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Abstract. Classical surgery is being disrupted by minimally invasive
and transcatheter procedures. As there is no direct view or access to the
affected anatomy, advanced imaging techniques such as 3D C-arm CT
and C-arm fluoroscopy are routinely used for intra-operative guidance.
However, intra-operative modalities have limited image quality of the
soft tissue and a reliable assessment of the cardiac anatomy can only be
made by injecting contrast agent, which is harmful to the patient and re-
quires complex acquisition protocols. We propose a novel sparse matching
approach for fusing high quality pre-operative CT and non-contrasted,
non-gated intra-operative C-arm CT by utilizing robust machine learn-
ing and numerical optimization techniques. Thus, high-quality patient-
specific models can be extracted from the pre-operative CT and mapped
to the intra-operative imaging environment to guide minimally invasive
procedures. Extensive quantitative experiments demonstrate that our
model-based fusion approach has an average execution time of 2.9 s, while
the accuracy lies within expert user confidence intervals.

1 Introduction

Fluoroscopy guided cardiac interventions such as endovascular stenting, atrial
ablation, closure of atrial/ventricular septal defects and transcatheter valve re-
pair or replacement are a rapidly growing market. Compared to conventional
open-heart surgeries, these procedures are expected to be less invasive, reduce
procedural morbidity, mortality, and intervention cost, while accelerating pa-
tient recovery. For inoperable or high-risk patients, minimally invasive surgery
is the only treatment option [1]. However, without direct access to the affected
anatomy, advanced imaging is required to secure a safe and effective execution.

Overlays of 3D anatomical structures based on pre-operative data [2] can po-
tentially provide valuable information for interventional guidance when displayed
on live fluoroscopy. High-quality pre-operative 3D data is routinely acquired for
diagnostic and planning purposes by means of Computed Tomography, Magnetic
Resonance Imaging or Echocardiography. However, direct 3D pre-operative to 2D
fluoroscopy registration is difficult to solve, especially within the intra-operative
setup that does not allow for user interaction or time-consuming processing.
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Fig. 1. Yellow: C-arm CT, gray: fused high-quality CT, blue: anatomical model

C-arm CT is emerging as a novel modality that can acquire 3D CT-like vol-
umes directly in the OR in the same coordinate system as 2D fluoroscopy, which
overcomes the need for 2D/3D registration. For most procedures, the patients
are older and therefore, a safe execution of the procedure is the dominating
factor [3]. Some methods work directly on the C-arm CT images [4] to extract
patient-specific models for procedure guidance. However, acquiring high-quality,
contrasted, and motion compensated C-arm CT images is challenging and clin-
icians would prefer a much simpler protocol without contrast or gating. Today,
manual or semi-automatic tools are used to align the pre-operative CT and the
intra-operative C-arm CT. Thus, C-arm CT serves as a bridge between 3D pre-
operative data and 2D live fluoroscopy.

Multi-modal 3D/3D registration algorithms can be utilized to automate the
process of aligning the pre-operative scan with the C-arm CT. [5] uses mutual
information to cope with intensity inconsistencies between CT and MR and [6]
presents an atlas-based approach to track the myocardium and ventricles from
MR data. However, these methods are computationally expensive, and without
appropriate guidance of a shape prior likely to converge into local minima.

We propose a method to fuse 3D pre-operative high-quality anatomical in-
formation with live 2D intra-operative imaging via non-contrasted 3D C-arm
CT (Fig. 1). Robust learning-based methods are employed to automatically ex-
tract patient-specific models of target and anchor anatomies from CT. Anchor
anatomies have correspondences in the pre- and intra-operative images, while
target anatomies are not visible in the intra-operative image, but essential to
the procedure. A novel sparse matching approach is employed to align the pre-
and intra-operative anchor anatomies. Data and model uncertainties are learned
and exploited during the matching process. Our method is able to cope with
image artifacts, partially visible models, and does not require contrast agent.

