.047± 0.004 98.9± 0.2

Smoothed Weighting Fct. 0.048± 0.004 98.8± 0.2

Simple Averaging 0.050± 0.006 98.7± 0.2

Standard FDK 0.080± 0.019 96.22± 1.6

TABLE III. Dice coefficient and mean contour deviation ǫ for
the left ventricle of the phantom data set. Expressed as mean
value ± standard deviation. The best values are marked in
bold.

Phantom

Dice [pixel] ǫ [pixel] ǫ [mm]

TPS 0.96± 0.02 2.75± 0.43 1.71± 0.27

Shepard 0.95± 0.02 3.33± 0.31 2.06± 0.20

Smoothed Weighting Fct. 0.95± 0.02 3.33± 0.27 2.06± 0.17

Simple Averaging 0.94± 0.02 3.64± 0.33 2.26± 0.20

Standard FDK 0.94± 0.03 4.66± 1.91 2.89± 1.18

the smoothed weighting function has a slightly larger er-
ror. The UQI for all motion compensated reconstructions
results in values around 99%. In Table III the Dice and
the contour deviation ǫ in 2D projection space for the500

phantom left ventricle are reported. The TPS approach,
Shepard’s method and the smoothed weighting function
show equivalently good results. The contour deviation (ǫ)
of the TPS improved by about 1.91 pixels which corre-
sponds to 1.18mm compared to the standard FDK. The505

standard deviation is also much smaller with the TPS
compared to the standard reconstruction. The Dice co-
efficient is not very sensitive and shows similar results be-
tween all interpolation methods as well as for the FDK
reconstruction. In Figure 7 the results of the motion510

compensated reconstructions of the phantom left ventri-
cle using different interpolation methods are illustrated.
There are minor visible differences in the endocardium

TABLE IV. Dice coefficient and mean contour deviation ǫ for
the left ventricle of the porcine data set. Expressed as mean
value ± standard deviation.

Porcine

Dice [pixel] ǫ [pixel] ǫ [mm]

TPS 0.92± 0.01 3.67± 0.18 2.28± 0.11

Shepard 0.92± 0.01 3.88± 0.19 2.39± 0.12

Smoothed Weighting Fct. 0.92± 0.01 4.50± 0.39 2.77± 0.24

Simple Averaging 0.92± 0.01 4.05± 0.20 2.51± 0.12

Standard FDK 0.90± 0.02 4.64± 0.49 2.88± 0.30
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TABLE V. Dice coefficient and mean contour deviation ǫ for
the left ventricle of the human data sets. Expressed as mean
value ± standard deviation.

Human h1

Dice [pixel] ǫ [pixel] ǫ [mm]

TPS 0.93± 0.01 9.15± 1.22 1.65± 0.22

Shepard 0.91± 0.02 10.29± 2.07 1.85± 0.33

Smoothed Weighting Fct. 0.91± 0.02 10.92± 3.02 1.97± 0.54

Simple Averaging 0.91± 0.03 11.74± 2.81 2.11± 0.51

Standard FDK 0.88± 0.03 17.60± 10.0 3.17± 1.80

Human h2

Dice [pixel] ǫ [pixel] ǫ [mm]

TPS 0.93± 0.01 6.70± 0.74 2.08± 0.23

Shepard 0.93± 0.02 6.99± 1.37 2.17± 0.42

Smoothed Weighting Fct. 0.93± 0.02 7.17± 1.43 2.22± 0.44

Simple Averaging 0.93± 0.02 7.40± 1.98 2.29± 0.61

Standard FDK 0.89± 0.06 11.02± 5.80 3.42± 1.80

Human h3

Dice [pixel] ǫ [pixel] ǫ [mm]

TPS 0.88± 0.02 8.64± 0.98 2.68± 0.30

Shepard 0.85± 0.03 12.13± 1.93 3.76± 0.60

Smoothed Weighting Fct. 0.85± 0.03 12.10± 1.88 3.75± 0.58

Simple Averaging 0.85± 0.03 12.38± 2.05 3.84± 1.19

Standard FDK 0.83± 0.06 13.64± 5.81 4.23± 1.80

border. All interpolation methods show deformation ar-
tifacts outside the region of interest.515

B. Porcine Data

In Table IV the results for the porcine left ventricle
are reported. It can be seen that the best motion com-
pensated reconstruction can be achieved with the TPS
interpolation method compared to a standard reconstruc-520

tion. The mean contour deviation (ǫ) improved by about
0.97 pixels which corresponds to 0.60mm compared to
the standard FDK reconstructions. The improvement is
relatively small due to the fact that the pig had a poor
ejection fraction of about 46%. In Figure 8 the results525

of different reconstructions of the porcine left ventricle
are illustrated. The standard reconstruction in Figure
8(a) exhibits blurring around the LV. In Figure 8(b) it
can be observed that the ECG-gated reconstruction lacks
LV structure and suffers from artifacts from the pigtail530

catheter. In comparison, the motion compensated recon-
struction shows an expansion in diastole and contraction
in systole of the LV, respectively (Fig.8(c),8(d)).

(a)Motion
compensated

reconstruction based
on a simple averaging

method.

