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Abstract

Non-destructive testing has become necessary to ensure the quality of materials and
components either in-service or at the production stage. This requires the use of
a rapid, robust and reliable testing technique. As a main testing technique, the
ultrasound technology has unique abilities to assess the discontinuity location, size
and shape. Such information play a vital role in the acceptance criteria which are
based on safety and quality requirements of manufactured components. Consequently,
an extensive usage of the ultrasound technique is perceived especially in the inspection
of large scale composites manufactured in the aerospace industry.

Significant technical advances have contributed into optimizing the ultrasound acqui-
sition techniques such as the sampling phased array technique. However, acquisition
systems need to be complemented with an automated data analysis procedure to avoid
the time consuming manual interpretation of all produced data. Such a complement
would accelerate the inspection process and improve its reliability.

The objective of this thesis is to propose an analysis chain dedicated to automatically
process the 3D ultrasound volumes obtained using the sampling phased array tech-
nique. First, a detailed study of the speckle noise affecting the ultrasound data was
conducted, as speckle reduces the quality of ultrasound data. Afterward, an analysis
chain was developed, composed of a segmentation procedure followed by a classifica-
tion procedure. The proposed segmentation methodology is adapted for ultrasound
3D data and has the objective to detect all potential defects inside the input volume.
While the detection of defects is vital, one main difficulty is the high amount of false
alarms which are detected by the segmentation procedure. The correct distinction
of false alarms is necessary to reduce the rejection ratio of safe parts. This has to
be done without risking missing true defects. Therefore, there is a need for a power-
ful classifier which can efficiently distinguish true defects from false alarms. This is
achieved using a specific classification approach based on data fusion theory.

The chain was tested on several ultrasound volumetric measures of Carbon Fiber
Reinforced Polymers components. Experimental results of the chain revealed high
accuracy, reliability in detecting, characterizing and classifying defects.



Titel: Automatisierte Auswertung von dreidimensionalen
Ultraschall-Daten

Kurzübersicht: Zerstörungsfreie Prüfung ist notwendig geworden, um die Qualität
der Materialien und Komponenten während des Betriebes oder bei der Produktion
zu gewährleisten. Dies erfordert die Verwendung einer schnellen, robusten und zu-
verlässigen Prüftechnik. Die Ultraschall-Technologie als Hauptprüftechnik verfügt
über einzigartige Fähigkeiten, um die Lage, Größe und Form der Diskontinuität zu
beurteilen. Eine umfangreiche Nutzung der Ultraschalltechnik ist besonders bei der
Inspektion von großen Verbundkomponenten in der Luft- und Raumfahrtindustrie
notwendig,

Wesentliche technische Fortschritte der 3D-Bildgebung wurden in der Optimierung
der Ultraschall Akquisition durch Techniken wie der getakteten Gruppenstrahlertech-
nik erzielt. Allerdings müssen die Prüfsysteme um ein automatisiertes Analysev-
erfahren ergänzt werden, um die zeitraubende manuelle Interpretation aller pro-
duzierten Daten zu vermeiden. Eine solche Ergänzung würde den Prüfprozess beschle-
unigen und dessen Zuverlässigkeit verbessern.

Das Ziel dieser Arbeit ist es, eine automatische Auswertung von 3D-Ultraschall Daten
zu erhalten, die mit der getakteten Gruppenstrahlertechnik aufgenommen wurden.
Zu Beginn wird eine detaillierte Studie über die Beeinträchtigung der Ultraschall-
daten durch Speckle-Rauschen durchgeführt. Danach wurde eine Analysekette en-
twickelt, welche aus einem Segmentierungsschritt und einem Klassifizierungsschritt
besteht. Die vorgeschlagene Segmentierungsmethodik ist für 3D-Ultraschall Daten
optimiert, mit dem Ziel, alle möglichen Defekte im 3D-Volumen zu erkennen. Die
Erkennung aller relevanten Defekte ist von entscheidender Bedeutung. Ein Haupt-
problem ist dabei die hohe Anzahl der Fehlerkennungen. Die korrekte Unterschei-
dung von Fehlerkennungen und echten Fehlern ist notwendig, um die Rückweisung
fehlerfreier Teile zu hindern. Dies wird erreicht durch einen Klassifizierungsansatz,
basierend auf der Datenfusionstheorie.

Die Kette wurde auf mehreren Ultraschallmessungen von kohlenstofffaserverstärkten
Kunststoffkomponenten getestet. Experimentelle Ergebnisse der Kette zeigen eine
hohe Genauigkeit, sowie Zuverlässigkeit bei der Erkennung als auch bei der Charak-
terisierung und Klassifizierung von Fehlern.



Titre: Évaluation automatique de données ultrasonores en 3D

Résumé: Le contrôle non destructif est devenu nécessaire pour assurer la qualité des
matériaux et des composants soit en service ou à l’étape de la production. Ceci néces-
site l’utilisation d’une technique d’inspection rapide, robuste et fiable. En tant que
technique de contrôle principale, la technologie des ultrasons a des capacités uniques
pour évaluer la position, la taille et la forme des discontinuités. Ces informations
ont un rôle essentiel dans les critères d’acceptation qui sont fondés sur la sécurité et
les exigences de qualité des composants fabriqués. Par conséquent, un usage intensif
de la technique des ultrasons apparâıt notamment dans l’inspection des composites
fabriqués à grande échelle dans l’industrie aérospatiale.

D’importants progrès techniques ont contribué à l’optimisation des techniques
d’acquisition par ultrasons telles que la technique de ”Sampling Phased Array”. Cepen-
dant, les systèmes d’acquisition doivent être complétés par une procédure d’analyse
automatisée de données afin d’éviter l’interprétation manuelle fastidieuse de toutes les
données produites. Un tel complément permet d’accélérer le processus d’inspection
et d’améliorer sa fiabilité.

L’objectif de cette thèse est de proposer une châıne d’analyse dédiée au traitement
automatique des volumes échographiques 3D obtenus en utilisant la technique Sam-
pling Phased Array. Tout d’abord, une étude détaillée du bruit de speckle affectant les
données échographiques a été effectuée, puisque ce type de bruit réduit la qualité des
données échographiques. Ensuite, une châıne d’analyse complète a été développée,
constituée d’une procédure de segmentation suivie d’un processus de classification. La
méthodologie de segmentation proposée est adaptée aux données ultrasonores 3D et
a pour objectif de détecter tous les défauts potentiels à l’intérieur du volume d’entrée
3D. La procédure de segmentation étant en priorité dédiée à la détection des défauts
qui est vitale, une difficulté principale est le taux élevé de fausses alarmes qui peuvent
être détectées également. La classification correcte des fausses alarmes est nécessaire
afin de réduire le taux de rejet des pièces saines. Cela doit être fait sans risquer la
perte des vrais défauts. Par conséquent, la segmentation doit être suivie d’un proces-
sus de classification efficace qui doit distinguer les défauts réels des fausses alarmes.
Ceci a été réalisé en utilisant une approche de classification spécifique basée sur une
approche de fusion de données.

La châıne complète d’analyse a été testée sur plusieurs mesures ultrasonores volu-
miques de composites plastiques à renfort fibre de carbone. Les résultats expérimen-
taux de la châıne ont révélé une grande précision ainsi qu’une très bonne fiabilité de
détection, de caractérisation et de classification des défauts avec un taux très faible
de fausses alarmes.
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1. Context of the thesis

Contents
1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Scientific focus and contributions . . . . . . . . . . . . . . 3

1.3. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1. Introduction

Non-destructive testing (NDT) techniques are quality control methods which allow
the examination of the quality of manufactured components. Such control is necessary
in order to track defects that can appear in the components either in-service or at the
production process. NDT techniques, integrated in inspection systems, represent an
essential part of the production chain. These techniques are permanently subjects of
research and development in order to meet the demands of increasingly higher quality
materials and components from industrial sectors. Primary imaging modalities are
ultrasound and X-ray based.

Despite the advantages procured by X-ray technology especially with the appearance
of in-line Computed Tomography (CT) inspection systems in the market, ultrasound
technology continues to be the preferred technique to be applied. This is due to
several advantages that this technique provides. Unlike X-ray tubes which need
expensive radiation protection, ultrasound instruments are safe and do not require
any protection. Ultrasound technology provides a high sensitivity for most defects,
accuracy in locating defects and possibility to use single sided access to the test part.
This property is very important for the inspection of large components, where the
application of other NDT techniques, for example X-ray CT, is relatively complicated
and may require the dismantling of the component.

