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Abstract 

The applicability of shifted-excitation Raman difference spectroscopy (SERDS) in combination with 

signal regression analysis as a non-invasive and alternative approach to monitor the cultivation of 

phototrophic microorganisms producing complex molecules of pharmaceutical relevance in a bioreactor 

is demonstrated. As a model system, the cultivation of the red unicellular algae Porphyridium purpureum 

is used focussing on the segregation of polysaccharides that exhibit antiviral activity. The spectroscopic 

results obtained by linear regression based on partial linear least squares and by nonlinear regression 

based on support vector machines are discussed against the corresponding results from conventional 

offline analytics. The SERDS-approach turns out to have strong potential as a non-invasive tool for 

online-monitoring of biotechnological processes. 
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Introduction 

The scientific and industrial development of modern biotechnology has created a strong need for methods 

to monitor and control bioprocesses in order to optimise product formation and output. In addition, 

acquiring large amounts of data in such processes is important to build models and obtain deeper insights 

into and a fundamental understanding of the biosystem under investigation. One of the core objectives in 

bioengineering is to guarantee optimal and homogeneous process and cultivation conditions in order to 

increase the metabolic performance of a particular microorganism. Non-invasive, in-situ and online 

measurement of process parameters is the key to achieving this; however suitable technologies are very 

rare. The state-of-the-art methods for monitoring the substrate and product concentration are offline, at-

line or invasive online analytical techniques 1-9. The latter involves online sensors being immersed into 

the cultivation broth potentially causing problems with contamination 7-14. At-line technologies analyse 

samples directly after being taken and consequently represent a means of analysis almost in real-time 3, 4, 6, 

15. This is why such technologies are greatly increasing in popularity. However, the most common 

methods are still offline analytics, which are applied on a daily basis or even just at the end of the 

cultivation.  

Those methods are based on sampling and in many cases they are characterized by a very complex and 

time consuming performance and involve numerous steps of sample preparation, for example enzymatic 

digestion procedures or dialysis. Thus, spectroscopic methods have great potential to successfully replace 

offline analytics as they can be employed in situ and deliver data in real time about molecular species 

facilitating the measurement of concentration and the characterization of molecular interactions16-21. Near 

infrared absorption spectroscopy (NIRS) probes are already used frequently in bioprocess monitoring 1-9, 

11, 13-15, 22-27. However, because they are often based on fibre optical probes that are inserted in the 

bioreactor, they mean a high risk of contamination associated with financial losses in industrial 

applications. In principle, online spectroscopy allows instantaneous data acquisition from virtually all 

components of the matrix (microbial cultivation broth). 

Therefore, in this work we present shifted-excitation Raman difference spectroscopy (SERDS) 28-34 in 

combination with chemometric signal analysis to monitor cultivations in photobioreactors. SERDS is 

based on the Kasha-Vavilov rule 35, 36 and enables the acquisition of fluorescence-free Raman signals in 

the presence of fluorescence. This technique is a very promising candidate to replace chemically 

demanding downstream procedures and, in addition, it has the potential to be directly applied through the 

transparent walls of the reactor, hence being a truly non-intrusive tool. Photobioreactors are commonly 

used to grow phototrophic organisms, such as algae, which offer a broad range of applications based on 

the large variety of algal species. For example, algae serve as production organisms for substances of 
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biological, medical and physiological relevance 37-39, as feed-stock for renewable chemicals 38, 40 and 

biodiesel synthesis 41-45. Additionally they can be used for the absorption of heavy metal ions, e.g. in the 

field of waste-water treatment 46.  

