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Objectives: Attenuation correction of positron emission tomographic (PET)
data is critical in providing accurate and quantitative PET volumes. Deriving
an attenuation map (K-map) from magnetic resonance (MR) volumes is a
challenge in PET/MR hybrid imaging. The difficulty lies in differentiating
cortical bone from air from standard MR sequences because both these classes
yield little to no MR signal and thus shows no distinguishable information.
The objective of this contribution is 2-fold: (1) to generate and evaluate a
continuous valued computed tomography (CT)Ylike attenuation map (K-map)
with continuous density values from dedicated MR sequences and (2) to
compare its PET quantification accuracy with respect to a CT-based attenua-
tion map as the criterion standard and other segmentation-based attenuation
maps for studies of the head.
Materials and Methods: Three-dimensional Dixon-volume interpolated
breath-hold examination and ultrashort echo time sequences were acquired for
each patient on a Siemens 3-T Biograph mMR PET/MR hybrid system and the
corresponding patient CT on a Siemens Biograph 64. A pseudo-CT training
was done using the epsilon-insensitive support vector regression (?-SVR)
technique on 5 patients who had CT/MR/PET triplets, and the generated
model was evaluated on 5 additional patients who were not included in the
training process. Four K-maps were compared, and 3 of them derived from
CT: scaled CT (K-mapCT), 3-class segmented CT without cortical bone
(K-mapnobone), 4-class segmented CT with cortical bone (K-mapbone), and 1
from MR sequences via ?-SVR technique previously mentioned (ie, MR
predicted [K-mapMR]). Positron emission tomographic volumes with each of
the previously mentioned K-maps were reconstructed, and relative difference
images were calculated with respect to K-mapCT as the criterion standard.
Results: For PET quantification, the proposed method yields a mean (SD)
absolute error of 2.40% (3.69%) and 2.16% (1.77%) for the complete brain
and the regions close to the cortical bone, respectively. In contrast, PET using
K-mapnobone yielded 10.15% (3.31%) and 11.03 (2.26%) for the same, al-
though PET using K-mapbone resulted in errors of 3.96% (3.71%) and 4.22%
(3.91%). Furthermore, it is shown that the model can be extended to predict
pseudo-CTs for other anatomical regions on the basis of only MR information.
Conclusions: In this study, the generation of continuous valued attenuation
maps from MR sequences is demonstrated and its effect on PET quantification
is evaluated in comparison with segmentation-based K-maps. A less-than-2-
minute acquisition time makes the proposed approach promising for a clinical
application for studies of the head. However, further experiments are required
to validate and evaluate this technique for attenuation correction in other re-
gions of the body.
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The advent of hybrid positron emission tomography (PET)/
magnetic resonance (MR) systems has opened up the possibility

to combine 2 powerful imaging modalities in 1 hybrid imaging de-
vice.1,2 Magnetic resonance imaging (MRI), on the one hand, is
known for its excellent soft tissue contrast by means of a plethora of
imaging sequences and has the potential to provide highly specific
anatomical localization. Positron emission tomography, on the other
hand, enables highly specific metabolic imaging. In comparison with
PET/computed tomography (CT), PET/MR offers a reduction of ra-
diation dose. Therefore, the hybrid PET/MR system can be a highly
beneficial tool for brain and whole-body studies.3Y5 However, MR-
based attenuation correction (MRAC) of PET images still remains a
problem at large. In PET/CT hybrid imaging, a simple energy scaling
from CTenergies (40Y140 keV) to PET energy (511 keV) is sufficient
to generate attenuation maps.6,7 However, such a relationship is not
straightforward in PET/MR imaging because MR measures aspects
of protons, whereas PET attenuation is affected by electron density.
The main problem in MR-derived attenuation maps is distinguish-
ing between bone and air because these 2 materials offer little to
no signal in most MR sequences. However, their linear attenua-
tion coefficients (LACs) vary significantly (air, 0 cmj1 and bone,
0.1510 cmj1 at 511 keV).

Several different ways of handling this issue have been pro-
posed: Martinez-Möller et al8 argued that representing the cortical
bone as soft tissue does not undermine the clinical value of the at-
tenuation-corrected PET images. According to this study, ignoring
the cortical bone resulted in an 8% decrease in standardized uptake
value for bone lesions and 4% decrease for head and neck lesions.
Schulz et al9 reported 3-class segmentations (air, tissue, and lung) for
whole-body imaging studies, but they did not investigate their K-map
for brain studies. This has raised the question in the research com-
munity whether it is necessary or beneficial to consider the cortical
bone as an additional class.