Ultrasound imaging modality has benefited from major technological advances in
the last two decades. Indeed, advances in computer technology and visualization
techniques have made 3D ultrasound imaging viable [1]. Nowadays, the range of
clinical and industrial applications of 3D ultrasound scanners keeps growing and it is
anticipated that some clinical and industrial applications offered by 3D ultrasound will
replace X-ray CT [2, 3]. Common approaches for acquiring 3D ultrasound volumes are
based on [4]: 2D transducer array [5, 6], mechanically swept transducers (mechanical
scanners) [7] and free-hand techniques with/without position sensing [8, 9].

1



2 1.1 Introduction

Moreover, the ultrasound technology is largely used to inspect, at manufacture, the
quality of Fiber Reinforced Polymer (FRP) composites. These materials are consid-
ered as excellent alternatives of traditionally used metals (such as steel, aluminum,
etc.). Main advantages of FRP composites are their high strength to weight ratio,
their resistance against environmental conditions and the possibility to melt them
into various shapes. Manufacturing of FRP components is done by bonding fiber
filaments, i.e. carbon, glass, to a polymer matrix. The fibers give the composite
the strength and stiffness while the matrix provides rigidity and protection against
environmental factors. Thus the durability of the manufactured FRP component is
directly dependent on the manufacturing process and is subjected to various types of
defects which can appear in the composite like delamination, debonds, fiber breakage
and classical discontinuities like voids, porosity and cracks. The quality control of
these anisotropic materials is an essential procedure to enable their secured appliance
in manufactured parts.

Manual ultrasonic testing has often provided a solution for conventional small scale
inspection tasks. However, manual testing requires highly trained operators. Besides,
large FRP structures are produced especially for aeronautical, naval and construction
applications. For such large components, the application of manual testing is no
longer possible. With the development of ultrasound phased array technology, it
became possible to replace the conventional manual testing technique by an automatic
inspection procedure. Nowadays, a rapid acquisition of ultrasound data over large
structures is possible by using automated acquisition systems which often use the
phased array technique. Moreover, the development of the sampling phased array
(SPA) technique [10] further reduced the inspection time compared to phased array
technology. It also allowed fast representation of defects at their original positions in
the inspected component in 3D space, in addition to an improved quality of ultrasound
images.

However, the manufacturers are realizing that a rapid acquisition is only a part of
the solution for NDT testing of large composites. The second factor which has to be
solved is the analysis of the measured data. Indeed, an enormous amount of data
must be processed by highly trained NDT operators. For instance, this amount can
go up to Terabytes of data per composite in an aircraft of the size of a B787 or A350,
each aircraft can require several man-months to analyze the NDT data manually [11].
Moreover, boredom and fatigue of operators can lead to unreliable and inconsistent
results, where significant defects are not reported [12]. Therefore, there is an imminent
need to replace the manual analysis of the data by an automated analysis chain.

The presented research activity tackles the automated analysis of industrial volumet-
ric ultrasound data. It is realized in the Development Center for X-Ray Technology
EZRT of the IIS Fraunhofer Institute, in Fuerth, Germany. The center is focusing
on the following areas of research: X-ray sensors, computed tomography, image pro-
cessing and applications. As for ultrasound technique, EZRT employs an acquisition
system developed by the Fraunhofer Institute for Non Destructive Testing IZFP, in
Saarbruecken, Germany. The acquisition system is a mechanical scanner built by
QNET Engineering [13]. In EZRT, the system is mainly used to inspect planar Car-
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bon Fiber Reinforced Polymers (CFRP) specimens and to produce real time volumes
via SPA technique.

The PhD thesis is a joint work between Fraunhofer EZRT, the Vibration and Acoustic
laboratory of the National Institute of Applied Sciences INSA de Lyon in France and
the Pattern Recognition laboratory of the Friedrich-Alexander University Erlangen-
Nuremberg in Germany.

1.2. Scientific focus and contributions

The scientific focus of this thesis is to complete the ultrasound acquisition system
with an automated robust method for the analysis of 3D reconstructed volumes. The
work consists of two packages:

• Evaluation and segmentation of the 3D ultrasound data. Here, the study of
the initial image quality is important for improving the detection of defective
or suspicious regions.

• Classification of the detected regions. Here, the separation of true defects and
false alarms (i.e., false defects) is the main aspect and furthermore the assign-
ment of properties to each defect.

To reach these objectives, an analysis chain is proposed, which is composed of: a) a
segmentation procedure which has the role to detect all potential defects inside the
3D volume and b) a classification methodology based on data fusion theory. The
classification method has the aim to successfully classify all defects with the minimal
false alarms rate. The list below summarizes the scientific contributions of this thesis:

Evaluation:

• An intensive study of speckle noise is presented in this work. The origin of
this noise and the modeling methods applied until now are discussed. The
appropriate model for the SPA data is found, which is an extension of an existing
model to fit speckle noise distribution in our data.

• The use of the Contrast to Noise ratio (CNR) metric of a given defect to assess
the filtering quality is proposed. The interest of this metric is to define a
criterion to choose the best filter in the sense of defects detectability and not
only noise reduction.

• After evaluating the quality of acquired data (characterization of speckle noise),
an analysis chain is proposed. The chain’s input is a 3D ultrasound volume,
the output of the chain is the list of defects and false alarms inside the volume
with their corresponding characteristics.



4 1.3 Outline

Classification:

As for the classification procedure, the following points resume the contribution:

• New features (shadow and damage index) are proposed to describe the suspi-
cious regions.

• Features measured on the detected suspicious regions are considered as sources
of information for the data fusion classification method. The main part of this
method relies on the translation of features values into confidence levels (so-
called mass values) to a set of hypotheses dedicated to our application

”
true

defect“,
”
false defect“ or

”
ignorance“.

• A selection methodology of pertinent features is proposed. It is based on the
usage of Receiver Operating Characteristics (ROC) and aims to improve the
classifier performance.

• A study of data fusion classifier for 3D datasets: usage of conjunctive and
cautious information combination rules.

Application:

• Application of the proposed method on planar CFRP specimens.

1.3. Outline

The thesis is organized in six chapters: chapter 2 gives a review of the ultrasound
technique with main focus on phased array and sampling phased array technique.
It will describe the acquisition system that is used to collect the data and gives an
overview on the inspection of composite pieces. In addition, a review of the existing
ultrasound data analysis techniques is presented in this chapter.

Chapter 3 is dedicated to the noise study, where the noise origin, modeling methods
and bibliography about speckle reduction are investigated.

Chapter 4 will introduce the proposed analysis chain. It will describe each step of
this chain in detail.

The experimental evaluation of the analysis chain is presented in chapter 5. In this
chapter, experimental results are reported on several volumes of two planar CFRP
specimens.

The conclusion and outlook are finally presented in chapter 6.



2. Ultrasound NDT technique:
acquisition and image analysis

Contents
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Phased array technique . . . . . . . . . . . . . . . . . . . . 6

2.2.1. Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2. Applications of phased array techniques in non-destructive
testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3. Advantages and limitations of the phased array technique . 11

2.2.4. Reconstruction algorithms . . . . . . . . . . . . . . . . . . . 13

2.3. Sampling phased array technique . . . . . . . . . . . . . . 15

2.3.1. Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2. Sampling phased array advantages . . . . . . . . . . . . . . 18

2.3.3. Acquisition system . . . . . . . . . . . . . . . . . . . . . . . 20

2.4. Inspection of composite components . . . . . . . . . . . . 23

2.5. Ultrasound image analysis . . . . . . . . . . . . . . . . . . 24

2.5.1. Artifacts of ultrasound images . . . . . . . . . . . . . . . . 25

2.5.2. Segmentation of ultrasound images . . . . . . . . . . . . . . 27

2.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1. Introduction

Ultrasonic waves are mechanical vibrations which propagate through a medium (solid,
liquid or gas) at a wave speed characteristic of the elastic and inertial properties of
the propagation medium. They are generated by a piezoelectric probe excited by
an electrical voltage. The piezoelectric effect is reversible allowing the usage of the
same probe to detect the reflected waves in form of electrical signals. By analyzing
these signals, conclusions are drawn about the existence of discontinuities inside the
medium. Typical ultrasonic frequencies are in the range of 20 kHz to 50 MHz. In
industrial applications, used frequencies are between 0.5 MHz and 15 MHz. Another
aspect of ultrasound imaging is the Scanning Acoustic Microscopy (SAM) where the
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applied frequencies are above 100 MHz and can reach 2 GHz [14]. The high frequency
provides the possibility to obtain accurate measurement results for crack and void
distributions with a resolution of up to 1 µm at a depth of 10 µm.

