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Abstract. Parkinson’s disease (PD) is a neurodegenerative disorder of
the nervous central system and it affects the limbs motor control and
the communication skills of the patients. The evolution of the disease
can get to the point of affecting the intelligibility of the patient’s speech.

The treatments of the PD are mainly focused on improving limb symp-
toms and their impact on speech production is still unclear. Considering
the impact of the PD in the intelligibility of the patients, this paper
explores the discrimination capability of different perceptual features in
the task of automatic classification of speech signals from people with
Parkinson’s disease (PPD) and healthy controls (HC). The experiments
presented in this paper are performed considering the five Spanish vowels
uttered by 20 PPD and 20 HC.

The considered set of features includes linear prediction coefficients
(LPC), linear prediction cepstral Coefficients (LPCC), Mel-frequency
cepstral coefficients (MFCC), perceptual linear prediction coefficients
(PLP) and two versions of the relative spectra coefficients (RASTA).

Accordin the results for vowels /e/ and /o/ it is not enough to consider
one kind of perceptual features, it is required to perform combination of
different coefficients such as PLP, MFCC and RASTA. For the case of
the remaining vowels, the best results are obtained considering only one
kind of perceptual features, PLP for vowel /a/ and MFCC for vowels /i/
and /u/.

Keywords: Perceptual analysis, Parkinson’s disease, linear prediction,
relative spectra analysis.

1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that results from the
death of dopaminergic cells in the substantia nigra, a region of the mid-brain. PD
is the second more prevalent neurological disorder after the Alzheimer’s disease
[1]. About 1% of the people older than 65 suffer from this disease and in Colombia
the prevalence of PD is around 172.4 per each 100.000 inhabitants [2]. People
with Parkinson’s disease (PPD) commonly develop speech impairments affecting
different aspects such as respiration, phonation, articulation and prosody [3]. It
is already demonstrated that the phonation problems in PPD are related to the
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vocal fold bowing and incomplete vocal fold closure [4], [5]. This behavior also
generates intelligibility problems for the speech of the patients, affecting their
communications skills and their capability for interacting with other people [6].

Medical treatments such as neuropharmacological and neurosurgical are fo-
cused on improving limb symptoms, but their impact on speech production is
still unclear [7]. Due to this fact, in the last few years several published works
have been focused on the automatic classification of speech recordings from PPD
and from healthy controls (HC). In [8] the authors employ acoustic and prosodic
features along with features derived from a two-mass model of the vocal folds. For
the acoustic modeling of the speech signals, the authors consider a speech recog-
nition model based on Gaussian Mixture Models (GMM) with 13 Mel-frequency
Cepstral Coefficients (MFCC) and for the prosodic analysis they include funda-
mental frequency (F0), energy, voiced and unvoiced segments and pitch periods
all calculated on the voiced segments of a running speech recordings. The re-
ported recognition rates are 88% with the acoustic model (MFCC) and 90.5%
with the prosodic features.

In [9], the authors perform the automatic classification of PPD and HC consid-
ering four features: Harmonics to Noise Ratio (HNR), Recurrence Period Density
Entropy (RPDE), Detrended Fluctuation Analysis (DFA) and Pitch Period En-
tropy (PPE). Their results indicate that, considering this set of features, it is
possible to achieve classification rates of up to 91.4%.

On the other hand, the evolution of the PD through the time has been also
studied. In [10] the authors form a features set composed by different dysphonia
measures and analyze their correlation with the evolution of the Unified Parkin-
son Disease Rating Scale (UPDRS) in a period of six months. According to their
results, the UPDRS scale can be mapped with a precision of up to 6 points,
which is very close to the clinician’s observations.

Considering that the PPD exhibit a loss of intelligibility in their speech [11], our
hypothesis is that including perceptual information in the speech modeling pro-
cesses is possible to achieve good results in the automatic classification of speech
from PPD and HC. The perceptual analysis of pathological speakers have been
addressed typically using different kind of coefficients. Some of them have been
already used for speech signals from PD [8], but there is still a lack of understand-
ing about the discrimination capabilities that these kind of features can provide
for the automatic assessment of speech signals from PPD. Bearing this in mind,
this work studies the contribution of six well known representation coefficients es-
timated over the five Spanish vowels and tries to establish which features are more
suitable for the automatic classification of speech from PPD and HC.