2 Method

Our fully-automatic method (Fig. 2) fuses a pre-operative CT imageM (moving)
with an intra-operative C-arm CT image F (fixed), such that a target anatomy
(aortic valve) is aligned. The process is based on an anchor anatomy A (peri-
cardium) extracted fromM, and a probability map F̃ derived from F . Optimal

transformation parameters θ̂ are sought. θ = (φθ, tθ) represents a rigid trans-
formation with Euler angles φθ = (φx, φy, φz) and translation tθ = (tx, ty, tz).
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Fig. 2. Fusion workflow overview

2.1 Pericardium Segmentation

We use a recent method by Zheng et al. [7] to segment the patient-specific anchor
anatomy A inM (Fig. 3(a)). Their technique consists of three main steps. First,
the pose and scale of the heart is estimated using marginal space learning (MSL).
Second, a mean shape based on manual annotations is aligned. In a third step,
the parameters are refined using a boundary detector based on the probabilistic
boosting tree (PBT) [8], followed by additional postprocessing.

2.2 Probability Map Extraction

A probability map F̃ is created from F by evaluating a PBT classifier on each
voxel (Fig. 3(b)). The classifier was trained to robustly delineate pericardium
boundary regions in C-arm CT images utilizing Haar features to achieve robust-
ness and computational efficiency. Medical experts created a database DB of
pericardium annotations {P} on 393 interventional C-arm CT scans {V}. For
training, positive samples were generated with regard to the position of the vox-
els corresponding to points in the ground-truth mesh. The negative samples for
each tuple in the database (V,P) ∈ DB are based on randomly selected voxels
v ∈ V, where the distance of v to all points in P exceeds a certain threshold.

2.3 Initialization Estimation

In order to find a reliable initialization θ0 = (φθ0 , tθ0), our method recovers the
offset tθ0 betweenM and F . We neglect the rotational error (φθ0 = 0), since it
is rather small between the CT and the C-arm CT scan due to the acquisition
protocols being similar as the patients adopt almost identical positions. Our
solution is based on object localization, a concept from computer vision, which we
formulate as a classification problem. We evaluate a PBT classifier trained using
DB from Sect. 2.2 on each voxel and choose the one that is most likely to contain
the pericardium center cF . Let cA be the center ofA, then θ0 = (φθ0 ,−cA+cF ).
Robust detections were achieved by utilizing F̃ as the input for training and
detection, since the probability maps look similar for both contrasted and non-
contrasted images, because the classifier for F̃ was trained on both types of
volumes. Thus, the method can be used with or without contrast agent injected.
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(a) Pre-operative CT scan (b) Intra-operative C-arm CT scan

Fig. 3. Volume slices overlaid by (a) segmented pericardium, (b) probability map: red
indicates high likelihood of pericardium occurrence, blue/transparent: low probability

2.4 Optimization Strategy

θ is refined within a numerical quasi-Newton optimization framework utiliz-
ing the BFGS update rule. To compensate for potential initial coarse misalign-
ment, the concept of multi-resolution optimization is exploited by optimizing in
a coarse-to-fine manner on various granularity levels of F̃ (4, 2 and 1 mm).

Objective Function. We aim to find the transformation θ̂ = argminθ f that
yields the minimal objective function value. f depends on A and F̃ :

f(θ | A, F̃) =

∑
p∈A is inside(θ(p), F̃) · ψ(θ(p), F̃)∑

p∈A is inside(θ(p), F̃)
. (1)

p denotes a point in A and p′ = θ(p) is that point transformed w.r.t. θ. The in-
dicator function is inside(p′, F̃) evaluates to 1, if p′ is inside the physical bound-
aries of the volume F̃ , otherwise 0. ψ(p′, F̃) returns a value inversely propor-
tional to the probabilistic prediction at the voxel ∈ F̃ where p′ is located. When
the number of points within the boundaries of the volume is below a certain
threshold, an alternative objective function prevents A and F̃ from diverging.