In the first built ultrasonic non destructive testing systems, ultrasound signals were
converted into electrical signals and immediately displayed on a screen. Interpre-
tation required highly skilled operators to examine the signals (called A-scans, see
appendix A.1.2) and to give an immediate decision on the quality of the test. Such
interpretation can be a complex task. Especially when large structures are inspected,
the amount of produced data can be enormous. The modern test equipments are
digital and facilitate the work of the operators with special features such as auto-
matic calibration, depth compensation, storage and revoke of the recorded ultrasonic
signals etc.

However, conventional manual scanning has many limitations: operators need to be
highly trained which naturally comes from expensive long training procedures and the
repeatability and consistency of test results are not guaranteed. Moreover one single
probe cannot be used to detect all types of defects. For instance, it is not possible to
detect transverse cracks using a straight transducer, an angular transducer is used to
detect such defects. Limitations in speed, in accuracy of detection, sizing, location
and orientation of such critical defects pushed toward the search for new technologies.
Phased array technology was developed to overcome these limitations.

Referred to as Conventional Phased Array (CPA), this technique procured higher
inspection speed, better flexibility (the same probe can be used to detect defects
in all orientations), electronic setup instead of manual setup, possibility to inspect
geometrically complex components with higher reliability and new imaging modes
such as sector scan which permits easier interpretation and analysis of ultrasound
indications.

Moreover the development of the new Sampling Phased Array technique (SPA) by the
Fraunhofer IZFP Institute [10] provides a faster reconstruction of ultrasonic images
in 3D space. This new inspection technique, registered as patent [15], opens the
doors towards a fully or semi-automated analysis of ultrasonic images, which provide
a maximum support to the operator by evaluating inspection results. This task has
to be solved by means of modern 3D image processing methods, adapted to the needs
and requirements of the automatic ultrasonic testing. This is the main purpose of
the doctoral thesis.

2.2. Phased array technique

Originally developed for medical applications [16], phased array technology found its
first applications in the industrial field in the beginning of the 1980s [17, 18]. Ad-
vances in piezocomposite technology, microelectronics and computing power allowed
the development and application of ultrasonic phased arrays to reach a mature status
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as NDT method at the beginning of the twenty-first century.

2.2.1. Principle

Consider a straight array consisting of N = 2Q + 1 elementary rectangular shaped
transducers from i = −Q to i = Q, where i = 0 refers to the central element and
N,Q ∈ N.

x

r

DT

r sin θ

r cos θ

θ
i i+ 1

Figure 2.1.: Schematic view of a phased array transducer: the blue boxes represent
the elementary transducers i = −Q · · · 0 · · ·Q, and r denotes the focal
distance between a point x and the central element (i = 0) of the array.
The angle θ is the incidence angle.

Let x be a point in the focal region of the array. The focal length r > 0 is defined
as the distance from x to the central element of the array. Note that the distance
separating x from element i is less than the distance separating the point x of the
element i+ 1. Accordingly, if one desires that the ultrasonic waves generated by each
of these elements can be added constructively at the interference point x, the multiple
wave fronts must have the same global time-of-flight arrival at x. This effect can only
be achieved if the various active probe elements are pulsed at slightly different and
coordinated times with proper time-delays, ensuring that all these waves arrive in
phase at point x producing maximum ultrasonic energy in this area (constructive
interference). Thus, the ultrasonic beam is focused and steerable. The time delays
series applied to the array elements is called

”
focal law“.

The emitted waves from individual elements construct a propagating wave front whose
propagation direction is a function of the time delay ∆τ between adjacent elements,
the wave speed c in the medium and the distance DT between adjacent elements of
the array. For an incidence angle θ ∈ [−π/2, π/2] (also called steering angle), the
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time delay between adjacent elements ∆τ ≥ 0 can be written as [19]:

∆τ =
DT

c
sin θ + τ0 (2.1)

where τ0 is a constant ensuring that ∆τ is positive.

For a focal length r at a required incidence angle θ, the time delays ti to trigger
element i of the array can be computed by the following formula [18, 20]:

ti =
r

c

(
1− [1 +

(
iDT

r

)2

− 2
iDT

r
sin θ]1/2

)
+ t0 (2.2)

where i = −Q · · · 0 · · ·Q is the number of array elements, c (m/s) is the speed of
sound in the medium considered to be homogeneous and t0 ≥ 0 is the travel time
from the central element of the array to the focal point x.

The basic design of the phased array electronics is presented in figure 2.2. The
transmission and reception modes are regulated independently. When sending with
appropriate time delays, a beam with a specific angle and focused at specific depth
is generated. This beam hits the defect and is back reflected. Each of the phased
array elements measures a certain proportion of the reflected ultrasonic energy. After
amplification and filtering, the signals which are arriving with different time of flight
values are time shifted for each element according to the receiving focal law. Then,
the received signals of all the elements are summed to form a single ultrasonic signal.
The signal summing can be either analog or digital. In modern test equipment, digital
signal processing is preferred for many reasons, one of them is the low cost of modern
digital microelectronics [10, 21, 22, 23].

The analog electronic used for time shifting (delay) and amplification, is implemented
in a separate block in the immediate vicinity of the phased array probe to reduce inter-
ference and to simplify cable connections (see figure 2.2). Nowadays, the computing
power and programming flexibility of FPGAs allow all functions for signal processing
to be implemented in hardware independently of the PC environment. The phased
array system is connected to a PC which plays the role of interfacing and mediation
between the phased array system and the user. The users can control the test system
and receive results in a form they understand. A variety of options are possible to
display the results: A-scan, B-scan, C-scan, S-scan etc. (see appendix A.1.2). The
PC options include storage, reuse and archiving of test parameters and test results.
The communication between the PC and the data processing front end can be real-
ized using fast hardware-network protocols such as the Serial Attachment (SATA).
Among the advantages of SATA is the fast data transfer (up to 6 Gbits/second) from
the data processing front to the PC.
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Figure 2.2.: Basic design of the phased array system and its connectivity (according
to [10]).

2.2.2. Applications of phased array techniques in non-destructive
testing

The phased array technique offers great application potentials in materials testing
tasks. Several special inspection techniques have been developed to put the advan-
tages of this method into specific testing procedures. The main scanning modalities
procured by this technique are cited in the following paragraphs.

Sector scanning

One major advantage of the phased array transducers is their capability to sweep the
ultrasound beam through an angular range for a specific focal depth. This procedure
is known as sector scanning. Different incidence angles can be achieved by changing
the time delays in transmission and reception. Let us examine figure 2.3: ultrasound
beam with incidence angles θ1 and θ2 can be generated when triggering the array
elements using focal laws 1 and 2 respectively. Consider that the incidence angle θ
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Figure 2.3.: Beam steering at angles θ1 and θ2 with the phased array technique.

is changing between θ1 and θ2 with a 1◦ step. At each incidence angle, the received
signal can be recorded. The signal (A-scan) can then be back projected into the test
specimen using an image reconstruction algorithm such as synthetic aperture focusing
technique (see paragraph 2.2.4). The amplitudes of the pixels corresponding to each
A-scan can be encoded as color or gray scale. The result is a 2D representation of
the inspected specimen, the so-called sector scan (S-scan) between angles θ1 and θ2

(see as example figure 2.11).

Sector scan is rarely used for inspection tasks due to different reasons. Among them
is the time consumption due to the necessity for numerous sending/receiving at each
test position. Nevertheless, sector scan can be used to test the functionality of the
phased array inspection system and its testing parameters, such as the resolution
with different angles of incidence.

Dynamic depth focusing

Many inspection tasks require a high lateral resolution. One way to improve the
lateral resolution is the focus. In conventional probes, focus is achieved by a focusing
lens where the focus distance is determined by the curvature of the lens and cannot
be changed. With phased array transducers, different focus distances can be set,
for which the corresponding time delays of the array elements can be programmed.
In practice, a single transmitted focused pulse is used and refocusing is performed
on reception for all programmed depths. Figure 2.4 illustrates the dynamic focusing
at depths r1 and r2, for a steering angle θ = 0, using focal law 1 and focal law 2
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respectively.
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Figure 2.4.: Beam focusing at depths r1 and r2 with the phased array technique.