In current PET/MR hybrid systems, an attenuation map based
on a 3-dimensional (3D) Dixon-VIBE (volume interpolated breath-
hold examination) sequence is commonly used. Depending upon the
vendor, the K-map in these systems mainly distinguish between 2
(air, soft tissue) to 3 classes (air, water, and fat) for the head re-
gions.10,11 For the torso region, lung is identified as an additional
class. Because of a relatively fast acquisition, an easily integrable
workflow, and a simple segmentation-based approach, this has found
wide usage among the first clinical studies of this relatively new
hybrid imaging modality. Although the 3D Dixon-VIBEYbased K-map
is generally accepted/used for studies of the torso, cortical bone omis-
sion for studies of the head has shown to have a significant impact on
PET-attenuation correction (AC).12,13

Whereas most of the recent research focuses on the effect on
PET-AC when including or disregarding a class,12,14,15 very few MR-
based AC implementations, which include bone, have sufficiently
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fast acquisition and processing times necessary for clinical use.16

Several groups have investigated the inclusion of the cortical bone as
an attenuating class for brain PET-AC from atlas registration or
dedicated MRI sequences such as ultrashort echo time (UTE) se-
quences, which are capable of visualizing the cortical bone and other
structures with very short T2*.13,17Y19 Keereman et al17 proposed a
3-class (air, soft tissue, cortical bone) segmentation approach from
relaxation maps derived from UTE sequences and reported a 5%
mean error across brain regions. Simulations from Catana et al13 also
confirmed the need for at least 3 classesVair, water, and cortical
boneVbecause of differences in quantification for gray matter (GM),
white matter, and cerebrospinal fluid regions. Berker et al19 proposed
a triple echoYbased MR acquisition to identify cortical bone, water,
and fat classes from 1 sequence.

An inherent drawback of all of the previously mentioned MR-
based approaches is that they compare their segmentation results with
a segmented patient CT. Although this approximation might hold true
for attenuating classes such as air (Hounsfield units [HU] G j1000),
GM, white matter, or fat (j300 G HU G 0), the wide range of CT
voxel values for bone, 300 to 2000 HU, indicates the need for more
than 1 class for its representation. Furthermore, as bone densities
vary vastly across patients and across regions of the body, a discrete
assignment of K-values cannot adequately represent all bone voxels.14

Few attempts have been made to predict K-values on a con-
tinuous scale from MR images. Hofmann et al18,20 proposed pattern
recognition methods by incorporating local neighborhood informa-
tion from MR images in addition to an atlas registration step. They
generate pseudo-CT images for each patient from T1-weighted spin-
echo sequences. They have, however, not evaluated their approach on
UTE sequences. Johansson et al21 have derived substitute CTs from
multiple MR acquisitions (2 UTE and 1 T2 weighted 3D spin echo
based sequence) per patient using the Gaussian mixture model re-
gression. Although their results look promising, lengthy acquisition
times may limit its application to PET/MR. In the current study, a
similar approach is followed, that is, to emulate a CT from a UTE and
a 3D Dixon-VIBE sequence and, subsequently, to evaluate its effi-
cacy on PET attenuation by comparing it with a patient CT as the
criterion standard.

MATERIALS AND METHODS

Patient Examinations
Ten patients (4 females, 6 males; age, 50.6 T 10.6 years;

weight, 70.5 T 9.1 kg) underwent a PET/CT scan on a Biograph 64
(Siemens AG, Healthcare Sector, Erlangen, Germany), followed by a
PET/MR examination on a Biograph mMR (Siemens AG, Health-
care Sector, Erlangen, Germany) 137.2 T 43.0 minutes after the PET/CT
examination. All patients were administered with fluorodeoxyglucose
(18F-FDG) as a radiotracer (maximum, 246 MBq; minimum, 126 MBq).

