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Abstract. Different characterization approaches, including nonlinear
dynamics (NLD), have been addressed for the automatic detection of
PD; however, the obtained discrimination capability when only NLD
features are considered has not been evaluated yet.

This paper evaluates the discrimination capability of a set with ten
different NLD features in the task of automatic classification of speech
signals from people with Parkinson’s disease (PPD) and a control set
(CS). The experiments presented in this paper are performed considering
the five Spanish vowels uttered by 20 PPD and 20 people from the CS.

According the results, it is possible to achieve accuracy rates of up to
76,81% considering only utterances from the vowel /i/. When features
calculated from the five Spanish vowels are combined, the performance
of the system is not improved, indicating that the inclusion of more NLD
features to the system does not guarantee better performance.

Keywords: Nonlinear dynamics, complexity measures, Parkinson’s dis-
ease, speech signals.

1 Introduction

PD is a neurodegenerative disorder that results from the progressive death of
dopaminergic cells in the substantia nigra, a region of the mid-brain. About 89%
of PPD commonly develop speech impairments affecting different aspects such
as respiration, phonation, articulation and prosody [1]. Speech impairments in
PPD are related to the vocal fold bowing and incomplete vocal fold closure [2],
besides the vocal production is a highly nonlinear dynamical system, thus the
changes caused by impairments in the movement of different muscles, tissues and
organs which are involved in the voice production process, such as those suffered
by PPD, can be modeled using NLD analysis [3], [4].

NLD techniques have been applied for both the automatic assessment of
pathological speech signals and the automatic evaluation of speech from PPD. In
[5] the authors include four NLD features along with other 13 acoustic measures
for the automatic detection of PD. The set of NLD features includes correla-
tion dimension (D2), Period Density Entropy (RPDE), Detrended Fluctuation
Analysis (DFA) and Pitch Period Entropy (PPE). According to their results, it
is possible to achieve classification rates of up to 91.4%. Additionally, in [6] the
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evolution of the PD through the time is studied using a set of features composed
by different dysphonia measures (including some from NLD) and analyze their
correlation with the evolution of the patients according to the Unified Parkinson
Disease Rating Scale (UPDRS) [7] in a period of six months. The authors stated
that UPDRS scale can be mapped with a precision of up to 6 points.

Despite the interest of the scientific community to apply NLD for the au-
tomatic assessment of speech from PPD, the discrimination capability of NLD
features is not clear yet because they have been combined with other features
such as acoustics and noise measures. In this paper, different state of the art
NLD features are implemented and their discrimination capability is objectively
evaluated on the automatic classification of speech signals from PPD and CS.
The set of features considered in this study includes a total of 10 measures
which have been used for the automatic detection of different speech disorders
such as hypernasality [8] and dysphonia [5], [9]. The features are: correlation
dimension, largest Lyapunov exponent, Lempel-Ziv complexity, Hurst exponent,
RPDE, DFA, approximate entropy, approximate entropy with Gaussian kernel,
sample entropy, sample entropy with Gaussian kernel.

The paper is organized as follows: section 2 presents a brief description of
the methods that are applied in this work, in the section 3 the details of the
performed experiments is given, section 4 shows the obtained results and finally,
the section 5 provides the conclusions that are derived from the presented work.

2 Methodology

The general methodology that is applied in this work is depicted in figure 1. The
signal is first preprocessed by means of its division into frames. After, the char-
acterization is performed. In this case, only NLD features have been considered
for this stage. With the aim of eliminate possible redundancy in the information
provided by all NLD a features selection stage is required. Finally, the decision
about whether a speech signal comes from a person with PD or a CS is taken
through an automatic classification strategy. In this work, this step is performed
using support vector machines (SVM). In the following subsections, more details
of each part of the methodology will be provided.

Fig. 1. General methodology

2.1 Nonlinear Dynamics Characterization

A set of ten NLD features is calculated to perform the automatic classification of
speech signals from PPD and CS. The first step in the characterization process
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is to embed the signal into the state space following the the time-delay embed-
ding theorem originally proposed by Takens [10]. This theorem establishes that
where there is a single sampled quantity of a dynamical system, it is possible to
reconstruct a state space that is equivalent or diffeomorphic to the original state
space that is unknown. Points in the state space form trajectories, and a set of
trajectories from a time series is known as attractor [3]. After the embedding
process, the NLD features are estimated as it is briefly described below.

Correlation Dimension (D2): it is a measure of the space dimensionality oc-
cupied by the points in the reconstructed attractor. In this work, (D2) is imple-
mented according to the Takens estimator method [3]. The estimation requires

the use of the correlation sum (C(r)), which is defined as: C(r) =
∑N

i=1 C
m
i (r).