The performed experiments include Linear Prediction Coefficients (LPC) [12],
LinearPredictionCepstralCoefficients (LPCC) [13],Mel-frequencyCepstralCoef-
ficients (MFCC) [14], Perceptual Linear Prediction coefficients (PLP) [15] and two
versions of the Relative Spectra coefficients (RASTA), those with cepstral filtering
(RASTA-PLP-CEPS) and those without cepstral filtering (RASTA-PLP-SPEC)
[16].
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The rest of the paper is organized as follows. The section 2 includes the
description of the methodology tha is being proposed in this work. In the section
3 gives the details of the experiments that are presented in the paper. The section
4 presents the results obtained on each experiment and finally, the section 5
exposed the conclusions derived from the presented work.

2 Methodology

Figure 1 depicts a block diagram of the steps carried out in the methodology
presented in this work. The right side of the figure illustrates each stage of the
methodology and the left side of the figure shows a brief explanation of that
stages. The voice signal is first divided and windowed (with Hamming windows)
into frames to perform a short-time analysis. After, the characterization stage
takes place. In this work, six different sets of perceptual features are considered:
LPC, LPCC, PLP MFCC and two versions of the RASTA-PLP coefficients, one
with cepstral filtering and other one without such filtering. Once the features
are calculated, a features selection process is performed for each set of features
as in [17].

Fig. 1. Methodology for the perceptual analysis of speech from PPD
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After the features selection a two layer classification scheme is used. The first
stage of the classification process is performed per each kind of perceptual fea-
tures by means of a support vector machine (SVM) with a radial basis Gaussian
kernel. After, the results obtained with each SVM are combined into a new
feature space. Once that results are combined, they are normalized using a zs-
core strategy and finally, the last stage of the classification process is done with
another SVM.

In the following subsections, some details of each part of the methodology are
presented.

2.1 Perceptual Modeling

As it was pointed out, in this work different perceptual coefficients are imple-
mented with the aim of establish which of them are the more appropriate for
the automatic classification of speech from PPD and HC. Considering their wide
usage in speech modeling, the LPCs coefficients are included in this work. Linear
predictive techniques have been applied not only for the LPCs calculation but
also for the formants estimation. The information provided by the LPCs allows
to perform articulation analysis in the speech of PPD [18]. This coefficients are
able to model the vocal tract as a filter, thus considering that PPD are unable
to have a total motor control of their vocal tract, the frequency response of that
filter will be also abnormally changed.

A similar modeling to those that is performed by the LPCs in the frequency
domain can be made in the cepstral domain. Such analysis is made through the
LPCC coefficients. The LPCCs have demonstrated to be more robust in several
speech modeling tasks mainly oriented to speech recognition processes [13]. In
this work we want to validate their robustness in the automatic classification of
speech from PPD and HC.

Additionally the MFCC coefficients have been included in the experiments
presented here. This kind of coefficients can model irregular movements in the
vocal tract [14] and have demonstrated to be efficient for modeling pathological
speech signals, not only in the case of dysphonia detection [14], [19] but also for
the analysis of dysarthric speech signals [8].

On the other hand, with the aim of including perceptual information to the
modeling that is performed with LPCs, we decided to include the PLP coef-
ficients estimated as in [15]. The LPC analysis assumes the same number of
resonances on every frequency bands; however, there are evidences that demon-
strate that beyond about 800Hz, the spectral resolution of hearing decreases with
frequency [15]. Considering this drawback of the LPC analysis, Hynek Herman-
sky proposed to use a critical-band filtering over the linear predictive analysis
in order to improve the resolution of the analyzed bands.

Other kind of features that are included in this work are the RASTA-PLP
coefficients. This technique was presented by Hermansky and Morgan in [16].
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The main assumption of this modeling strategy is that the human perception
is less sensitive to slowly varying stimuli, thus it is possible to make the speech
analysis less sensitive to slowly changing factors. For doing that, the critical-
band filter that is used for PLP modeling is replaced by a filter bank with
a sharp spectral zero at the zero frequency. The RASTA-PLP coefficients can
be represented in spectral or in cepstral domains and the difference between
both approaches is that in the spectral domain the resulting set of coefficients
is according to the number of filtered bands and in the cepstral domain the
resulting set of coefficients is according to the number of cepstral coefficients. In
this work we use both representations to analyze their influence in the process
of automatic classification of speech from PPD and HC.