Electronic scanning

In electronic scanning (E-scan), the same focal law and delay is multiplexed across
a group of active elements. Scanning is performed at a constant angle and along
the phased array probe length by a group of active elements, called a virtual probe
aperture (see figure 2.5). This is equivalent to a conventional ultrasonic transducer
performing a step by step mechanical scanning. Electronic scanning is useful for
typical testing applications like corrosion mapping and shear-wave inspection of welds
(detecting sidewall lack of fusion or inner-surface breaking cracks).

2.2.3. Advantages and limitations of the phased array technique

The phased array technique has several benefits which include:

• A single phased array probe can cover a wide range of applications, unlike
conventional ultrasonic probes.

• The usage of focused beams allows to achieve better a lateral resolution and
to improve the signal to noise ratio. Moreover, an increased sensitivity can
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Figure 2.5.: Electronic scanning principle for zero-degree scanning: the virtual probe
aperture consists of five elements. Focal law 1 is active for elements 1-5,
while focal law 5 is active for elements 5-9.

be achieved through the optimization of the beam propagation angle to ensure
that it is perpendicular to the surface of an expected discontinuity.

• Electronic scanning reduces the inspection time by reducing the need to move
the probe. This also helps into maintaining uniform scanning conditions by less
degrading the coupling between the transducer and the specimen each time the
transducer is moved. Thus, the reliability of inspections is improved.

• Defects visualization in multiple views using the redundancy of information
in S-scan, E-scans and other displays offers a powerful imaging tool. This
visualization can be done during the scanning process with storage and reuse
possibilities. With real-time imaging, inspections are easier to perform and the
reliability of the measurements is also improved.

• Acquired data can be reconstructed into a 3D volume (see paragraph 2.2.4).
With 3D representation, a better location and sizing of defects can be achieved.

• Replacing physical movement with electronic control, phased arrays can be
programmed to inspect geometrically complex components such as automated
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welds.

• The phase array technique can be integrated into automated or semi-automated
inspection system allowing fast inspection and repeatability of testing tasks.

• Electronic setups are obtained by simply loading a file and calibrating. Dif-
ferent parameter sets (such as inspection angle or focal distance) are easily
accommodated by pre-prepared files.

Despite the advantages of ultrasonic phased arrays, there are many limitations hinder-
ing their employment for NDT tasks. A useful reference for many practical limitations
of phased array is [24]. Following are resumed some of these limitations:

• The main obstacle is that the method is still not standardized. Phased array
techniques are difficult to integrate into existing standards due to the complexity
of this technology.

• Phased array equipments are much more expensive than conventional systems.

• The first time setup is time consuming, complex and requires very skilled op-
erators. Indeed, phased-array equipments are more complex and thus more
difficult to operate than conventional instruments.

Nowadays, a high probability of detection is expected from ultrasound equipments.
High resolution B, C and S-scans imaging are therefore required. This imposes the
increase of the number of sweeping angles and focusing depths. Phased array trans-
ducers can indeed be electronically re-focused and steered, nevertheless the overall
inspection time may become impractical. In this context and instead of real time
focusing, focusing can be performed after acquiring the data by synthetic aperture
imaging explained in the next paragraph.

2.2.4. Reconstruction algorithms

Accurate detection and sizing of defects are essential tasks for a safe operation of the
inspected specimen. This requires a high lateral resolution which is largely determined
by the aperture of the transducer array. Thus, the use of a highly divergent beam is
needed to keep the discontinuity in view over as large an aperture as possible. The
main reconstruction algorithm which proved to be very efficient is the well known
Synthetic Aperture Focusing Technique (SAFT). This method was developed by the
University of Michigan, Southwest Research Institute and Battelle Pacific Northwest
Laboratory [25].

SAFT was originally developed to improve the resolution of radar systems. The first
synthetic aperture radar (SAR) appeared in 1950s [26, 27]. Later on the method
was applied in ultrasound systems in medical imaging and industrial testings [28].
To illustrate the SAFT principle in time domain (SAFT can be implemented also
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Figure 2.6.: Illustration of SAFT principle. The transducer is mechanically scanned
along the x-axis and at each position xn, n = 1 · · ·L, an A-scan A(xn, t)
is acquired. At the end of the scanning, all A-scans are time shifted and
signal summation or correlation takes place.

in frequency domain [29]), let us consider a simple case where a single transducer is
mechanically scanned along the x-axis as seen in figure 2.6 and let us suppose that
the propagation medium is homogeneous (i.e., the speed of sound c is constant).

The basic idea of SAFT is to collect A-scans from different scanning positions xn,
as to simulate a larger transducer. Then, with adequate computation, the A-scans
are time shifted and correlated to give a much better resolution. In fact, different
insonification angles give a more accurate information about the location and the
size of the scatterer. In SAFT technique, the focus of the ultrasound transducer is
assumed to be an observation point (xr, zr) of constant phase through which all the
sound waves pass before diverging in a cone whose angle is determined by the width
of the transducer a and the focal length r [30] (see figure 2.6).

When the transducer is directly above the observation point (scatterer), the time to
receive the back scattered wave front is minimum. This time increases non-linearly
when the transducer moves away from this position. SAFT consists of signal averag-
ing, where at first all the A-scans have to be processed to introduce a time shift to
each one of them. Afterward, the summation of these individual signals takes place.
Reflections coming from defects will be constructively added and signals forming the
noise will be destructively added (due to phase change). As a result, defects are
enhanced and the noise is reduced.

More precisely, consider that the observation point is at spatial coordinates (xr, zr) in
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xz plane. The wave front generated by the transducer at position (xn, 0) propagates
through the medium and reaches the point (xr, zr) where it is scattered back to the
transducer. The back scattered wave front reaches the transducer at time:

tr =
2r

c
=

2
√
z2
r + (xn − xr)2

c
(2.3)

where tr is measured from the beginning of the sending, remind that c is the speed
of sound in the homogeneous medium. Consequently, the time shifts necessary to
compensate the differences in the traveling time can be calculated using this equation.
After introducing the necessary time shifts, the summation of the A-scans can be
done. Finally, focusing at the observation point (xr, zr) can be expressed in continuous
time form as follows [31]:

f(xr, zr) =
L∑
n=1

A(xn,
2
√
z2
r + (xn − xr)2

c
) (2.4)

where f(xr, zr) is the back projected signal amplitude function (also known as target
function) at focusing point (xr, zr) and A is the ultrasonic signal (A-scan) acquired
at position xn of the transducer.

Normally measured A-scan signals are digitized with a ceratin sampling period.
Therefore, the time shift tr must be rounded towards the nearest sampling instance
which introduces some errors. A common way to reduce the rounding error is to
perform interpolation or to over-sample the signal [32, 31].

2.3. Sampling phased array technique

The SPA technique is developed to bring further the ultrasonic inspection speed
without loss in image quality. In this section, a summary of this technique and for
further information is presented, readers have the possibility to see references [10]
and [33] for more details.

2.3.1. Principle

The main characteristic of the SPA technique is that it does not require electronic
phase shifting for steering and focusing. These two functionalities are done via
adapted reconstruction procedures. Let us consider an array formed of N trans-
ducer elements. In SPA technique, one transducer element i sends an ultrasound
wave into the inspected specimen and all the other elements, including i, receive the
reflected echo signals (see figure 2.7). This is the basic principle of SPA technique.
The received signals are saved in the SPA information matrix (see figure 2.8).

At each sending pulse, one line of the matrix will be filled with the received echoes by
different transducer elements. Thus, N sendings lead to the filling up of the complete
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matrix with [N,N ] elements (see figure 2.8). This operating mode is referred to as
1×N SPA mode. Two other modes are also applicable to fill the information matrix:
N × 1 SPA mode where all elements of the transducer send and only the ith received
signal is considered and N×N mode where all elements of the transducer send and all
receive. The SPA information matrix contains all necessary data for a reconstruction
process. In fact, from the saved signals, all respective angles of incidence can be
synthesized.