(b)Motion
compensated

reconstruction based
on the smoothed

weighting function.

(c)Motion
compensated

reconstruction based
on Shepard’s method.

(d)Motion
compensated

reconstruction based
on the TPS.

FIG. 7. Detail of an axial slice of the reconstruction images
of the phantom left ventricle of a heart phase of 40% using
the different interpolation methods.

C. Clinical Data

In Table V the results for the human left ventri-535

cles are listed. The best motion compensated re-
constructions are clearly performed with the TPS for
all three cases. The respective contour deviation (ǫ)
improved by about 8.45 pixels which corresponds to
1.52mm, about 4.32 pixels which corresponds to 1.34mm540

and about 5 pixels which corresponds to 1.55mm com-
pared to the standard FDK. The standard deviation is
also much smaller with the TPS compared to the stan-
dard reconstructions. The widely used Shepard’s method
and the smoothed weighting function provides slightly in-545

ferior results compared to the TPS. The papillary mus-
cle boundary is sharper in the TPS interpolated vol-
umes. The Dice coefficient shows similar results between
all interpolation methods as well as for the FDK recon-
struction, thus is less sensitive compared to the contour550

deviation. The standard reconstruction in Figure 9(a)
exhibits blurring around the LV. In Figure 9(b) it can
be observed that the ECG-gated reconstruction lacks LV
structure and suffers from artifacts. In comparison, the
motion compensated reconstruction shows an expansion555

in diastole and contraction in systole of the LV, respec-
tively (Fig.9(c),9(d)). In Figure 10 the results of dif-
ferent reconstructions of the human left ventricle h1 are
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(a)Standard FDK
reconstruction.

(b)Nearest-Neighbor ECG-gated
reconstruction for end-systolic

heart phase (5 views).

(c)Motion compensated
reconstruction for end-systolic
heart phase (relative heart

phase of 30%).

(d)Motion compensated
reconstruction for end-diastolic

heart phase (relative heart
phase of 95%).

FIG. 8. Multi-planar reconstruction images (long axis view
top left and right, short axis view bottom left) and volume
rendering (bottom right) of the reconstruction results of the
porcine left ventricle with the TPS interpolation (W 1260 HU,
C 1075 HU, slice thickness 0.85mm). The ECG-gated recon-
struction was windowed to be visually comparable.

illustrated. The motion compensated reconstructions all
show an expansion of the left ventricle, but slightly dif-560

ferent shapes.

D. Limitations

The interpolation result and hence the motion compen-
sated reconstruction is dependent on the robustness and
stability of the extracted surface model. The method is565

robust with respect to higher heart rates up to 100 bpm
or even more. The porcine model had a heart rate of ≈
100 bpm. However, if the heart beat is quite arrhythmic,
the assignment of the projection images to a certain heart
phase becomes ambiguous and thus the generation of the570

dynamic surface model is not unique. This influence and
impact on the clinical application needs to be evaluated
in the near future.

(a)Standard FDK
reconstruction.

(b)Nearest-Neighbor ECG-gated
reconstruction for end-systolic

heart phase (5 views).

(c)Motion compensated
reconstruction for end-systolic
heart phase (relative heart

phase of 20%).

(d)Motion compensated
reconstruction for end-diastolic

heart phase (relative heart
phase of 70%).

FIG. 9. Multi-planar reconstruction images (long axis view
top left and right, short axis view bottom left) and volume
rendering (bottom right) of the reconstruction results of the
human left ventricle h1 with the TPS interpolation (W 3000
HU, C 1200 HU, slice thickness 3.0mm). The ECG-gated
reconstruction was windowed to be visually comparable.

V. CONCLUSIONS

In this paper, we investigated the influence of different575

motion interpolation methods. The interpolation is used
to compute a dense motion vector field from a sparse one
for the purpose of motion compensation in left ventricle
tomographic reconstruction. The sparse motion vector
fields were generated by a dynamic surface model and580

interpolated by a thin-plate spline, Shepard’s method, a
smoothed weighting based approach and simple averag-
ing. The best quantitative results (Dice coefficient, mean
contour deviation) for a phantom, a porcine and three hu-
man data sets were achieved using the TPS interpolation585

approach. Shepard’s method and the smoothed weight-
ing function might be a good compromise between com-
putational efficiency and accuracy. In conclusion, motion
compensated reconstruction improved the reconstruction
results compared to a standard reconstruction. As a next590

step, the integration into the clinical workflow needs to
be evaluated. In general, the framework of motion esti-
mation using a surface model and motion interpolation
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(a)Motion compensated
reconstruction with simple

averaging interpolation method.

(b)Motion compensated
reconstruction with smoothed

weighting function interpolation
method.

(c)Motion compensated
reconstruction with Shepard’s

interpolation method.

(d)Motion compensated
reconstruction with TPS
interpolation method.

FIG. 10. Coronal slice of the reconstruction images (long axis
view) of the motion compensated reconstruction results of
the human left ventricle h1 and an end-diastolic heart phase
of 70% (W 3000 HU, C 1200 HU, slice thickness 3.0mm).

to a dense MVF provides the ability for tomographic re-
construction using a motion compensation technique.595
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