No additional tracer or radiation dose was administered for the PET/
MRI examination. The patients were examined for a clinical ques-
tion in the rest of the body and had no abnormalities in the brain. The
clinical routine used for simultaneous PET/MR acquisitions for head
scans includes a 3-plane localizer, a 3D Dixon-VIBE sequence, an-
atomical T1-turbo spin echo (TSE) and T2-TSE sequences, and an
echo-planar-diffusion weighted sequence. In addition, for the pur-
pose of this work, a UTE sequence was acquired. The PET acquisi-
tion time per bed position was set to 10 minutes. Because of the
simultaneous acquisition of PET and MR data on the Biograph mMR
system and the 10-minute PET acquisition time, the overall acquisi-
tion time was not prolonged by the additional UTE sequence. Alto-
gether, the 3D Dixon-VIBE and the UTE sequences were used for the
purpose of deriving MR-based attenuation maps. The UTE sequence
was acquired with the following parameters: first echo time (TE1),
0.07 milliseconds; second echo time (TE2), 2.46 milliseconds; flip
angle, 10 degrees; repetition time (TR), 11.94 milliseconds; field of
view (FOV), 300 � 300 mm2; slice thickness, 1.56 mm; acquisition
matrix size, 192� 192; and acquisition time, 84 seconds. The images
were then reconstructed to a matrix size of 192 � 192 � 192 voxels
with an isotropic voxel size of 1.56 � 1.56 � 1.56 mm3. An opti-
mized UTE sequence for studies of the head was provided by the
vendor. No apparent differences due to geometrical distortion or
scaling were noted between the 2 echoes. Second, a 2-point Dixon-
VIBE sequence in 3D mode was acquired with the following pa-
rameters: voxel dimensions, 192� 126� 128; voxel size, 2.6� 2.6�
2.23 mm3; TR, 3.6 milliseconds; TE, 1.23 milliseconds; flip angle,
10 degrees; and acquisition time, 19 seconds. For patient examina-
tions, an approval from the Institutional Review and Ethical Board
was obtained. All patients gave their informed and written consent.

Continuous Valued K-Map Generation
Each of the 10 patients had 1 CT and 2 MR sequences (UTE

and 3D Dixon-VIBE sequences), and the MR/CT pairs have identi-
fiable air, cortical bone, water, and fat information available. Thus, a
regression model is trained to learn this mapping between the 2
modalities considering the CT as the reference. The idea is to use the
trained model to predict a pseudo-CT from the 2 MR sequences for a
new patient, thereby making obsolete the need for a patient CT. The
training was performed on 5 patients and the testing on the remain-
ing 5 not used in the training step.

However, a prerequisite for model training is properly regis-
tered CT/MR data. After registration, an air mask is calculated.
Furthermore, to better visualize the cortical bone, a difference map
is calculated using the relation S(x) = lnI1(x) Y lnI2(x), where I1 and
I2 represent UTE-TE1 and UTE-TE2 image intensities, respec-
tively. Figure 1 shows the UTE-TE1, UTE-TE2, and the difference
map. The air mask, together with CT, difference map, 3D Dixon-
VIBE fat, and 3D Dixon-VIBE water images are used to train the
regression model. A flow diagram is illustrated in Figure 2.

FIGURE 1. Distinguishing cortical bone from a UTE sequence: UTE-TE1 (A), UTE-TE2 (B), and difference map (C).
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Image Preprocessing
Because MR and CT data sets originate from the same patient

and the focus was on the head region, a simple rigid transformation
was sufficient to map the voxel correspondence. Furthermore, the
patients in PET/CT are imaged in arms-up position; the patients in
PET/MR, in arms-down position. In addition, the patient table and
certain positioning aids not used in PET/MR are visible in the CT
images. Therefore, as a preprocessing step, the patient bed and the
positioning aids as well as the patients’ arms were excluded from the
CT volume to preserve the head alone to achieve better registration
results. This cropped CTwas then rigidly registered to the UTE-TE1
image using mutual information as the similarity measure. Subse-
quently, to eliminate the influence of possible patient motion between
the acquisition of UTE-TE1 and the 3D Dixon-VIBE water images,
these 2 images were also rigidly registered and the obtained trans-
formation parameters were used in bringing the UTE-CT registered
pair to the 3D Dixon-VIBE space. Finally, a visual assessment was

done to check the registration result between the 2 modalities and no
major discrepancies were noticed. All registrations were performed
using the software elastix.22 In a patient setup, however, the regis-
tration is not necessary because the CT images are only needed for an
initial training. In the current study, only regions above the nose were
considered for analysis.

Air Mask
The purpose behind a segmented air mask was to restrict the

prediction of all other voxels to fat, water, or cortical bone because, in
PET, high tracer uptakes are observed inside of this mask. This is
necessary because misclassifying soft tissue for air in GM, for ex-
ample, would underestimate considerably the PET activity for that
voxel. A volume of interest (VOI) from UTE-TE1 was obtained
through simple thresholding and morphological operations. Because
high noise levels in the background of UTE-TE1 may result in an
unreliable air segmentation, a voxelwise addition of the 3 volumes
UTE-TE1, 3D Dixon-VIBE in-phase, and 3D Dixon-VIBE opposed-
phase is performed. The composite image now has bone intensities
from UTE-TE1, soft tissue information from the 3D Dixon-VIBE in-
phase and opposed-phase images, but it has no signal from air in any
of the sequences. The resulting image is then subjected to a scalar
K-means classification with the sum of squared error metric. Alto-
gether, 30 clusters were specified as an input to the algorithm together
with initial cluster mean estimates starting from 0 to the maximum
pixel value. An Otsu thresholding was then run to obtain a binary
image.23 To remove any stray segmentations that are not air, a
connected component analysis was done on the binary image. A
relabeling filter then sorted the identified components according to
their weights in a descending manner. From this, the labels with the
largest components greater than 1000 pixels were assigned to the air
class. Finally, the air mask is obtained by multiplying the identified air
class with the VOI mask (Fig. 3). To evaluate the generated air mask,
predefined VOIs were placed and evaluated on commonly identified
air regions on both CT and MR volumes as shown in Figure 4. All
software processing was done using algorithms from Insight Toolkit.24