1
2

1 2

Sending pulse i

Transmitting

Receiving

Figure 2.7.: Data acquisition in SPA mode: one transducer sends, all others receive
(Image source: [10]). In this figure, the propagation medium is considered
homogeneous thus the speed of sound is constant. Note that in the right
image, the reflected signals from defects 1 and 2 are represented as if
they were simultaneous, although they are not because the defects did
not receive the incoming signals at the same time.

Synthetic focusing-sampling phased array

So far, the SAFT reconstruction method for a single transducer was discussed. For the
case of a sampling phased array transducer, it comprises elements arranged at equal
distances. Since these elements are sequentially triggered and operate independently,
they can be considered as different probe positions in the SAFT-data recording. The
difference is that the receivers are located in multiple locations, not just at the position
of the transmitter, as in the classical SAFT reconstruction. More information is thus
available.

Indeed, SAFT A-scans are simply the diagonal elements of the information matrix.
The remaining matrix elements contain considerably more data than necessary for
the reconstruction. Nevertheless, these additional information about the defects can
be used in the SAFT reconstruction for each pixel. The reconstruction method is
referred to as Synthetic Focusing-Sampling Phased Array (SynFo-SPA) [10]. The
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Figure 2.8.: Illustration of the filling of the Information matrix in the operating mode
1×N : Aij corresponds to the detected reflection of the signal emitted by
i and received by j. For Pulse 1, only element 1 sends and all elements
receive: the first row of the matrix is filled. For Pulse i, only element
i sends and all elements receive: filling of the row i of the matrix. For
Pulse N , only element N sends and all elements receive: filling of the
last row N of the matrix.

advantage of this technique, utilizing all time-domain signals Aij(t), lies in the auto-
matic focusing of every image point. Actually, by means of the SynFo-SPA algorithm
1, received signals can be synthesized for any required incidence angle θ and focusing
point at discrete focal length rk from the central element (see figure 2.9): each digi-
tized signal generated by receiver j and transmitter i can be projected on the central
axis of the phased array and added to the other information matrix components Aij.

Algorithm 1 Reconstruction algorithm for any required incidence angle θ (according
to [10]).

ForwardPath[Samples] =

[(
Di +

rk
2
· sin θ

)2

+
(rk

2
· cos θ

)2
]1/2

BackwardPath[Samples] =

[(
Dj −

rk
2
· sin θ

)2

+
(rk

2
· cos θ

)2
]1/2

Sum[rk] =
∑N
i=1

∑N
j=1Aij(ForwardPath + BackwardPath)

. Samples stands for discrete values
. Di: distance from sender i to the central axis

. Dj : distance from receiver j to the central axis
. rk: discrete focal distance on the central axis

. θ: incidence angle
. i: sender and j: receiver

As a result, the aperture of the transducer array can be increased up to the complete
information matrix which permits focusing at different depths without any increase
in complexities of transducer arrays and ultrasonic channels.
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Di Dj

Figure 2.9.: Illustration of the different distances involved in the SynFo-SPA recon-
struction algorithm for an incidence angle θ and focus point at distance
rk from the central element of the array. The distances Di and Dj are
the distances from the sender i and the receiver j to the central axis. The
green dotted line correspond to the forward path of the emitted wave.
The black dotted line correspond to the backward path of the reflected
wave received by receiver j.

The end result of the SynFo-SPA algorithm is a high image quality: B-scan, C-scan or
S-scan. Three dimensional volumes (using mechanical scanners) can also be generated
by stacking the 2D B-scans according to the geometry of the scanned specimen and
the actual index value (see figure 2.10). Actually, at each index position (y-axis) the
transducer is moved in scan direction (x-axis) over the complete scan trajectory. The
generated B-scan fills the voxels of its corresponding xz plane.

Figure 2.11 compares resulting sector scans obtained via CPA and SynFo-SPA. Note
that the reflectors located near the surface are much better identified in the second
technique.

2.3.2. Sampling phased array advantages

Important advantages of SPA using the SynFo reconstruction algorithm are resumed
as follows:

With SPA the image quality is vastly improved. Moreover, high inspection speeds are
made possible at reduced system expenditures primarily caused by omitting electronic
phase shifting components [33].
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Figure 2.10.: Illustration of a volume reconstruction with SynFo-SPA (Image source:
Fraunhofer IZFP). The scan direction is x direction. The index direction
is y direction. Upper image: the green focus area is the reconstructed
B-scan obtained by scanning the transducer array over the complete
scan trajectory. Lower image: the 3D volume obtained after scanning
the transducer over the complete scan trajectory at each index y.

Another advantage of SPA is that the directional characteristics of the array are the
same as the single element transducer directional characteristics because the trans-
mission of the ultrasound waves is done in all directions. This means that the received
ultrasonic signals contain information about reflectors, which are located in all scan-
ning directions. Thus, with the correct assignment of the phase, the received signal
can be synthesized in any required irradiation direction [33].

Moreover, by giving access to the elementary wave phase conditions, the SPA tech-
nique improves the ability of ultrasound systems to inspect anisotropic materials such
as carbon fibers. In fact, in homogeneous materials, the wave fronts of elementary
waves are spherical and propagate in perpendicular direction to the wave front. This
is different in anisotropic materials, where the wave fronts are not spherical and the
sound field is rather distorted [35]. In other words, in anisotropic materials, the speed
of sound is not the same throughout the complete volume and the traveling path is
not always straight. This leads to many difficulties, among them is the estimation
of the depth of discontinuities. SPA technique gives access to the elementary wave
phase conditions and relations allowing them to be adjusted to a quasi-normal test
condition of anisotropic materials. This technique is referred to as Reverse Phase
Matching [36] and is currently an active research theme at Fraunhofer IZFP labs in
Saarbruecken. Further explanation about Reverse Phase Matching application can be
found in [37]. Figure 2.12 shows a sector scan of a CFRP specimen via conventional
phased array and SPA with Reverse Phase Matching.

Yet another important advantage of the technique is the almost total elimination of
near-surface dead zones resulting in a much better identification of surface reflectors,
as visible in figures 2.11 and 2.12. Indeed, in CPA technique, all elements send and
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Figure 2.11.: Sector scan of a test specimen: near surface side drilled holes (SDH)
artificial defects 1, 2 and 3 are more clear with SynFo-SPA compared to
CPA (Image source: [34]).

receive. Thus, dead zones of the elements of the transducer yield a bad image quality
near the surface. In 1 × N mode of SPA technique, only one element sends but all
the others receive. Therefore, the near surface defects are not in the dead zone of all
of the elements of the transducer, the image quality near the surface is thus better.

2.3.3. Acquisition system

The SPA technique is integrated in a platform, built by QNET Engineering [13],
based on cutting edge microelectronic components. Data processing and image re-
construction are done based on parallel computer architecture which allows very fast
in-line visualization of the measured data.

The measuring station consists of an immersion tank, 3-axes manipulator and a 64-
channel phased array system capable of multichannel inspection as well as CPA and
SPA inspection in contact or immersion technique (see figure 2.13).

An acquisition software (called sampling software) for automated ultrasonic testing
is also available for experimental settings, data visualization and manual analysis
(view figure 2.14). Figure 2.15 shows the inspection of a CFRP specimen with the
corresponding results where defects appear in the inner structure of the specimen.
The settings required for each specific ultrasound inspection procedure can be defined
using the sampling software. It is important to use the proper settings in order to
have a satisfactory quality of reconstructed ultrasound data. Important parameters
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Figure 2.12.: Sector scan ultrasound inspection of a CFRP specimen: the defect near
the surface is obviously seen by SPA with Reverse Phase Matching (Im-
age source: [34]).

that can be set by the sampling software are as follows:

• Sound velocity: each material is characterized by a specific sound velocity which
depends on the elastic and inertial properties of the material. Thus, it is pri-
mordial to use the adequate sound velocity corresponding to the component
being tested. For CFRP, sound velocity is around 2880 m/s and is determined
using a specimen of known thickness.

• Water wedge: in this work, measurements were done in immersion testing tech-
nique, where the transducer is coupled to the test component by water. This
means that sound propagates through the water to reach the component. Thus,
the depth of the water wedge has to be measured in the inspection procedure.
This can be done by setting the sound speed at the velocity of sound in water
(1480 m/s), then by measuring the signal peak which corresponds to the end
of the water path. Errors in detecting the end of the water will lead to a total
distortion of the reconstructed data.

• Gain: offset amplification can be applied to the amplitude of the reconstructed
signals. Adequate amplification gives an improved data quality.