For the present work we chose to investigate the phototropic red microalgae Porphyridium purpureum 

(P. purpureum) which can be found in marine systems and fresh water. P. purpureum serves as a source 

of valuable, bioactive compounds 47 including sulphated exopolysaccharides (EPS) 48-58, antioxidative and 

antiviral compounds59, polyunsaturated fatty acids 60-62 and phycobilisomes 28-31. In particular, the 

sulphated polysaccharides (heteropolymers of large molecular weight) are of great interest because they 

are antiviral for different types of RNA, DNA and retro viruses, e.g. herpes simplex or human 

immunodeficiency virus (HIV) 32, 33. They are able to inhibit the adsorption or penetration of viruses into 

host cells and with that different reverse transciptases 34, 63, 64. Thus, it is desirable to optimize the EPS 

production and maximize its growth dependent segregation to the extra-cellular surrounding where it can 

be harvested. The segregation predominantly happens between the exponential and stationary growth 

phases. 

In addition to the difficulty of developing an experimental tool, the calibration modelling is a challenging 

task, in particular concerning the dependency of the mathematical model on the growth phase and thus on 

the behavior of the cultivation broth. In this context, a temporal segmentation of the calibration model to 

take the phase dependent behaviour into account seems promising 1, 4-6, 11, 12, 25, 26, 65, 66. In order to extract 

information from spectra recorded in a bioreactor, numerous different mathematical models and 

algorithms have been developed employing multivariate data analysis and chemometrics26, 67. A 

prominent example is the combination of principle component analysis (PCA) and partial regression 68, 69, 

where PCA is applied initially to identify characteristic spectral signatures, which reflect changes in the 

bioprocess or the concentration of an analyte. This is often followed by a partial regression analysis. 

Finally, such models have been internally and externally validated 1-4, 67. Besides these well-established 

linear approaches, support vector machines 70(SVM) can be used for nonlinear regression, which is 

advantageous when the signal-information relation is nonlinear. Generally speaking, nonlinear regression 

by support vector regression (SVR) 71is based on the following functional principle. A nonlinear data set, 

that by definition is not explicable by a linear regression function, is projected into a higher dimensional 

space by means of Kernel-functions. By application of mathematical optimization techniques, the 

projection is done in a way that linear regression can be facilitated in the resulting higher dimensional 

space. The regression function in the higher dimensional space is subsequently back-transformed into the 

initial data space, and can then be used to explain the nonlinear relationship in the original data set in a 

mathematically optimal way. 

Very recently, the use of SVMs in process monitoring was demonstrated 10, 72-75. However, the application 
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of support vector machines for online-concentration measurements based on SERDS signals from a 

cultivation process has not been reported yet, to the best of our knowledge. 

The paper is structured as follows: To examine the potential of product monitoring based on non-invasive 

SERDS measurements as an alternative to conventional methods, we first compare SERDS with ordinary 

Raman spectroscopy. Secondly, we validate the concentration predictions from partial linear least squares 

regression (PLSR) against the reference concentrations determined in a conventional downstream process. 

Thirdly, we compare the results obtained by the linear PLSR with the nonlinear approach based on 

support vector machines. Subsequently, we show proof-of-concept results of online concentration 

determination performed in culture suspensions from the P. purpureum cultivation using a bypass flow-

loop system evaluated using a specific SVR algorithm, ε-SVR. The last section concludes providing a 

SWOT (strengths, weaknesses, opportunities and threats) analysis of the presented approach and future 

prospects.  

Material and Methods 

Measurement system 

The optical set-up for the Raman and SERDS measurements consisted of a tunable, continuous wave 

distributed-feedback diode laser emitting at 785 nm, the beam of which was focused into the cuvette 

holding the sample. The signal was collected and collimated at 90° with respect to the laser beam using an 

achromatic lens system. The elastically scattered light was suppressed by longpass filters with 785 and 

800 nm cut-off wavelength. For the SERDS measurements the signal was additionally divided into its 

horizontally and vertically polarized components in a polarizing beam splitter and then spectrally 

analyzed in two identical fibre coupled spectrometers covering a spectral range from 200 to 4000 cm-1. 