?-Insensitive Support Vector Regression Training
Before the pseudo-CT estimation, a model generation step is

necessary to learn the mapping between the associated classes from
the extracted MR feature vectors to their corresponding CT HU. A
pattern recognition approach ?-SVR is used for this purpose.25,26

Given a feature vector {x1
Y; x2

Y; x3
YIxl

Y}, where xi
Y
DRl and their corre-

sponding target responses {y1,y2,y3Iyl}, yiDR1, ?-SVR attempts to
find a suitable mapping f(xY) as close as possible to yi with most ?
errors. This can be visualized as having an ?-insensitive tube around
the target values yi. The decision function f(x

Y) is obtained by solving
the following convex optimization problem:

minP
wY;H;H*

¼ 1
2
wY

T
w
Y þ C ~

l

i¼1
ðHþ H*Þ ð1Þ

subject to

yijGwY;EðxYÞ9þ be?þ H ð2Þ

Gw
Y
;EðxYÞ9þ bjyie?þ H* ð3Þ

Hi; H*Q0 ð4Þ
Here, i = 1,2Il, where l is the number of training instances,

H,H* represent slack variables that are 0 if the error is within ? range
and nonzero otherwise, G,9, the dot product operator, wY, the normal
vector to the hyperplane, and b is the bias. The constant C is a trade-
off factor that controls the number of misclassifications beyond ? and

FIGURE 2. Positron emission tomographic attenuation
correction pipeline. An air mask derivation allows for prediction
of fat, water, and cortical bone class from MR sequences that
result in K-mapMR. From the patient CT, 3 sets of K-maps
are derived: K-mapCT, K-mapnobone, and K-mapbone. The
corresponding PET reconstructions are PETCTAC, PETnoboneAC,
PETboneAC, and PETMRAC. For each reconstruction, an RD image is
calculated against PETCTAC as the reference. The patient CT is
only used for model training and evaluation and is not needed
when predicting continuous valued K-maps for a new patient.
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the flatness of the decision boundary. GwY;EðxYÞ9 represents the dot
product in the feature space p, where E : xYYp. The input vectors xY

are projected to a higher dimensional feature space p, where a deci-
sion boundary is determined through a nonlinear mapping function
E( xY). A kernel function KðxiY; xj

YÞ can be described in terms of the
mapping function through a dot product in the feature space p.

KðxiY
; xj
YÞ ¼ GEðxiYÞ;EðxjYÞ9 ð5Þ

With this formulation (equation 5), the mapping of input vectors
x
Y

to feature space p can be done implicitly via the kernel function.
For more details on ?-SVR, please refer to the studies of Vapnik25

and Smola and Schölkopf.26 For this study, a radial basis kernel
KðxiY; xj

YÞ was chosen as the kernel function.

KðxiY
; xj
YÞ ¼ ejF¬xi

Y
jxj

Y
¬2 ð6Þ

The decision function for a new feature vector xY can be for-
mulated as follows:

f ðxiY;>i;>
*
i Þ ¼ ~

l

i¼0
ð>ij>*i ÞKðxi

Y
; xj
YÞ þ b ð7Þ

where F is the width of the RBF kernel and >i;>
*
i are Lagrange mul-

tipliers and 0 e >i;>
*
i e C. The extracted features include mean, me-

dian, variance, and maximum and minimum values across a 3 � 3 � 3
local neighborhood from 3D Dixon-VIBE fat, 3D Dixon-VIBE water,
and difference map volumes. A soft margin is used with slackness
constraints H,H* to allow errors beyond the ?-insensitive tube while,
at the same time, penalizing the cost function. Altogether, 5 quadru-
plets of images were used for training and validation. A random subset
was extracted from the training instances of the 5 patients, and a sub-
sequent grid search was performed to determine optimal parameters
of (C, F, ?) through a 5-fold cross validation method to avoid overfit-
ting. All pattern recognition processing was done using the library for
support vector machines.27

Generation of Continuous Valued K-Maps for Patients
Not Included in the Training Process

For a new patient, an air mask is generated as described pre-
viously and features across 3 � 3� 3 are extracted from MR images:
difference map, 3D Dixon-VIBE fat, and 3D Dixon-VIBE water
images. The trained ?-SVR model is then used to predict HU on a
continuous scale for fat, water, and cortical bone classes inside of the
air mask.