Gradient Computation. The BFGS method relies on the gradient ∇ in order
to estimate an approximation of the inverse of the Hessian. Unfortunately, f is
highly complex and therefore does not allow for analytical derivations. Hence,
we approximate ∇̃ ≈ ∇f(θ | A, F̃) component-wise with finite differences:

∇̃i = f(θ + δi | A, F̃)− f(θ | A, F̃) . (2)

∇̃i denotes the ith component of ∇̃ and δi is a 6D offset vector where all compo-
nents are zero, except for the ith component δii, which is set to a particular step
size. Despite its asymmetric computation scheme, the gradient is sufficiently sta-
ble in this application. For the translational components, δii equals the resolution
of F̃ . This choice asserts that (2) does not evaluate to zero, since the majority
of points in A transformed w.r.t. θ will correspond to a different v ∈ F̃ than
their corresponding points transformed w.r.t. θ + δi. Regarding the rotational
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Fig. 4. Prior weights, dark colors: small weights, bright colors: high influence

components, we experimentally determined that a spacing proportional to the
resolution of F̃ (e.g. δii = 1◦ when resolution is 1 mm) works properly.

While computing the translational gradient components is straightforward,
rotation in 3D poses a major problem due to its inherent non-linearity and co-
dependencies. We address these issues by utilizing a linearization of rotation
matrices R using a first order approximation R̃ as proposed by Mitra et al. [9].
Let Rθ be the 3D rotation matrix defined by φθ = (φx, φy, φz) with R−1θ = R>θ
and det(Rθ) = 1. Its first-order approximation is given by

R̃θ =

(
1 −φz φy
φz 1 −φx
−φy φx 1

)
≈ Rθ . (3)

It is important to mention that R̃θ ≈Rθ only holds under small motion (‖φ‖2 →
0). Hence, we cannot use R̃θ for large angles without introducing errors. There-
fore, we compute the rotational components of ∇̃ using a composite transfor-
mation. First, a point p ∈ A is transformed w.r.t. the current θ using the exact
Euler-angle representation to generate an intermediate point p′′. Second, p′′ is
rotated according to the minor rotation δi to yield p′ using R̃θ. Altogether, we
get p′ = δi(p′′) = δi(θ(p)). p′ constitutes the first argument for is inside and ψ
in (1) when computing the rotational components of ∇̃ using (2).

Prior Weights. The classifier response (Sect. 2.2) is more reliable in some
regions of the volumes compared to others. For instance see Fig. 3(b), where
the areas close to the left ventricle and right atrium have high responses, while
classification near the spine is noisy and the right ventricle region shows low con-
fidence. Robustness and accuracy of our method could be improved significantly
(cf. Sect. 3.1) by incorporating prior weights w = {wp | p ∈ A}. Each point
p in the pericardium model A is assigned a patient-independent weight wp. w
increases the influence of those points that are likely to be located within a re-
gion of high confidence in F̃ , whereas a point that lies in a noisy or often falsely
classified region gets penalized. Gradient magnitude, as well as the distance of a
point to the upper and lower boundary of the pericardium were most useful for
reliability predictions. Based on these observations and DB from Sect. 2.2, we
computed values for w (Fig. 4). Incorporation of w into (1) yields

f(θ | A, F̃ ,w) =

∑
p∈A is inside(θ(p), F̃) · ψ(θ(p), F̃) · wp∑

p∈A is inside(θ(p), F̃)
. (4)
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3 Experimental Results

We compiled a set of 88 corresponding clinical CT and C-arm CT volumes, each
with an isotropic resolution of 1 mm. 18 image pairs are native, while 70 were ac-
quired with contrast agent injected. Medical experts annotated the pericardium
in each volume, 43 studies include annotations of the aortic valve (AV). The
data is organized in a database DBcl = {(Vi, V̆i,Pi, P̆i,Ri, R̆i) | i = 1 . . . 88}.
Vi, Pi and Ri denote the ith CT volume, its pericardium and AV annotation.
Analogously, V̆i, P̆i and R̆i denote these structures for the C-arm CT acquisition.

The results are based on a symmetric mesh-to-mesh distance metric ε:

ε(X ,Y) =
1

2

∑
p∈X

min
4∈Y

εp2t(p,4) +
∑
p∈Y

min
4∈X

εp2t(p,4)

 , (5)

where X , Y are triangulated meshes and εp2t(p,4) denotes the point-to-triangle
distance. Note that (5) might underestimate misalignment tangential to the sur-
face. However, it is a fairly natural measure closely resembling visual assessment.