Typical acquisition times in the biological samples were 55 s. The necessary wavelength shift for the 

SERDS signals was determined by means of binary and ternary ionic liquid mixtures as they have 

established spectroscopy. A wavelength shift of about 0.65 nm was applied to record the two sets of 

SERDS spectra. Note that the difference in wavelength was also selected according to the spectral 

resolution of the spectrometers in such a way that the shifted Raman signals could clearly be 

distinguished from each other. In addition, the difference was sufficiently small that the difference 

spectrum can be considered as the differential of the Raman spectrum. This is advantageous when the 

Raman spectrum needs to be recovered retrospectively.  

For each measurement point 10 spectra were averaged and fitted with a suitable Savitzky-Golay polynom. 

The baseline was corrected by the regression routine msbackadj provided in Matlab 2010a before the 

difference spectrum for each polarization was calculated.  
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Porphyridium purpureum cultivation 

P. purpureum was chosen as a model algal system as it is of great interest for biotechnological 

applications. The microalgae produce a number of valuable compounds 47 including sulphated 

exopolysaccharides (EPS) 49-57, 76, polyunsaturated fatty acids (PUFAs) 60-62 and phycobilisomes 28-31. 

The cultivations were carried out under defined and controlled conditions in 1-l photobioreactor screening 

modules (PSM) having a reaction volume of 0.9 l(see Figure 1) and a 25-l photobioreactor (airlift loop 

type reactor) during scale-up. Since the antiviral EPS were chosen as target molecules, the optimization of 

the cultivation aimed at a maximized EPS segregation. At PSM scale, several cultivations were carried 

out applying variations in cultivation parameters including the medium composition, photon flux density 

or gas volume flow rate to find an optimal combination of the cultivation parameters. The optimisation 

was supported by the Nelder-Mead Simplex algorithm 77. Cultivation samples were taken daily during the 

batch cultivations of P. purpureum. During the optimisation process and development of the SERDS 

methodology only cultivation supernatants were investigated and prepared by centrifuging the samples at 

26,900 g, 15 °C for 15 minutes by means of the Contifuge Stratos Heraeus centrifuge. For the proof-of-

concept experiments cultivation samples were directly investigated without any preparation. 

 

Fig.1 Photobioreactor screening modules for a batch cultivation of Porphyridium purpureum 

Data evaluation 

For the evaluation of the SERDS spectra, principal component analysis (PCA) and partial least squares 

regression (PLSR) were used. Different algorithms including the non-linear iterative partial least squares 

(NIPALS) and the singular value decomposition (SVD) algorithm were tested 78. To accelerate the 

calibration, we tested additional algorithms based on a Lanczos transformation 79 and an algorithm for 

PLSR analysis based on the iToolbox of Lars Nørgaard 80. Eventually, the NIPALS algorithm was found 

to be the most suitable option. Besides linear regression by means of partial linear least squares, 

regression by means of support vector machines (SVR) was established and compared to PLSR. For this 

purpose the libSVM toolbox as described by Chang et al. 81 was integrated to Matlab2010a. Specifically, 

we used the ε-SVR algorithm82, which allows for linear regression in the high dimensional projection 
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space within a defined margin of error ε. Using the ε-SVR algorithm prevents overfitting of the SVR 

model to the known data82. For the required settings of the ε-SVR algorithm, we used a linear kernel 

function and an ε-value of 0.08.  

The validation of both the PLSR and SVR model was based on a leave-one-out cross-validation, in which 

the model was first trained on a subset of the data, and then tested on a disjunct subset of the data83. The 

results were averaged over all test runs.  

The root mean square error of prediction (RMSEP) value was used as an indicator of the suitability of the 

calibration model. The RMSEP value is based on the predicted error sum of squares (PRESS) value. In 

both cases 𝑦! represents the measured value (offline analytics) and   𝑦! the concentration predicted by the 

calibration model using the SERDS-signals as input. The variable 𝑛 represents the number of samples 

used. 

𝑅𝑀𝑆𝐸𝑃 =
(𝑦! − 𝑦!)
𝑛

 

𝑃𝑅𝐸𝑆𝑆 = 𝑦! − 𝑦! ! 