Evaluation

Attenuation Maps
Four K-maps were generated: (1) patient CT (K-mapCT),

(2) MR-predicted CT (K-mapMR), (3) 4-class segmented CT with
bone (K-mapbone), and (4) 3-class 3D Dixon-VIBEYlike CT without

bone (K-mapnobone). Figure 5 shows the different K-maps used for
comparison. The first 2 (K-mapCT and K-mapMR) were converted to
PET energy (511 keV) by hybrid scaling4 and the third (K-mapbone)
was thresholded into air (HU G j300), fat (j300 e HU G 0), water
(0 e HUG 300), and bone (HU Q 300), and LACs of 0 cmj1,
0.1000 cmj1, 0.0854 cmj1, and 0.1510 cmj1 were assigned, respec-
tively. K-Mapnobone was constructed by assigning 0 cm

j1, 0.0854 cmj1,
and 0.1000 cmj1 from thresholding CT into air (HU G j300), fat
(j300 e HU G 0), and water (HU Q 0), respectively. Refer to Figure 2
for an overall PET processing pipeline.

For studies of the head, the total acquisition time was
103 seconds: 19 seconds for 3D Dixon-VIBE and 84 seconds for
the UTE acquisition.

The generation of K-mapMR on an Intel Xeon processor with
8 cores took approximately 3 minutes.

Reconstruction Parameters and Evaluation
of Quantification

Attenuation-corrected PET data reconstructed from the previ-
ously mentionedK-maps (K-mapCT,K-mapMR,K-mapbone,K-mapnobone)

FIGURE 4. Sample placements of VOIs around air regions.

FIGURE 3. Air mask steps. A, Voxelwise addition from UTE-TE1 and in-phase and opposed phase images. B, Result of K-means
classification. C, Air mask obtained from connected component analysis. The regression model prediction can now be restricted to
fat, water, and cortical bone inside the air mask.
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will be referred to as PETCTAC, PETMRAC, PETboneAC, and PETnoboneAC,
respectively. All reconstructions were performed on the Biograph
mMR console with standard settings: ordered subset expectation maxi-
mization with 3 iterations, 21 subsets, post smoothed with a 4-mm full-
width-at-half-maximum Gaussian low pass filter with enabled scatter
correction. The complete brain was segmented from UTE-TE2 and 3D
Dixon-VIBE opposed-phase images for the purpose of analyzing
global PET quantification differences between the reconstructed re-
sults. Furthermore, to analyze local PET uptake differences, 13 land-
marks close to the cortical bone were segmented on the basis of
GM regions. All segmentations were performed using the software
IBASPM.28 A relative difference (RD) image is calculated using the
relation

>ðxÞ ¼ 100*

�
PETiðxÞjPETCTACðxÞ

�

PETCTACðxÞ
,
where i represents

the different K-maps, that is, CT, MR, no bone, and bone. In addition,
a linear regression analysis with the following relation y=mx+c was
performed, where x and y denote the activities from PETCTAC and
PETMRAC PETboneAC, and PETnoboneAC.

RESULTS

Air Mask Evaluation
The overall air classification rate per patient is enlisted

in Table 1. The mean correctly classified air rate was 76.23% across
all patients for the drawn VOIs. Most deviations were observed at the
air-soft tissue and bone-soft tissue interfaces where MR susceptibility
artifacts limit a precise segmentation.

Positron Emission Tomographic Comparisons
Exemplary slices of the RD volumes for PET reconstructions

are shown in Figure 6. From a qualitative standpoint, both PETMRAC

and PETCTAC are in good agreement. No misleading or artifactual
uptake spots were introduced by the algorithm. Quantitatively, a
constant underestimation is observed for PETnoboneAC for all patients
(red coloration) because of cortical bone omission. For all patients,
PETboneAC resulted in small underestimations within 5% (light-red
coloration) because of the lower LAC for water 0.1000 cmj1 in
K-mapbone in contrast to K-mapCT.

The global error difference on PET due to different attenuation
maps is seen in Table 2. Table 3 shows the results of PET quantifi-
cation for regions close to the cortical bone for all reconstructions.
The exclusion of the cortical bone resulted in noticeable un-
derestimations for PETnoboneAC that produced a global error of
10.15% T 3.31% and 11.03% T 2.26% error close to the cortical

FIGURE 5. Different attenuation maps used for comparison. Transaxial slices of patient P3: patient CT, K-mapCT (A);
MR-predicted CT, K-mapMR (B); 4-class segmented CT with bone, K-mapbone (C), 3-class 3D Dixon-VIBEYlike CT without bone,
K-mapnobone (D).