• Time gain compensation: ultrasound waves are considered to be exponentially
attenuated while propagating in the medium, thus they need to be amplified
in order to allow the visualization of near surface regions simultaneously with
deep regions. This corresponds to the application of a time compensation gain
TGC(z) at each depth z. TGC can be interpolated using a step wedge of the
same type as the inspected component.

• Dimensions: the [x, y, z] dimensions of the reconstructed volume need to be
specified. The scanned surface is specified by x and y. The maximal depth of
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Figure 2.13.: Measurement station with corresponding: immersion tank (1), probe
holder (2), 3-axes manipulator (3) and manipulator control unit (4).

the scan is specified by z.

• Resolution: the voxel size in the 3D reconstructed volume can be specified in
the sampling software (see figure 2.14). On one hand, the image resolution
depends on the specified voxel size. On the other hand, the spatial resolution
is defined by the wavelength of the ultrasound wave which is equal to the ratio
of the sound velocity in the medium over the frequency. Thus, better spatial
resolutions are obtained with higher frequencies. In practice, the voxel size is
chosen smaller than the wavelength in order to preserve the spatial resolution.
For instance, when scanning a CFRP specimen with a 5 MHz transducer, the
wavelength is 0.576 mm: planar CFRP are primarily tested with an incidence
angle θ = 0◦ for delaminations and porosity that are usually detected best
perpendicular to the accessible surface of the specimen [38]. Therefore in this
case, the voxel size in depth (z) direction should be less than 0.576 mm.

• Scanning speed: this parameter can be set by an additional software which
controls the scanning speed (the motion control unit) of the 3-axes manipulator.
It specifies at which scan speed the transducer moves in x direction and the step
for each index move y.



2.4 Inspection of composite components 23

Figure 2.14.: Software environment including all settings, among others are the reso-
lution settings of the reconstructed volume.

2.4. Inspection of composite components

Fibers Reinforced Polymers (FRP) are composite materials formed of bonded fibers
with polymer matrix (or resin). Fibers are long filament materials with diameters
ranging from 0.8 µm up to 12 µm [39]. Their role is to provide strength and stiffness
for the FRP component. Examples of fibers used for industrial application are glass
and carbon fibers. Matrix material is a polymer which binds the fibers together.
Primary functions of the matrix are to transfer stress between fibers, to provide
protection against the environment and to protect the surface of the fibers from me-
chanical abrasion [39]. Typical resin materials are thermoplastic and thermosetting
polymers. The bond between the fibers and the matrix material needs to be per-
fect so that no discontinuity appears across the interface fiber-matrix. The output
composite components have low weight, high strength and stiffness and resistance to
environmental conditions, which result in low maintenance costs.

Indeed, the usage of FRP composites has significantly incremented in wide range of
aerospace, naval, aeronautical, civil infrastructure and automotive industrial appli-
cations. Quality of complex FRP structures is subjected to very high requirements
in order to ensure that the composite performs satisfactorily. Moreover, the high
production rate of FRP production in industry requires efficient and reliable non-
destructive in-line testing modality in order to guarantee the highest quality and
reliability of the produced structures.
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Figure 2.15.: Inspection of a CFRP specimen using SPA 1×16 mode and the obtained
3D reconstruction (upper right image) revealing the presence of defects
inside the structure (lower right image).

The most applied NDT technique to inspect the quality of FRP components is the
ultrasound technology. The use of this technique is strongly correlated with the
types of defects that potentially appear in FRP composite structures. Particularly,
ultrasound waves are sensitive to delamination defects. These are inter-laminar cracks
which appear in the composite element and are caused by loss of adequate adhesion
between adjacent plies due to poor quality in lying plies, shrinkage in the matrix etc.
They can appear both at near surface or deep locations in the composite and can
grow and propagate in the structure leading to complete malfunctioning of the FRP
element. Debonding of the fibers from the matrix in addition to other common types
of defects like porosity, voids and inclusions can also appear in the FRP elements.
Readers interested in knowing more about potential defects in FRP structures, their
criticality and NDT testing modalities are referred to document [40].

Our objective is to find a method for the automatic interpretation of measured data
dedicated to in-line inspection via SPA technology which represents the latest ad-
vancement in the phased array technology. The proposed interpretation requires an
adequate ultrasound image analysis technique. Section 2.5 is dedicated to introduce
the main artifacts that are characteristic of ultrasound images and to review the state
of the art on ultrasound image analysis approaches.

2.5. Ultrasound image analysis

The quality of ultrasound images has relatively improved over the recent years. This
has led to a rising interest in segmenting ultrasound images both for medical and in-
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dustrial applications. However, ultrasound images are still considered hard to segment
and conventional image analysis techniques often do poorly on ultrasound images as
they assume good boundary definition (defect-material) and acceptable contrast to
noise ratio. In fact, the appearance of geometric boundaries is dependent on the
acoustic impedance difference between medium and defect, on the assumption of
usage of the true speed of sound in the medium, which can significantly influence
the obtained signal and on the characteristics of the inspected medium. Certainly,
anisotropic materials such as CFRP are a true challenge for any segmentation pro-
cess. The next section will discuss the main artifacts that affect the quality of the
ultrasound images.

2.5.1. Artifacts of ultrasound images

Diverse phenomena provoke the appearance of artifacts in ultrasound data. Aris-
ing artifacts can be due to the physical interaction between the sound waves and the
propagation medium, the propagation of sound in matter [41], the formation of the ul-
trasound pulse (i.e. ultrasound beam characteristics) and reflected echoes acquisition,
processing and reconstruction techniques. Artifacts can also be caused by improper
scanning techniques, although these artifacts can be avoidable [41]. Many of these
artifacts can be wrongly interpreted as real discontinuities in the reconstructed data,
thus it is important to reduce them either during the acquisition time (pre-processing
enhancement techniques, see for instance [42]) or after acquisition by means of sig-
nal and image processing methods (post-processing enhancement techniques). The
ulterior techniques aim at reducing noise and enhancing edges and contrasts in the
reconstructed data.

As will be elaborated in chapter 3, a first major difficulty encountered in ultrasound
imaging is the speckle noise. Speckle severely degrades the quality of ultrasonic
images, it especially blurs edges and details in the image. Additionally, it causes a
sort of granular texture appearing in the image.

Secondly, the speed of sound is considered to be constant inside the medium. Nev-
ertheless, changes in the speed of sound may occur depending on the characteristics
of the medium. The change in the speed of sound will provoke a distortion in the
appearance, shape and size of the structures being inspected [43, 44].

Thirdly, attenuation artifacts occur when a strong absorber (high reflector) is encoun-
tered (for instance a void), because it reflects the majority of the incoming waves.
Thus, the waves passing through the strong absorber are weakened. This has an
effect of shadowing appearing after the strong absorber (see figure 2.16).
Similarly, when a weak absorber is encountered within the imaging field, the ampli-
tude of the beam passing through it will be higher than the amplitude of the nearby
beam passing through the medium. Thus, the returning echo from the structures un-
der the weak absorber will be higher. This effect causes an increase in the intensity
of the received signal and is identified as a bright band extending from an object of
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Figure 2.16.: 3D view of a CFRP volume: the red upper box corresponds to the rever-
beration (ghost) artifact where the reflector appears at integer multiple
of the distance between reflector and the phased array. The lower green
box corresponds to shadowing. Notice the reverberations of reflectors
and that the boundaries of the reflectors are not clear due to speckle
noise influence.

low attenuation [41].

Fourthly, reverberation artifacts can appear in the reconstructed data when one or
more highly reflective structures are encountered in the path of the sound beam
including the probe itself (in case of a reflected wave). High reflectors produce a
series of closely spaced reflections [44]. The first reflection has the highest amplitude
appearing as the largest width, while the later received reflections uniformly decrease
in amplitude (this artifact is known as comet tail) [41]. In case of multiple reflections
between the reflective structure and the probe, ghost images of the structure appear
at a distance multiple to the real distance between the structure and the probe (see
figure 2.16). This type of artifacts appears when the depth of the inspected medium
is a multiple of 2 of the reflective structure depth [42].

Other type of artifacts may also appear: diffraction artifacts [45], guided wave arti-
facts [42], ring down [43], mirror images [41] and refraction. For instance, refraction
may occur when there is a change in direction of the ultrasound beam as it crosses
a boundary of two regions with different speed of sound. This causes errors in the
lateral position of structures [43, 44].