Results and Discussion 

In the following, we will first qualitatively compare Raman and SERDS spectra of cultivation 

supernatants to demonstrate the strong and disturbing fluorescence background. Thereafter, the EPS 

concentration prediction from SERDS spectra by partial linear least squares (PLSR) and support vector 

regression (SVR) are compared and discussed. The spectroscopic results are validated against reference 

concentration data obtained by conventional offline analytics. Eventually, the first proof-of-concept 

results from online-SERDS measurements in untreated cultivation samples evaluated by SVR are 

presented.  

Raman spectroscopy  

In principle, conventional Raman spectroscopy can provide all the information required to monitor a 

P. purpureum cultivation process. However, even when using a near-infrared laser source a strong 

fluorescence background can be observed arising from the excitation of intra- and extra-cellular pigment 

molecules. To illustrate this, Figure 2 shows a series of Raman spectra recorded during the cultivation 

process. The data reveal that (1) the fluorescence background overlaps with the Raman spectrum, (2) 

substantially varies with cultivation duration, and (3) may vary between different cultivation runs as well. 

Thus data evaluation and interpretation is difficult. One option to overcome this problem is post-

experimental data-processing. However recording the experimental data in a way that allows a direct 
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background correction is advantageous and more robust, especially in cases where the fluorescence 

background cannot be predicted reliably. Therefore, developing a modified Raman technique appears to 

be more promising in dealing with the fluorescence signals.  

 

Fig.2 Raman spectra recorded during a batch cultivation of P. purpureum. 

In order to correct for fluorescence interferences we make use of shifted-excitation Raman difference 

spectroscopy (SERDS) 84-90. 

 

Fig.3 SERDS spectra expressing successively increasing cultivation durations from the bottom to the top 

for a P. purpureum batch cultivation in a 25-l medusa reactor. 

This approach is based on the Kasha-Vavilov rule, which states that the fluorescence quantum efficiency 

is independent of the excitation wavelength (within a small spectral range) 35 36. This empirical rule 

implies that internal conversion is so fast that other processes, such as fluorescence, intersystem crossing 

or phosphorescence cannot compete significantly 91. In other words, when we record two consecutive 

Raman spectra employing slightly different laser wavelength we will obtain two spectra in which the 

fluorescence background is the same while the Raman signals are slightly shifted in wavelength. 

Consequently, the difference of these two spectra is free of fluorescence (see figure 3) and can either be 
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used to reconstruct a fluorescence-free Raman spectrum or the difference spectrum can directly be 

evaluated with respect to the EPS concentration. 

Evaluation of the SERDS spectra 

The EPS concentrations derived from the SERDS spectra of the supernatant samples were evaluated 

against those determined offline by the conventional analytics after a downstream process. For the PLSR 

calculations the spectral region between 1000 and 1800 cm-1 of the spectra shown in Figure 3 provided 

the basis. Figure 4 shows the EPS concentration over time determined by downstream processing 

(reference EPS concentration) and SERDS (measured EPS concentration). Figure 5 reveals that the 

correlation between the SERDS and reference EPS concentrations deviates from ideality (i.e., x = y) only 

within the measurement accuracy for medium concentrations. Apparently, very low and very high EPS 

concentrations are less predictable. 

 

Fig.4 Time dependent segregation of sulphated exopolysaccharide in a P. purpureum cultivation 

determined by downstream processing as reference (triangle) and SERDS measurement evaluated using 

linear regression (diamond). 

The RMSEP value for the data plotted in Figure 5 is about 0.07 excluding the higher concentrations and 

about 0.13 overall.  

There are several possible reasons for this behavior, one of which is based on random errors in the 

downstream processing of the cultivation samples introducing concentration-dependent uncertainties 

indicated by the horizontal error bars in Figure 5. Constant errors were removed by a post-calibration. For 

that, the trend line equation of the residual plot of the measured EPS concentrations was used as a 

projection basis. In addition, the size of the calibration data set may be not sufficient and hence the non-

idealities remain dominant.  
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Fig.5 Correlation between the sulphated exopolysaccharide concentrations in supernatants of a P. 

purpureum cultivation determined by downstream processing (reference data) and SERDS measurements 

evaluated using linear regression (measured data). 

