

Multi-modal Pipeline for Comprehensive Validation of Mitral Valve Geometry and Functional Computational Models

Dominik Neumann^{1,2}, Sasa Grbic^{1,3}, Tommaso Mansi¹, Ingmar Voigt¹, Jean-Pierre Rabbah⁴, Andrew W. Siefert⁴, Neelakantan Saikrishnan⁴, Ajit P. Yoganathan⁴, David D. Yuh⁵, Razvan Ionasec¹

¹ Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ
 ² Pattern Recognition Lab, Dept. of Comp. Sc., Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
 ³ Computer Aided Medical Procedures (CAMP), Technical University Munich, Germany
 ⁴ The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, GA
 ⁵ Section of Cardiac Surgery, Department of Surgery, Yale University School of Medicine, CT

SIEMENS

Motivation

Mitral Valve (MV) Regurgitation

Most common form of valvular heart disease
Significant mortality & morbidity rates

Data Acquisition

Mechanical Simulator

In-vitro closed-loop left heart simulator^[2]

TECHNISCHE

UNIVERSITÄT

MÜNCHEN

• Traditional treatment: MV *replacement*

MV Repair^[1]

- Better preservation of heart function & long-term survival
- Requires experienced surgeon & pre-operative planning
 Æfficient training/planning tools to optimize intervention outcome
 - Development of computational MV models
 - ➔ Models remain simplifications
- Assess clinical applicability of models by validation against comprehensive ex-vivo data

Model Extraction

In-Vivo TEE

High-Fidelity Model

Ex-Vivo MicroCT

- Identify annulus and papillary muscle locations
 - Seed points for Random Walker segmentation
- Convert mask to mesh
 - ➔ Marching Cubes
- Segment chordae tendineae

State-of-the-Art Geometrical Model^[3]

- Physiological point distribution model
- Based on 9 anatomical landmarks
- Marginal Space Learning framework

Biomechanical Modeling^[4]

Novel path tracing approach

- Transverse isotropic linear elasticity
- Co-rotational finite elements method

Model Validation

Geometric Comparison of Anatomical Models

- TEE model vs. microCT model
- MV excised from ovine heart
- Measured clinically-related parameters

MV Closure Computation (Biomechanics)

- Based on end-diastolic TEE model
- Pressure profile: 0 *mmHg* to 120 *mmHg*

Anterior Leaflet Length

oaptation Length

Conclusion

Contributions

- Novel complete model validation pipeline
- Bridge between ex-vivo and clinical modalities
- Integration of geometric and functional models
- Controlled setup to acquire images from invasive and non-invasive modalities at almost identical conditions
- Robust algorithms to extract **reproducible** models
- First experiments on real data
 - → Utilized TEE model can accurately represent important biomarkers

Future Work

- Experiments on more specimen
- Evaluation of prediction power of current and future in-vivo computational frameworks

References

[1] Kilic et al.: "Operative outcomes in mitral valve surgery: Combined effect of surgeon and hospital volume in a population-based analysis". In Ann. Thorac. Surg., 146(3):638-646, 2013
[2] Rabbah et al.: "A novel left heart simulator for the multi-modality characterization of native mitral valve geometry and fluid mechanics". In Ann. Biomed. Eng., 41(2):305-315, 2013
[3] Voigt et al.: "Robust physically-constrained modeling of the mitral valve and subvalvular apparatus". In MICCAI, LNCS, 6893:504-511, 2011
[4] Mansi et al.: "An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: Application to MitralClip intervention planning". In MIA, 16(7):1330-1346, 2012

STACOM 2013: 4th International Workshop on Statistical Atlases and Computational Models of the Heart *in conjunction with* The 16th International Conference on Medical Image Computing and Computer Assisted Intervention

ΜΙCCΛΙ