3.1 Quantitative Evaluation on Clinical Data

We evaluated our method on DBcl with both, prior weights (Sect. 2.4) enabled
and disabled. In Table 1 (left), the left and right columns for each scenario
show error statistics resulting from a comparison of the optimally transformed
segmented pericardium θ̂(A) and the ground-truth annotation in the C-arm CT
volume P̆, and results for a comparison of the transformed CT-based aortic
valve θ̂(R) and its C-arm based annotation R̆, respectively. With prior weights
incorporated, a registration accuracy of 5.60 ± 1.81 mm measured between the
anchor anatomy (pericardium) is achieved. Furthermore, with an error of 4.63
± 1.90 mm, the target anatomy (AV) is aligned very well. When the patient-
independent weighting is ignored, the mean errors increase significantly by more
than 35% regarding the pericardium and almost 55% for the AV. One reason is
that more outliers are generated, having a strong influence on the overall errors.
Hence, the prior information improves the fusion performance significantly.

3.2 Comparison to State-of-the-Art Fusion

We compared our model-to-image registration to an image-to-image fusion ap-
proach utilizing ITK, a state-of-the-art medical imaging library. Multi-resolution
optimal parameters θ̂∗ were obtained by an optimizer for rigid versor transfor-
mations. We customized the maximum and minimum step lengths adaptively
for each resolution, the maximum number of iterations was set to 200, and we
initialized the procedure by aligning the center of both volumes. The similarity
metric is based on mutual information. Quantitative results are presented in Ta-
ble 1 (right). We excluded cases where the method failed (ε > 20 mm). Using this
error-threshold rule, we disregarded almost half of all measurements. However,
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Table 1. Errors [mm] with/without prior weights (left) and for state-of-the-art (right)

Method Prior No Prior State-of-the-Art Prior

ε(·, ·) θ̂(A),P̆ θ̂(R),R̆ θ̂(A),P̆ θ̂(R),R̆ θ̂∗(P),P̆ θ̂∗(R),R̆ θ̂(P),P̆ θ̂(R),R̆
#Studies 88 43 88 43 47 21 47 21

Mean 5.60 4.63 7.57 7.17 7.19 6.33 5.03 4.45
Std 1.81 1.90 4.38 7.10 4.86 4.71 1.80 2.14

Median 5.29 4.64 6.91 5.52 4.96 4.56 5.02 4.32

since this framework is not specifically designed to align the pericardium, the
large number of fail cases is understandable. Many of the failures occurred for
images with significant differences in the size of the field of view between the CT
and the C-arm CT scan. Still, a mean error of 7.19 mm is substantially larger
than the error of our method, with a mean of 5.03 mm on the same dataset.

3.3 Inter-user Variability Study

Ascribing a rational meaning to quantitative results is challenging. In most cases,
the true performance of a system would not only be measured in absolute terms
but rather relative to the manual performance of experts. Thus, we compared
our method to individual performances of a group of 10 experts on 10 datasets.

Let θji be the ith expert’s transform for the jth pair of volumes. We compare
the fit of the θji-transformed CT pericardium to the ground-truth C-arm CT

annotation, i.e. we evaluate ε(P̆j ,θji(Pj)). Our automated method exhibits lower
errors than the median expert in 80% of all cases and shows high robustness with
no outliers (see Fig. 5). There exists only one dataset, where the automatic fusion
is inferior to more than 75% of the experts. Moreover, the experts’ manual fusion
time per data pair ranged from two to five minutes, while our method takes only
2.9± 0.4 s (in DBcl) on average, which means a speedup of up to 99%.

4 Conclusion

We presented a method to fuse pre-operative CT and intra-operative 3D C-
arm CT data. A novel sparse matching approach is employed to align the pre-
operative anchor anatomy to the intra-operative setting. Data and model un-
certainties are learned and exploited. Quantitative and qualitative evaluation
demonstrate an accurate mapping of the target anatomy to the intra-operative
modality. In direct comparison with a state-of-the-art registration framework,
our method outperforms it significantly in robustness and accuracy. Furthermore,
an inter-user variability study confirms that the accuracy of our fully-automatic
method lies within the confidence interval of the expert group while reducing the
duration of the alignment process from five minutes to three seconds. Thus, com-
prehensive patient-specific models can be estimated from high-contrast CT and
fused into the imaging environment of operating rooms to facilitate guidance in
cardiac interventions without tedious and time-consuming manual interactions.
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