Where,

Cm
i (r) =

2

N(N − 1)

N∑

j=i+1

Θ (r − ‖xi − xj‖) (1)

N is the number of points in the state space, Θ the Heaviside function and (‖·‖)
is a norm defined in any consistent metric space. D2 is theoretically defined for
an infinity amount of data (N → ∞) and for small r, thus its general expression
is written as:

D2 = lim
r→0

lim
N→∞

∂ lnC (r,N)

∂ ln (r)
(2)

Larges Lyapunov Exponent (LLE): this feature is estimated as the aver-
age divergence rate of neighbor trajectories in the attractor, according to the
Ronsenstein method [3]. For this algorithm, once again the nearest neighbors to
every point in the trajectories must be estimated. In this case, a neighbor must
fulfill a temporal separation greater than the “period” of the time series, to be
considered as a nearest neighbor. It is possible to state that the separation of
points in a trajectory is according to the expression d(t) = Ceλ1t, where λ1 is
the maximum Lyapunov exponent, d(t) is the average divergence taken at the
time t, and C is a normalization constant. Assuming that the j − th pair of
nearest neighbors approximately diverge at a rate of λ1, it is possible to obtain
the expression ln(dj(i)) = ln(Cj)+λ1(iΔt), where λ1 is the slope of the average
line that appears when such expression is drawn on a logarithmic plane [3].

Lempel-Ziv Complexity (LZC): it is included for the estimation of the ran-
domness of the voice signals. The method consists in finding the number of
different “patterns” present in a given time series according to the algorithm
presented in [11]. As the algorithm only considers binary strings; for the prac-
tical case, a value of 0 is assigned when the difference between two successive
samples is negative, and 1 when such a difference is positive or null (see [11] for
additional details).

Hurst Exponent (H): the possible long term dependencies in a time series
can be estimated trough H . It is calculated following the rank scaling method
[3]. Where the relation between the variation rank (R) of the signal, evaluated
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in a segment, and its standard deviation S is given by R
S = cTH , where c is a

scaling constant, T is the duration of the segment and H is the Hurst exponent.

Entropy Measurements: in general, entropy is a measure of the uncertainty of
a random variable. When there is a stochastic process with a set of independent
but not identically distributed variables, the rate at which the joint entropy

grows with the number of variables n is given by H(X) = − lim
n→∞

1
n

n∑

i=1

H (Xi).

For the case of a state space, it can be partitioned into hypercubes of content
εm and observed at time intervals δ, defining the Kolmogorov-Sinai entropy as:

HKS = − lim
δ→∞
ε→0
n→∞

1

nδ

∑

k1,...,kn

p (k1, ..., kn) log p (k1, ..., kn) (3)

where p (k1, ..., kn) is the joint probability that the state of the system is in the
hypercube k1 at the time t = δ, k2 at t = 2δ, etc. For stationary processes, it
can be shown that HKS = lim

δ→0
lim
ε→0

lim
n→∞ (Hn+1 −Hn).

In practical terms it is not possible to compute the equation 3 for n → ∞,
thus different estimation methods have been proposed in the literature. One of
them is the Approximate entropy (AE), which is designed for measuring the
average conditional information generated by diverging points on a trajectory in
the state space [12]. For fixed m and r, AE is estimated as:

AE (m, r) = lim
N→∞

[
Φm+1 (r) − Φm (r)

]
(4)

where Φm(r) = 1
N−m+1

N−m+1∑

i=1

lnCm
i (r), and Cm

i (r) was defined in equation 1.

The main drawback of AE is its dependence to the signal length due to the
self comparison of points in the attractor. In order to overcome this problem,
the sample entropy (SE) is proposed as:

SE (m, r) = lim
N→∞

(

− ln
Γm+1(r)

Γm(r)

)

(5)

The only difference between Γ in the equation 5 and Φ in the equation 4 is that
the first does not evaluate the comparison of embedding vectors with themselves.

Another modification of AE is the approximate entropy with Gaussian kernel
AEGK. It exploits the fact that Gaussian kernel function can be used to give
greater weight to nearby points by replacing the Heaviside function by [13].

dG (xi,xj) = exp

(

−
(‖xi − xj‖1

)

10r2
,

)

(6)

The same procedure of changing the distance measure can be applied to define
the sample entropy with Gaussian kernel SEGK.

On the other hand, considering that the voice signal has two components,
deterministic and stochastic, in [14] was proposed to analyzed the deterministic
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component by means of the recurrence period density entropy (RPDE), consid-
ering a hypersphere of radius r > 0, containing a embedded data point x(ti).
The time tr = tj − ti is the recurrence time, where tj is the instant at which
the trajectory first returned to the same hypersphere. If R(t) is the normal-
ized histogram of the recurrence times estimated for all embedded points into a
reconstructed attractor, the RPDE can be defined as in the equation 7.

RPDE =

−
tmax∑

i=1

R(i) lnR(i)

ln tmax
(7)

where tmax is the maximum recurrence time in the attractor. Besides, the stochas-
tic component of the voice signals can be analyzed by means of the detrended
fluctuation analysis (DFA) to estimate the scaling exponent α in non-stationary
time series as is indicated in [14].