2.2 Features Selection and Classification

The features selection strategy that is used in this work is based on principal
component analysis and it was implemented as in [17]. After the application
of the features selection algorithm the system has a sub set of features that is
optimal in terms of its variance content.

The classification between recordings from PPD and HC is performed with a
SVM that is trained with a Gaussian kernel [20]. This classifier is used because
of its extensive usage in the state of the art for the automatic classification of
pathological and healthy voices [9], [8], [17].

3 Experiments

3.1 Recording and Corpus of Speakers

The data for this study consists of speech recordings from 20 PPD and 20 HC
sampled at 44.100Hz with 16 quantization bits. All of the recordings were cap-
tured in a sound proof booth. The people that participated in the recording
sessions are balanced by gender and age: the ages of the men patients ranged
from 56 to 70 (mean 62.9 ± 6.39) and the ages of the women patients ranged
from 57 to 75 (mean 64.6 ± 5.62). For the case of the healthy people, the ages
of men ranged from 51 to 68 (mean 62.6 ± 5.48) and the ages of the women
ranged from 57 to 75 (mean 64.8 ± 5.65). All of the PPD have been diagnosed
by neurologist experts and none of the people in the HC group has history of
symptoms related to Parkinson’s disease or any other kind of movement disorder
syndrome.

The recordings consist of sustained utterances of the five Spanish vowels,
every person repeated three times the five vowels, thus in total the database is
composed of 60 recordings per vowel on each class. This database is built by
Universidad de Antioquia in Medelĺın, Colombia.
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3.2 Experimental Setup

The experiments performed in this work are carried out following the method-
ology exposed in figure 1. The voice recordings are preprocessed by Hamming
windows of 40ms with and overlap of 20ms. The perceptual features are calcu-
lated for each windowed frame of speech. Each voice signal is represented by the
sets of feature vectors, each vector contains the values of the parameters for each
frame. The final feature vector per voice signal is composed by the estimations
of mean, standard deviation, skewness and kurtosis of the values obtained per
feature trough the frames.

The number of coefficients is fixed in 12 for every kind of perceptual features
but for the case of RASTA-PLP-SPEC a total of 27 coefficients are estimated
because this is the number of frequency bands that are filtered. For RASTA-
PLP-CEPS the number of coefficients is 12 because it is the number of cepstral
coefficients used. Considering that four statistics are taken from each kind of
features, the sets of parameters contain a total of 48 measures for the case of
LPC, LPCC, PLP, MFCC and RASTA-PLP-CEPS. For the case of RASTA-
PLP-SPEC the number of measures is 108.

The tests performed over the proposed system have been made following the
strategy indicated in [21]. The 70% of the data are used for the feature selection
and for training the classifier and the remaining 30% is for testing; the different
subsets for training and testing are randomly formed. As it was exposed in section
2, for each pair of training and testing subsets the two stages of classification
are made: the first is when only each set of perceptual coefficients are considered
individually and the second is when the scores obtained in the first classification
stage are combined. Each stage of the classification process is repeated ten times
per each pair of subsets (training and testing), forming a total of 100 independent
realizations of the experiment.

In order to look for the best performance of the system, the scores obtained
in the first classification stage are incrementally combined. The order of that fu-
sion is according to the classification rate obtained in the individual classification
stage.

4 Results and Discussion

The results obtained in the first stage of the classification process, when each
subset of perceptual features are used per each vowel, are presented in table 1.
The highlighted items correspond to the best results obtained over all of exper-
iments. Note that for the vowels /a/, /i/ and /u/ the best results correspond
to those obtained with only one kind of perceptual coefficients. For vowel /a/
the PLP parameters exhibited the best results, while for vowels /i/ and /u/
the best features were the MFCCs in both cases. The obtained results for the
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Table 1. Results obtained in the automatic classification of speech signals from PPD
and HC using each kind of perceptual features individually

Vowel Features Individual accuracy Specificity Sensitivity
LPC 60,58 % 6,98 65,44 % 12,20 55,72 % 13,97
LPCC 64,86 % 8,08 60,83 % 14,10 68,89 % 7,49