To test the data set for a nonlinear signal-information relation the residues were analysed and a Durbin-

Watson test was performed. Such a statistical test can be used for linear regression models to test for 

correlation among the residues. If an autocorrelation is indicated, the chosen model can not sufficiently 

explain the given relationships in the system under investigation. The obtained d-value finally supported 

the inherent nonlinearity. This finding and the deviations of the prediction from the reference become 

plausible if three things are considered: Firstly, the EPS molecule changes strongly in size and structure 

over time and with concentration. Secondly, since the SERDS signal is structural sensitive but the 

reference method is not, structural changes which influence the SERDS signal unproportional to the 

correlated concentration change, will insert an inherent nonlinearity between concentration and SERDS 

signal and with that always deviates from the reference concentration. Finally, for linear models the size 

of the calibration database is a very important aspect. This means that the larger the database in terms of 

number and variety, the better a linear model can deal with nonlinearities in the signal-information 

relationship since their impact will be significantly reduced upon averaging. Therefore, the relatively 

small calibration dataset provides a third explanation for the deviations. Therefore, we conclude that the 

PLSR method is not suitable to quantitatively evaluate the nonlinear relationship between the SERDS 

signals and the corresponding EPS concentrations over the entire concentration range.  

To establish a regression model which can deal with the entire EPS concentration range and its nonlinear 

relationship with the SERDS signal, support vector machines for nonlinear regression (SVR) were used as 

described in the material and methods section. The results of the concentration prediction by ε-SVR and 

the conventional PLSR are compared and are shown in Figure 6. The predicted EPS concentrations are 

based on SERDS signals acquired in batch cultivations of P.purpureum in PSM characterized by a 

variation in cultivation temperature from 15°C to 35°C. As it gets obvious from Figure 5, the SVR 
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prediction for this cultivation is significantly better than the PLSR prediction. The PRESSPLSR value is 

about 0.15 and the PRESSSVR is about 0.06, which is less than half the PRESSPLSR value. In the very low 

concentration regime deviations for both models can still be observed. Anyway, overall, the SVR applied 

here means a considerable improvement. 

 

Fig.6 Correlation between the sulphated exopolysaccharide concentrations in supernatants of a P. 

purpureum cultivation determined by downstream processing (reference data) and SERDS measurements 

(measured data) evaluated using PLSR (diamond) and SVR (square). 

In order to demonstrate the application of the new analytical tool on untreated cultivation samples 

containing biomass in an online fashion, a final proof-of-concept experiment was carried out.  

 

Fig.7 Correlation between the sulphated exopolysaccharide concentrations in whole cultivation samples 

of a P. purpureum cultivation determined by downstream processing (reference data) and SERDS 

measurements (measured data) evaluated using PLSR (diamond) and SVR (square). 

Measurements were performed in an optical flow cuvette through which a sample from the cultivation 

was continuously pumped. Two sets of SERDS spectra were evaluated using ε-SVR and PLSR for 
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comparison. The results are shown in Figure 6. The PLSR prediction extremely deviates over the entire 

concentration range from the reference data set leading to an average PRESS value of 0.48 whereas the 

SVR prediction shows an overall PRESS value of 0.031, which is more than a ten-fold improvement of 

the EPS concentration prediction. Therefore, we can conclude that the combination of SERDS 

spectroscopy and ε-SVR has the potential to be applied for non-invasive online monitoring of the P. 

purpureum cultivation. Furthermore, this approach can be easily transferred to other cultivation processes, 

for example to the cultivation of other algae or even bacteria, e.g. Escherichia coli. 