2.2 Feature Selection and Classification

In characterization stages large amounts of information are produced. Such in-
formation is represented in high dimensionality spaces which most of the times
have redundant information. The reduction of the dimensionality of such spaces
and the elimination of redundant information is performed applying the Sequen-
tial Floating Features Selection (SFFS) algorithm. It is such that finds the best
subset of features of the original set through the inclusion and exclusion of fea-
tures. In this procedure after each forward step, a number of backward steps
are applied as long as the resulting subsets are better, in the sense of the accu-
racy, than the previous one [15]. The decision about whether a voice recording
is from PPD or CS is taken by a SVM with Gaussian kernel which parameters
are optimized in the training process [16]

3 Experimental Setup

3.1 Corpus of Speakers

Speech recordings from 20 PPD and 20 people from the CS are considered (10
women and 10 men). The ages of the men patients ranged from 56 to 70 (mean
62.9 ± 6.39) and the ages of the women patients ranged from 57 to 75 (mean
64.6 ± 5.62). For the case of the healthy people, the ages of men ranged from
51 to 68 (mean 62.6 ± 5.48) and the ages of the women ranged from 57 to 75
(mean 64.8 ± 5.65). All of the PPD have been diagnosed by neurologist experts
and none of the people in the CS has history of symptoms related to Parkinson’s
disease or any other kind of movement disorder syndrome. The recordings consist
of sustained utterances of the five Spanish vowels, every person repeated three
times the five vowels, thus in total the database is composed of 60 recordings
per vowel on each class. This database is built by Universidad de Antioquia in
Medelĺın, Colombia.
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3.2 Experiments

First, each Spanish vowel is considered separately. The recordings are prepro-
cessed by means of its division into frames with 55ms of length with an overlap
of 50%, according to [9]. After, NLD features are calculated for each frame and
four statistics are calculated for each feature. The considered statistics are mean
value, standard deviation, skewness and kurtosis, thus each recording will be
represented by a total of 40 features (four statistics on ten features).

The validation of the system’s performance is made by the division of the data
into 70% for training and 30% for testing, following the methodology exposed in
[17]. The 70% of the data are used for the feature selection and for training the
classifier and the remaining 30% of the data are used for testing; the different
subsets for training and testing are randomly formed ten times. For each pair of
subsets (train and test), the classification process is repeated ten times, forming
a total of 100 independent realizations of the experiment obtaining results with
confidence intervals of the system’s performance.

In order to look for better accuracies, the selected features per vowel are com-
bined, collecting information from the five Spanish vowels. This combination is
performed considering the same process that was described above. The features
selection process is applied again and the decision about whether a speech record-
ing is from PPD or CS is taken with a SVM. The results are presented according
to [17], indicating accuracy rates, specificity and sensitivity. Specificity indicates
the probability of a healthy register to be correctly detected and sensitivity is
the probability of a pathological signal to be correctly classified.

4 Results

Table 1 shows the results obtained when each Spanish vowel is considered, and
the last row of the table indicates the results obtained when all Spanish vowels are
combined into the same space. According to the results, the best performance is
obtained when the vowel /i/ is considered separately. This is an interesting result
specially if it is considered that the production of the vowel utterances involved
several muscles but among them the risorius muscles only participate in the
phonation of vowels /e/ and /i/ [18]. Further experiments should be addressed
to get a deeper understanding about the impact of PD in the movement of the
muscles involved in speech production.

Although the combination of the five vowels can provide more information
about the phenomena, the obtained results in such case are not as well as ex-
pected. It could happen because the combination of features from all vowels
rises the dimensionality of the system and it can result in an increment of re-
dundant information that does not contribute to the correct classification of the
speech recordings. To present the results compactly, a detection error tradeoff
(DET) curve is shown in figure 2. The line corresponding to the performance for
vowel /i/ is separated from the others, indicating that such performance is the
best among the Spanish vowels and even better than those obtained with the
combination of features from the five vowels.
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Table 1. Accuracy results obtained per vowel and with the combination of all vowels

Vowel accuracy sensitivity specificity
/a/ 72,49 ± 2,68 68,30 ± 7,08 76,67 ± 5,86
/e/ 71,58 ± 5,29 69,50 ± 6,07 73,67 ± 8,72
/i/ 76,81 ± 3,77 76,61 ± 9,96 77,00 ± 7,62
/o/ 70,23 ± 3,71 69,99 ± 7,86 70,45 ± 7,83
/u/ 73,36 ± 3,92 75,45 ± 3,85 71,28 ± 7,29

All vowels 74,03 ± 3,96 71,50 ± 8,92 76,06 ± 5,19

Fig. 2. DET curves for each vowel

5 Conclusions

Different state of the art NLD features have been evaluated in the automatic
classification of speech recordings from PPD and CS. This work has considered
experiments with the five Spanish vowels in order to state which of them provide
better performance. According to our results, speech recordings from PPD and
CS can be better classified considering NLD features by means of the evaluation
of the vowel /i/. Additionally, with the voice samples evaluated, it is possible
to state that the combination of features from the five vowels does not provides
increases in the performance of the system.

Other works in the state of the art report higher accuracy rates; however,
such works consider NLD features combined with other acoustic measures such
as Harmonics to Noise Ratio, jitter and shimmer. The results reported in this
work allow to state which is the real contribution of each NLD feature for the
automatic classification of speech signals from PPD and CS.
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17. Sáenz-Lechón, N., Godino-Llorente, J., Osma-Ruiz, V., Gómez-Vilda, P.: Method-
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