All these characteristic artifacts make the segmentation of ultrasound images a com-
plicated task. However, the quality of information from the ultrasound devices has
significantly improved over the last years. This has led to an increased use of ultra-
sound in NDT applications. Thus, there is currently an augmented interest in the
image segmentation task.
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2.5.2. Segmentation of ultrasound images

Diverse methods have been proposed to segment ultrasound images. Most techniques
are 2D techniques developed for B or C scans mainly because these modes are usu-
ally available on commercial systems [46]. Comparatively little work is done on the
segmentation of 3D ultrasonic volumes reflecting the lately rising use of 3D imaging
systems in practice.

Before starting to distinguish and categorize different techniques, it is useful to keep
in mind that most proposed segmentation approaches serve to address a specific
task. Moreover, a successful segmentation is strongly depending on the quality of
the available data. As proposed by Noble et al. [47], a good way to characterize
segmentation methods is to categorize them in terms of the prior knowledge that
they use in order to solve the segmentation task. Prior knowledge includes [47]:

• Intensity level distribution: where the intensity level distribution models in-
cluding Nakagami [48], Gamma [49, 50], Fisher-Tippett [51], Rayleigh [52, 53]
etc. are used in order to distinguish between different regions of interest.

• Image gradient: where the idea is to use the intensity gradient to localize bound-
aries of objects. To reduce the noise effect before gradient estimation, a filtering
is sometimes applied to the initial image. Due to the anisotropy of ultrasound
image acquisition, boundaries of real objects often have missing edges [46].
Thus, some authors propose to use local image phase [54, 55]. The argument
is that local image phase is more robust than intensity gradient in detection of
acoustic boundaries.

• Image texture: in ultrasound imaging image texture is dependent on different
factors. In fact, the wavelength, the structure of the medium and the distri-
bution of scatterers and their sizes relative to the wavelength produce different
texture patterns. Texture features can be statistical, structural, model based,
spectral based etc. Texture based segmentation algorithms were used, for in-
stance, in various clinical applications such as liver [56], prostate [57] and breast
[58] etc.

• Shape: knowledge here is based on model shapes which are built on sets of
training samples. It is embedded in the segmentation approaches (mainly active
contour approaches) in order to accurately detect boundaries yielding more
reliable results. The accurate detection of organs or objects from ultrasound
images plays a key role in many applications, especially in ultrasound medical
images segmentation and tracking (dynamic shape priors). This information
was largely and successfully used, for instance, in [59, 60, 61, 62, 63].

Next is presented a survey of some approaches to segment ultrasound images coming
from the medical community and industrial applications of ultrasound.
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Review of ultrasound image segmentation approaches in the medical
community

Clinical ultrasound application is well established in medicine field since it is safe,
produces dynamic images and is economic. It helps into viewing the actual function
of organs (echocardiography, liver etc.) and to determine diseases (breast cancer,
prostate etc.). Nevertheless, the interpretation of ultrasound data is not an easy
task, especially when the quality of the measured data is poor. For more than two
decades efforts have been made to improve image quality and advanced segmentation
approaches were proposed to help in the evaluation of measured data.

Proposed segmentation approaches are driven by the corresponding clinical applica-
tion which can for example be the location and tracking of organs or detection and
sizing of diseases. I consider the papers written by Noble [46] et al. [47] as good
references covering the main segmentation techniques applied to ultrasound images
in medical applications. Readers are also referred to [64] for a more recent review of
the special case of carotid plaque image segmentation.

Segmentation approaches can include one or more of the previously cited prior knowl-
edge. The mostly used techniques are to be cited here. Primary approaches to cite
are those based on active contours models. Their general idea is to find the con-
tour that minimizes the segmentation criterion which is in general a cost function
also called energy function. The initial contour is defined with a prior knowledge
in terms of shape, continuity, smoothness and it is then deformed according to the
image characteristics [65]. Two kinds of active contour models can be distinguished:
edge based and region based active contour models. Edge based segmentation models
typically use the information of an image gradient to locate the boundaries. Region
based segmentation models separate regions with different statistics [51] rather than
a local image gradient. Those methods are considered to be very well suited to pro-
cess noisy ultrasound images since object boundaries are not necessarily complete
in ultrasound images. Both edge based and region based active contour models can
be solved using level set introduced by [66]. This method has been used to segment
ultrasound data. Recent applications of level set based active contour can be found
in [51, 67, 68]. A major disadvantage of active contours models is the requirement
of a good initialization in order not to fall on local minima of the energy function.
Hence the segmentation result is sensitive to the initialization.

The second approach is a machine learning approach. The machine-learning seg-
mentation technique is more or less a classification approach. These techniques are
based on learning, done on a large dataset, where measured features (contrast, auto-
correlation, wavelet coefficients etc.) on each region of interest are used as input
to the classifier in order to distinguish the class of the region. Advanced machine
learning techniques are used; Kotropoulos et al. [50] applied Support Vector Machine
(SVM) on medical B-scans to distinguish between lesion and background. Artificial
Neural Networks (ANN) are as well used in region segmentation [59, 69, 70]. Pujol
et al. [71] used AdaBoost in Vascular diseases characterization. Yaqub et al. [72]
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applied Random Forests [73] to segment 3D ultrasound volumes. The machine learn-
ing approaches are able to solve problems that cannot be explicitly modeled like in
case of ultrasound image formation [47]. Their main drawback is the need of a large
learning database, and an adequate choice of input features.

Review of ultrasound image segmentation approaches in the industrial
community

In the industrial application of ultrasound, different techniques are used in order to
analyze the received signal (A-scans) and to segment the images (B or C scans). Some
methods applied on A-scans are considered because this mode is still widely used in
industrial inspection, especially in welds inspection. In the following the main ideas
being applied are resumed.

For A-scans of welds, Discrete Wavelet Transform (DWT) was used by Matz et al. [74]
to filter the A-scans while Short Time Fourier Transform (STFT) was used by Otero
et al. [75]. After features extraction, Matz et al. [74] applied SVM to distinguish
between the backwall echo, the signal with fault echo and the signal measured on
weld. Otero et al. [75] applied Clustering analysis to differentiate volume defects
from planar defects.

For B-scans of welds, texture measures and fuzzy-neural based classifiers were used
by Shitole et al. [76]. The authors did not give further details about the segmentation
and classification methods or the amount of data they used in their study, however,
they conclude that the developed neural-fuzzy classifier has given a promising perfor-
mance [76]. Zahran et al. [77] worked on backwall echo removal, texture analysis and
intelligent background removal to segment and classify defects in B-scans of welds.
Obtained results were shown for one example and the authors concluded that the
results were quite promising in terms of accuracy. Correia et al. [78] proposed an
interesting approach, where DWT is used to de-noise and compress the B-scan of
steel samples, then to build the Covariance matrix of level 2 decomposition DWT.
The authors showed that the diagonal elements of the covariance matrix could be
used as a reference pattern associated with the nature of the flaws spatial amplitude
distribution. Four types of reflectors were investigated: lack of fusion, crack, pores
cluster and non metallic inclusion. The experimental results obtained for lack of
fusion, non-metallic inclusion and crack were limited. However, pores cluster were
positively identified.

For C-scans of welds, Polikar et al. [79] and Spanner et al. [80] applied DWT to
extract coefficients used to train a Multilayer Perceptron (MLP) which automatically
segments and generates classification images. In [79], training was done on 106 C-
scans of welds with different defect types: cracks, lack of fusion, porosity and slags.
MLP gave a good classification performance with 99% defects classification. Never-
theless, results of validation, done on 50 C-scans, were reduced to 84%. As for [80],
the initial results obtained also on C-scans of welds (with cracks, counter bound and
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weld root defects) were promising, nevertheless no validation was reported. Mandal
et al. [81] used a similar technique for Glass Epoxy Composite containing delam-
ination caused by impact damages. The authors used time and frequency domain
features to generate C-scan images where the damage could be clearly visible. Peak
amplitude, Rise time and Fall time of the waveform were computed as time domain
features. Frequency domain features considered by the authors were the amplitudes
at different frequencies. Time domain features were used as inputs for Least Mean
Square (LMS) classifier to generate C-scans. Time domain and frequency domain
features were used separately by a Minimum Difference classifier to generate the C-
scans. The MD classifier performed better than the LMS classifier. In their work on
C-scans, Kieckhoefer et al. [82] proposed to work on the difference image obtained
by subtraction of a reference image from the original image. The reference image
was generated by filtering the original image. The method was tested on a limited
set of C-scan images of glass-fiber reinforced aluminum with known defects and was
able to detect all defects. Nevertheless, the obtained number of false detections was
considerable.