TABLE 1. Patient-Specific Air Classification Rate (%)

Patient Correct Air Classification (%)

P1 81.73

P2 84.57

P3 73.28

P4 63.63

P5 77.96

Mean 76.23
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bone. On the other hand, the overestimations due to constant LAC for
the cortical bone in PETboneAC translated to a local overestimation
error of 4.22% T 3.91% close to the cortical bone but had no severe
global impact (3.96% T 3.71%) because the nature of these local
errors decreased with increasing distance from the soft tissue and
cortical bone interface. The PETMRAC was able to estimate PET ac-
tivities with an error of 2.40% T 3.69% for the brain regions and
2.16 T 1.77% for the regions close to the cortical bone. Large mean
and standard deviation values for PETboneAC for the segmented
landmarks in Table 3 demonstrate the variability in the LAC assign-
ment close to the skull. Errors reported are averaged across all pa-
tients and are in absolute units.

Considering the proximity of GM to the skull, the effect of
segmented K-maps on PET quantification and the benefit of using

continuous density LAC assignments can be seen in Figure 7.
The proposed method minimizes these estimation errors at the skull
periphery in contrast to more than 10% errors for PETnoboneAC

FIGURE 6. Positron emission tomographic volumes reconstructed from different attenuation maps. Visually, PETMRAC compares well
with PETCTAC. PETMRAC compares with PETCTAC with an error of 2.40% T 3.69% for the entire brain and 2.16% T 1.77% for the
regions close to the cortical bone. Red and blue colorations indicate underestimation and overestimation errors, respectively.

TABLE 2. Positron Emission Tomographic Quantification
Differences on the Complete Brain for All 5 Patients

Patients RDMRAC RDnoboneAC RDboneAC

P1 2.84 (4.18) 10.25 (3.62) 4.22 (3.62)

P2 2.18 (3.29) 10.48 (4.02) 4.43 (4.66)

P3 2.42 (3.21) 10.75 (2.84) 3.57 (4.00)

P4 2.26 (4.29) 9.22 (3.08) 3.56 (2.82)

P5 2.28 (3.48) 10.05 (2.98) 4.03 (3.44)

Mean 2.40 (3.69) 10.15 (3.31) 3.96 (3.71)

All values are expressed as mean (SD) and in percentage (%).

TABLE 3. Summary of PET Activity Differences on Segmented
Regions Across All Patients and for All PET Reconstructions

Landmarks RDMRAC RDnoboneAC RDboneAC

Angular gyrus LR 2.35 (1.97) 10.88 (2.28) 4.79 (4.65)

Cuneus LR 2.49 (1.17) 11.17 (2.86) 4.07 (4.21)

Inferior frontal gyrus LR 2.25 (1.94) 9.97 (2.14) 3.80 (4.35)

Middle frontal gyrus LR 1.84 (1.50) 10.28 (1.60) 3.88 (3.45)

Middle occipital gyrus LR 2.24 (1.73) 12.13 (2.70) 4.72 (3.65)

Occipital lobe LR 3.45 (2.64) 15.10 (3.20) 6.07 (4.65)

Postcentral gyrus LR 1.97 (1.61) 10.59 (2.00) 4.43 (4.35)

Precentral gyrus LR 2.19 (1.70) 10.17 (2.12) 3.85 (4.55)

Superior frontal gyrus LR 1.55 (1.19) 9.78 (1.55) 3.66 (2.19)

Superior occipital gyrus LR 1.83 (1.43) 12.58 (3.04) 5.38 (5.37)

Superior parietal lobule LR 1.32 (1.16) 10.81 (2.42) 3.72 (3.86)

Superior temporal gyrus LR 2.30 (1.72) 9.84 (1.57) 2.87 (1.79)

Supramarginal gyrus LR 2.63 (2.67) 10.09 (1.80) 3.61 (3.71)

Mean 2.16 (1.77) 11.03 (2.26) 4.22 (3.91)

In general, PETMRAC estimates accurately PETCTAC than any other method does.

All values are expressed as mean (SD) and in percentage (%).

LR indicates left right.
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and 4% errors for PETboneAC. The overestimation errors can be
thought of as bone intraclass misclassifications where the assigned
LAC is offset by a large degree compared with the actual value in
the CT.

A scatterplot of PET activities with calculated regression lines
for the segmented landmarks is shown in Figure 8. The PETMRAC has
a near-unity slope (1.012) compared with PETnoboneAC (0.918) or
PETboneAC (0.961), indicating that the proposed method has the
potential to estimate PET activities accurately with respect to the

criterion standard. Table 4 shows the coefficient of determination
(R2) and regression coefficients.