/a/ MFCC 59,72 % 9,04 66,33 % 15,95 53,11 % 7,60
PLP 76,19 % 9,04 80,22 % 10,69 72,17 % 11,05

RASTA-PLP-CEPS 56,72 % 6,17 41,22 % 8,98 72,22 % 7,33
RASTA-PLP-SPEC 59,47 % 7,58 60,11 % 12,31 58,83 % 10,47

LPC 66,25 % 6,82 61,56 % 12,85 70,94 % 9,53
LPCC 63,41 % 8,45 60,17 % 14,37 66,67 % 12,48

/e/ MFCC 66,97 % 11,98 64,61 % 16,46 69,33 % 14,87
PLP 66,39 % 7,23 67,17 % 9,57 65,61 % 13,93

RASTA-PLP-CEPS 66,08 % 6,04 64,67 % 9,03 67,50 % 10,60
RASTA-PLP-SPEC 71,28 % 7,38 66,06 % 13,14 76,50 % 9,51

LPC 58,17 % 8,76 53,72 % 12,14 62,61 % 14,83
LPCC 71,61 % 6,9 71,44 % 10,58 71,78 % 11,32

/i/ MFCC 75,30 % 8,43 78,78 % 10,20 71,83 % 10,53
PLP 70,83 % 7,49 70,50 % 7,07 71,17 % 12,10

RASTA-PLP-CEPS 66,33 % 5,39 59,94 % 14,71 72,72 % 12,97
RASTA-PLP-SPEC 69,64 % 5,59 67,44 % 6,59 71,83 % 8,22

LPC 59,22 % 8,42 64,89 % 12,30 53,56 % 11,55
LPCC 71,83 % 5,88 82,78 % 6,62 60,89 % 8,39

/o/ MFCC 78,31 % 5,32 87,17 % 8,72 69,44 % 9,39
PLP 69,97 % 6,84 71,06 % 12,88 68,89 % 9,65

RASTA-PLP-CEPS 71,11 % 6,89 70,22 % 19,27 72,00 % 15,90
RASTA-PLP-SPEC 68,61 % 7,62 61,17 % 7,70 76,06 % 10,24

LPC 62,61 % 8,37 63,94 % 9,31 61,28 % 8,19
LPCC 64,86 % 7,67 62,44 % 10,36 67,28 % 10,84

/u/ MFCC 76,28 % 6,11 82,44 % 10,75 70,11 % 7,14
PLP 73,14 % 11,11 76,89 % 9,44 69,39 % 13,16

RASTA-PLP-CEPS 67,78 % 6,75 52,89 % 12,86 82,67 % 9,27
RASTA-PLP-SPEC 62,94 % 5,89 52,61 % 11,17 73,28 % 10,26

vowels /e/ and /o/ have not any highlighted row due to the best results for that
vowels were obtained when several perceptual coefficients are combined. Such
results are presented in table 2. The results obtained in the second stage of the
classification process are presented in table 2. Note that in this case the best
results are obtained for vowels /e/ and /o/ when five subsets of features are
combined. For the case of vowel /e/ the considered features are RASTA-PLP-
SPEC, MFCC, PLP, LPC and RASTA-PLP-CEPS while for vowel /o/ the set
of features include MFCC, LPCC, RASTA-PLP-CEPS, PLP and RASTA-PLP-
SPEC.

It is interesting to note that the best results in vowels /e/ and /o/ include
MFCC, PLP and both versions of the RASTA-PLP coefficients for both vow-
els. It indicates that with the aim of achieving better results in the automatic
classification of speech signals from PPD and HC, the characterization with per-
ceptual features must consider more than one kind of coefficients for vowels /e/
and /o/. In general, the performance obtained with the vowels /e/ and /o/ are
higher than in the other cases; however, note that for reaching such results the
inclusion of five features were required.
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Table 2. Results obtained when each subset of features are incrementally combined

Vowel Two subsets Three subsets Four subsets Five subsets six subsets
Accuracy 70,67 % 10,63 71,89 % 7,33 70,39 % 6,53 70,06 % 7,58 68,28 % 6,32

/a/ Specificity 72,94 % 14,17 78,67 % 11,31 76,67 % 11,70 75,17 % 9,59 66,50 % 70,65