Conclusion 

In this work, we described a Raman spectroscopic approach that allows tracking the segregation of 

antiviral sulphated exopolysaccharides (EPS) in the course of the cultivation of the microalgae 

Porphyridium purpureum. An analysis of the potentials and limitations of conventional Raman 

spectroscopy led to the conclusion that its high sensitivity to fluorescence interference makes the data 

evaluation and thus a reliable performance difficult. To overcome this problem, we developed an 

innovative approach based on shifted-excitation Raman difference spectroscopy (SERDS), which allows 

fluorescence-free Raman spectra in the presence of strong fluorescence signals to be acquired. 

For quantitative tracking of the bioprocess, the SERDS signals are pre-processed by smoothing (Savitzky-

Golay polynom) and baseline correction (regression) as a first step. Thereafter, for data evaluation partial 

least squares regression (PLSR) based on the NIPALS algorithm to predict the EPS concentration from 

the SERDS signals was used. The concentrations predicted by PLSR deviates significantly from the 

reference concentrations determined by conventional offline analytics, especially for very low and very 

high concentrations. These deviations could be explained by the small calibration data set in the 

inherently nonlinear signal-concentration relationship. The nonlinearity is based on the concentration and 

time-dependent structure and size of the EPS molecules, which is recognized by the SERDS signal, but 

not by the offline analytics which serve as the reference. Furthermore, the surrounding and cultivation 

status influences the EPS molecule characteristics, too, which can lead to different SERDS spectra for the 

same EPS concentration. In order to overcome the poor performance of a linear data evaluation by PLSR, 

an alternative based on nonlinear regression using support vector machines (SVM) was successfully 

tested. A high prediction accuracy with only small training data sets could be obtained. In the first proof-

of-concept experiments with cultivation samples containing biomass the model quality for the EPS 

concentration prediction was improved by more than an order of magnitude using support vector 

regression (SVR). 

Eventually, to point out the strengths, weaknesses, opportunities and threats of our approach, it is 

evaluated against the conventional downstream processing. Our spectroscopic method focuses on the 
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determination of the exopolysaccharide concentration, as this parameter can be directly correlated with 

the cultivation progress. In this context, the SERDS approach stands out compared to conventional 

methods due to its potential for fast and direct measurements; hence, the capability of performing real-

time process monitoring. The inherently non-invasive nature of the method eliminates the contamination 

risk of sampling, which is always a big threat to the success of the entire process. Additionally, 

substantial amounts of time and money can be saved using SERDS, since the downstream processing 

typically takes at least several hours and involves a large variety of chemicals including acids, alkali, 

buffer solutions, and enzymes. Even hazardous chemicals such as phenol and sulphuric acid are required 

to determine the EPS concentration in the conventional way (via phenol-sulphuric-acid-assay). Since 

these chemicals are very harmful to the human health (e.g., mutagenic) and the environment, they further 

need a special and expensive waste management. In contrast, SERDS can measure the EPS concentration 

without any sample preparation or chemical pre-treatment. Therefore, our method provides substantial 

economic and ecological benefits over the conventional approach. Moreover, the information obtained 

from the SERDS signal analysis can in principle be directly supplied to a feedback control system to 

adjust the cultivation parameters, e.g. the temperature, the pH, the acid-base-relation, photon flux, 

medium composition, etc. This will allow the yield of EPS production to be maximized and, at the same 

time, the danger of the algal culture die off due to contamination of irregular process conditions to be 

minimized. Using SERDS, the financial expenses for process analytics can be drastically reduced because 

costs for personnel, maintenance and consumables are much lower compared with the conventional 

methods. A weakness of the approach however is the low scattering cross section of the Raman effect 

which leads to the present detection limit of around 100 mg/l EPS. Utilising resonance enhancement or 

deep-UV Raman spectroscopy may be a solution to this limitation.  

All in all, it can be concluded that the presented SERDS-SVR-approach provides an alternative for 

conventional offline analytics to determine the EPS concentration and offers the possibility of non-

invasive monitoring the cultivation progress of P.purpureum online. 
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