Also, for a patient not included in this study, because of a
different injected tracer, the proposed approach was able to predict
calcifications in the brain regions. Figure 9 shows the comparison
between the MR-predicted CT and the patient CT.

Figure 10 shows PETMRAC overlayed on an anatomical T2-
TSE sequence. The conjunction of high soft tissue contrast from
the MR is seen with functional information from PET.

FIGURE 7. Effect of segmentation-based attenuation maps on PET-AC for patient P2. Illustration shows the RD maps on GM regions
(compared with the criterion standard): PETnoboneAC (top row), PETboneAC (middle row), and PETMRAC (bottom row). A consistent
error greater than 11% (underestimation) at the periphery of the skull in PETnoboneAC and greater than 4% (overestimation) in
PETboneAC has been improved in PETMRAC because of continuous bone density prediction. Red and blue colorations indicate
underestimation and overestimation errors, respectively.

FIGURE 8. Scatterplots from PETnoboneAC, PETboneAC, and PETMRAC with respect to PETCTAC as reference for all patients.
Comparatively, PETMRAC has a closer-to-identity slope than any other method does.
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Pelvis Attenuation Maps
An accurate MR to CT mapping is a prerequisite for optimal

model training. This is not straightforward to achieve even for an
intrapatient whole-body scenario because of inherent physiological
motion and different patient configurations (arms up in PET/CT,
arms down in PET/MR). To circumvent this problem, the model
generated for studies of the head is reused on other stations, assuming
that the classifier generalization holds good.

First, a manual thresholding procedure was used for creating
an initial mask, followed by a morphological closing operation to
generate an air mask. The voxels inside the mask were assigned
continuous HU values calculated by the ?-SVR. The volunteers were
scanned using the same acquisition protocols as described for studies
of the head with no acquired emission data. The estimated pseudo-
CT is shown in Figure 11. The overall processing time for deriving
the pelvis attenuation map was approximately 7 minutes. However, a
drawback with the UTE sequence used in this study is the limited
FOV, which is 300 mm � 300 mm. In voxels beyond these regions,
where there is an absence of UTE signal, the model predicts water/fat
intensities from the 3D Dixon-VIBE sequence. This setting allows
the assignment of cortical bone LACs when possible or at least water/
fat, otherwise. This is important especially for patients with obesity
wherein a complete pelvic bone coverage due to UTE may be not
guaranteed.

DISCUSSION
A method to generate pseudo-CTs via ?-SVR is presented and

is evaluated toward PET quantification. The approach was validated
for 5 patients who had MR/PET/CT triplets and evaluated for the
remaining 5 patients not included in the model-generation process.
The patient CT was a prerequisite for training the classifier and can
be dropped once a model has been generated and when estimating a
pseudo-CT for a new patient.

The evaluation was done for the proposed method against
different attenuation maps comprising of the scaled CT, the seg-
mented CT (with cortical bone), and the segmented CT (without
cortical bone). Attenuation-corrected PET images from the proposed
method compare well both qualitatively and quantitatively to the
other approaches (Fig. 6). Figure 8 suggests that the proposed con-
tinuous valued pseudo-CT method is feasible for studies of the head
and is in better agreement to the criterion standard than the currently
used 3-class approach is.

Because the head is a more compact region and the cortical
bone is a high-attenuation medium, it requires a careful LAC as-
signment for accurate PET quantification. In this context, UTE se-
quences have already been used for the purpose of attenuation
correction. Catana et al13 and Keereman et al17 proposed segmentation-
based approaches based on UTE for PET-AC and compared their
results with a segmented CT. Although segmented CT has no sig-
nificant global influence on PET quantification, it yields regionally
increased errors close to the skull periphery (Fig. 7). The proposed
method minimizes this bias. However, a classifier training across a
larger patient collective would be useful for obtaining accurate LAC
estimations.

Similarly, for both the brain and close to the cortical bone re-
gions, PETnoboneAC underestimated activities by at least 10% con-
sistently across all patients. This decrease is also in agreement with
errors 10% to 15% underestimation reported by Schramm et al,11

Samarin et al,12 and Catana et al,13 reiterating the inclusion of a
cortical bone class when deriving K-maps. Although cortical bone
exclusion can be generally accepted for whole-body studies, its ap-
plication has limitations toward neurological studies.8,9

The following observations were made when deriving the at-
tenuation maps. During mask generation, the air mask omitted fine
structures at the ethmoid sinus and parts of the middle ear cavities
(mastoid air cells and tympanic cavities). Although no global impact
was observed, the effect of this misclassification led to error variations
up to 30% in the adjacent structures. As an improvement, multiple
UTE sequences with different acquisition parameters (eg, flip angle,
TE) can also be used.21 This could give more T2* information per
voxel that could result in better model generalization. However, with
this approach, it is not clear as towhich HU would the classifier predict
for very fine tissues, given the susceptibility artifacts. Also, patient
acquisition times and motion are its biggest limitations.