Sensitivity 68,39 % 11,53 65,00 % 10,75 64,50 % 8,81 64,64 % 8,80 70,06 % 8,67

Accuracy 73,11 % 7,33 74,11 % 7,67 75,86 % 6,16 77,22 % 6,28 77,28 % 7,00

/e/ Specificity 62,28 % 13,64 64,39 % 12,47 65,33 % 14,47 66,39 % 13,78 67,94 % 14,56

Sensitivity 81,50 % 10,67 83,56 % 12,44 86,50 % 9,48 88,06 % 7,87 86,78 % 6,50

Accuracy 70,47 % 11,00 72,53 % 8,66 74,86 % 8,78 75,00 % 6,69 74,78 % 5,69

/i/ Specificity 68,78 % 11,40 74,50 % 9,29 74,06 % 10,68 69,44 % 11,27 69,00 % 11,71

Sensitivity 72,06 % 18,14 70,44 % 20,21 75,67 % 18,67 80,56 % 13,86 80,78 % 13,93

Accuracy 78,92 % 8,89 80,81 % 7,39 79,77 % 6,77 81,08 % 6,82 80,78 % 6,91

/o/ Specificity 83,44 % 6,48 80,56 % 9,51 81,72 % 8,27 80,22 % 8,02 73,39 % 7,74

Sensitivity 74,39 % 14,56 81,06 % 9,39 77,83 % 7,93 81,94 % 7,71 82,11 % 7,73

Accuracy 76,08 % 10,76 75,64 % 7,97 76,5 % 7,36 76,25 % 6,48 76,14 % 7,13

/u/ Specificity 77,33 % 12,80 67,28 % 9,50 68,50 % 8,85 67,22 % 7,22 65,72 % 8,61

Sensitivity 74,17 % 9,68 83,72 % 8,02 84,56 % 8,36 85,33 % 6,71 86,67 % 7,89

The table 3 shows the best results obtained for each vowel in terms of sensitiv-
ity and specificity. The best sensitivity and specificity are obtained with vowels
/e/ and /u/ respectively; however, note that the sensitivity and specificity are
more balanced for the vowel /o/. In order to show the best results per vowel in
a more compact way and following the methodology presented in [21], the figure
2 with the detection error tradeoff (DET) curve is included. Note that the more
balanced behavior is exhibited with the vowel /o/, while the vowels /a/, /e/ and
/i/ show very unbalanced results.

Table 3. Best results obtained per vowel

Vowels /a/ /e/ /i/ /o/ /u/

Accuracy 76,19 ± 9,04 77.22 ± 6,28 75.30 ± 8,43 81.08 ± 6,82 76.28 ± 6,11
Sensitivity 72,17 ± 11,05 88,06 ± 7,87 71,83 ± 10,53 81,94 ± 7,71 70,11 ± 7,14
Specificity 80,22 ± 10,69 66,39 ± 13,78 78,78 ± 10,20 80,72 ± 8,02 82,44 ± 10,75
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Fig. 2. DET curve for each vowel

5 Conclusions

The perceptual analysis of speech signals from people with Parkinson’s disease
is performed and the effectiveness, in terms of the discrimination capability, of
each kind of perceptual coefficients in the problem of automatic classification of
speech from PPD and HC is analyzed.

According to the results, PLP coefficients considered alone, offer good per-
formance just for the case of the vowel /a/ and the MFCCs exhibit the higher
performance in the vowels /i/ and /u/. However, for all experiments, the best
performance is obtained with the vowel /o/ when MFCC, LPCC, RASTA-PLP-
CEPS, PLP and RASTA-PLP-SPEC are merged and considered together.

The RASTA analysis has exposed good results in the task of automatic speech
recognition; however, according to our findings, in order to achieve better results
with vowels /e/ and /o/, those coefficients must be combined with other per-
ceptual features such as MFCC and LPCC.

The main finding of this work indicates that for vowels /e/ and /o/ it is not
enough to consider one kind of perceptual features, it is required to perform com-
bination of different parameters to achieve good results in the task of automatic
classification of speech signals from PPD and HC.
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ological issues in the development of automatic systems for voice pathology detec-
tion. Biomedical Signal Processing and Control 1, 120–128 (2006)


	Lecture Notes in Computer Science
	Introduction
	Methodology
	Perceptual Modeling
	Features Selection and Classification

	Experiments
	Recording and Corpus of Speakers
	Experimental Setup

	Results and Discussion
	Conclusions