Not included in this study were also regions below the nose
where uncertainties are vast, for example, differences in tongue,
swallowing, and uvula positions, and this may introduce potential

TABLE 4. Results of Linear Regression Analysis on PET Activities
From the Investigated Attenuation Maps

Coefficients PETMRAC PETnoboneAC PETboneAC

m 1.012 (0.000) 0.918 (0.000) 0.961 (0.000)

c j0.062 (0.002) j0.193 (0.003) 0.0324 (0.004)

R2 0.994 (0.218) 0.972 (0.425) 0.961 (0.527)

FIGURE 9. Magnetic resonanceYpredicted CT (A) is able to identify calcifications (arrows) in comparison with the patient CT (B).
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bias for PET comparisons. Also ignored were the dental regions and
implants where a CT is unlikely to serve as a reference because of
metal streak artifacts.

For older patients, underestimation of hot spots were observed
because of the inherent calcifications in the brain for PETboneAC re-
construction. This resulted in RD of 5% to 10% because of its local
assignment as a soft tissue (0.1000 cmj1 in K-mapbone). The pro-
posed method underestimated PET activities with the same error
range as the regression model estimated soft-tissue HU for these
regions. This was because, in patient P4, the UTE sequence was
not sensitive enough to highlight these intensities. In the patient
CT, this region corresponded to less than 200 HU. However, in
another patient who was not included in this study, the calcifica-
tions were predicted by the model and their corresponding inten-
sities were greater than 500 HU in the patient CT. This can be seen
in Figure 9.

Reconstructed PETMRAC may also include slight misregistra-
tions between the pseudo-CT and the patient CT. This is inherently
overcome for segmentation-based K-maps because the reference CT
is used for this purpose. Also, the protruding ear regions and, subse-
quently, the outer sheath of the skin are oversegmented for mask
consideration by the morphological closing operator. These contrib-
ute to errors as a voxel-to-voxel difference is performed, and they are
treated as misclassifications.

Besides 18F-FDG, generated pseudo-CTs can motivate inves-
tigation into other hybrid imaging systems such as single-photon
emission computed tomography (SPECT)/CT where patient CT is
used for attenuation and scatter correction together with a possi-
bility of imaging multiple radiopharmaceuticals such as technetium-
99 (99Tc) or iodine-131 (131I). Although initial results in SPECT/MR
technical integration have been reported, certainly, an MRAC seems
promising.29

FIGURE 10. Anatomical T2 turbo spin echo sequence (A), non-attenuation corrected PET (B), PETMRAC (C), and fused PET/MR
(C overlayed on A) (D).

FIGURE 11. Top row, Coronal and transaxials views of MR-predicted CT using model generated for brain studies. Bottom row,
Window/level adjusted views for the same volunteer. The model predicts cortical bone where both UTE and 3D Dixon-VIBE
information is available or simply water/fat in the absence of UTE intensities (black arrows). Some voxels were misclassified as bone
because of oversegmentation by the masking procedure (white arrow). The UTE sequence had a limited FOV (300 mm � 300 mm).
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Lastly, our model can be reused on other regions of the body.
Figure 11 shows initial results where the pelvic bone discrimination
is seen and could be of potential benefit for studies targeting prostate
cancer. As a further improvement, more accurate pseudo-CTs could
be generated via separate model training for each coil/body region
using UTE with 3D Dixon-VIBE or other sequences. However, this
effect on PET has not been investigated yet and is a part of ongoing
research.

CONCLUSIONS
In this study, the generation of continuous valued attenuation

maps from MR sequences is demonstrated and its effect on PET
quantification is evaluated in comparison with segmentation-based
K-maps. A less-than-2-minute acquisition time makes the proposed
approach promising for a clinical application for studies of the head.
However, further experiments are required to validate and evaluate
this technique for attenuation correction in other regions of the body.
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Noninvasive Nodal Staging in Patients With Breast Cancer Using Gadofosveset-Enhanced Magnetic
Resonance Imaging: A Feasibility Study: Erratum

In the article that appeared on page 134 of the March issue of Investigative Radiology, in the reprint section, the author’s first name is
omitted. The author’s name should have been BRegina G.H. Beets-Tan[. We regret the error.
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