Cornwell et al. [83] proposed an automatic 3D inspection system for 3D ultrasound
images of welds. 3D images were reconstructed from A-Scans using CAD models of
test specimen. Concerning the evaluation process, a simple threshold on the ampli-
tude of voxels was applied to data containing low noise levels.

2.6. Conclusion

In this chapter, phased array and sampling phased array techniques were briefly
described. Afterward, the acquisition system and the inspection of CFRP components
were discussed. The last section was dedicated to present a review of ultrasound
data analysis techniques. Here the techniques were distinguished between image
segmentation methods applied in medical and methods used in industrial applications
of ultrasound. Main analysis approaches in the industrial applications are in 2D,
although 3D segmentation methods of ultrasound data were done in the medical field
(for specific applications, see references [84, 85, 86]). It can be globally said that
each proposed segmentation approach is dedicated each to a particular application.
However, classification methods (SVM, neural networks etc.) are extensively used.
In this work, a similar methodology will be followed.

In a matter of fact, a crucial point for the success of any segmentation method is the
quality of acquired data. The speckle noise heavily affects the quality of ultrasound
measures. Thus, next chapter has been specifically devoted to study the speckle noise
in SPA data.
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3.1. Introduction

Behind the formation of an ultrasound image are complicated physical phenomena.
When propagating inside a medium, ultrasound waves are subjected to non linear
attenuation and scattering by the medium’s micro-structures. In fact, scattering is
caused by small inhomogeneities in the acoustic impedance, which are randomly dis-
tributed in the three dimensional space of the medium. As a consequence, emitted
waves which were traveling in phase on their way to the scatterers are no longer in
phase after being back scattered. Due to the phase-sensitive detection of back scat-
tered waves interfering in the resolution cell of the transducer, an ultrasound image
is characterized by a granular pattern of white and dark spots. This phenomenon is
denoted speckle and is considered as a process which tends to degrade the resolution
and contrast of ultrasound images [87].

The speckle noise is assumed to have a multiplicative model and in most applications
it needs to be effectively reduced in order to have a successful automatic image seg-
mentation which is our case. Note, however, that it is not always desired to remove
speckle as its presence is critical to the success of some techniques such as speckle

31
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(a) (b)

Figure 3.1.: (a) SAR image of an agricultural region of Feltwell (U.K.) by a fully po-
larimetric PLC-band NASA/JPL airborne sensor (Image source: [94]).
(b) Ultrasound image using SPA technique of a CFRP component with-
out internal structure.

tracking [88, 89] and for many methods of ultrasound tissue characterization [46, 90].
Objectives of this chapter are to understand the origin of the speckle, to review the
models for intensity levels distribution (commonly referred to as speckle pattern) in
ultrasound images, to propose and investigate an empirical model for speckle in data
measured using the SPA technique. The last part of this chapter presents a review
on the main techniques used in speckle reduction.

3.2. Modeling the speckle

The modeling of the statistical properties of the speckle was a main query for many
scientific works. From a methodological point of view, either parametric or non-
parametric estimation strategies can be employed for this purpose [91]. Specifically,
our focus will be on the parametric modeling approach. Here, the principle idea is to
postulate a given mathematical distribution for the statistical modeling of ultrasound
images. Afterward, parameter estimation for the distribution is performed in order
to determine the statistical properties of speckle in images. The modeling process
forms a crucial task for specific image analysis purposes, for instance characterization
[92, 93] or classification [67, 49] of image regions. Parametric models can be organized
into two classes: theoretical and empirical models.

The theoretical parametric models are derived using a scattering model of waves.
On the opposite, empirical models are obtained by directly fitting a model to the
experimental values, without any assumption of physical concepts.

Moreover, it is useful to note that similarities exist between the images obtained
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by Synthetic Aperture Radar (SAR) and ultrasound techniques where their main
characteristic is the appearance of speckle grains giving them a noisy appearance.
This explains the reason why established speckle models in SAR are as well applied
for speckle modeling in ultrasound images (see figure 3.1).

On another hand, the speckle problem is well investigated in the medical field (on
radio frequency signal and image levels). However, much less work has been done
to characterize the speckle in industrial data. Indeed, the micro-structures are com-
pletely different between a CFRP, a fiber glass and a human carotid arteries or liver
for example. A question poses itself: are speckle models proposed for medical ultra-
sound data valid for industrial data as well?

Thus, and independently of the application’s type, the next section is devoted to
present a review of theoretical parametric models of speckle.

3.2.1. Theoretical parametric models of speckle

Let a resolution cell (also called range cell) of a transducer correspond to the smallest
resolvable detail [95]. Moreover, consider a scatterer i which is randomly located
inside the waves propagation medium. The back scattered echo Λi from the scatterer
i is characterized by an amplitude αi ≥ 0 and a phase φi. It can be expressed as:

Λi = αi · exp(j(ω0(t) + φi(t))) (3.1)

where ω0 ≥ 0 is the angular frequency of excitation and j =
√
−1 is the imaginary

number.

In the case when Ns scatterers, Ns ∈ N, interfere in the same resolution cell, the back
scattered echoes in the cell can be expressed as [96, 97]:

Λ =
Ns∑
i=1

αi · exp(j(ω0(t) + φi(t))) = <(Λ) + j · =(Λ) (3.2)

where <(Λ) is the real part and =(Λ) is the imaginary part of the complex back
scattered echo Λ.

Consequently, the interference of the back scattered echoes can be constructive or
destructive according to each particular repartition of scatterers. If interference is
mainly constructive then the intensity in the resolution cell will be high. In case of
mainly destructive interference, the intensity will be low. The envelope of the back
scattered echo EΛ is given by:

EΛ =
√
<(Λ)2 + =(Λ)2 (3.3)

Speckle is explained as an interference phenomenon between all the back scattered
echoes interfering in the same resolution cell. Therefore the size of speckle granules
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is about the same as the resolution of the transducer both in longitudinal and lateral
direction [95]. Additionally, note that the speckle size is not only dependent on the
transducer’s characteristics, but varies with the scatterers density as well [98].

In the modeling process, the following hypotheses are usually considered to be fulfilled
[99, 100, 101]:

• The amplitude of the back scattered echo from each scatterer is considered to be
deterministic and the phase is considered to be uniformly distributed in [0, 2π[.

• The number of scatterers is large enough so that each resolution cell contains
sufficient scatterers (Ns ≥ 10 [102]).

• The scatterers are independent and there is no single scatterer dominating inside
the resolution cell.

Under the above cited hypotheses and according to the central limit theorem [103],
in case of a large number of randomly located scatterers (figure 3.2a), the scatter is
fully developed. In this case, the real and imaginary parts of Λ are Gaussian, thus,
EΛ follows a Rayleigh distribution [95, 104, 105]. The probability density function
(pdf) of Rayleigh distribution is given by:

PR(s, β) =
s

β2
· exp

(
− s2

2β2

)
(3.4)

where s ≥ 0 is the intensity value in the range cell of the transducer (also called local
brightness in [47]) and β > 0 is the scale parameter.

Nowadays, with the advent transducers emitting high frequency waves, it is possible
to obtain high resolution ultrasound images. Due to the increased resolution, the
number of reflectors per cell is reduced. Note that the back scattering characteristics
of a scatterer are depending on its dimensions relatively to the wavelength of the
ultrasound [106, 107]. Hence, the fundamental assumption of fully developed speckle
is no longer valid. Consequently, the Rayleigh distribution tends to fail in modeling
the speckle distribution in ultrasound data.

As alternative, in case of non-fully developed scatter1, Shankar [96] proved that the
envelope EΛ will be Rician distributed. This model is considered to be appropriate
in case of regular repartition of scatterers that might, for instance, account for regular
structures or quasi periodic scatterers in the medium (figure 3.2b). The pdf of Rician
distribution is given by:

PRician(s, β, ν) =
s

β2
· exp

(
−s

2 + ν2

2β2

)
· I0

(
sν

β2

)
(3.5)

I0(·) is the modified Bessel function of the first kind of order zero defined as:

I0

(
sν

β2

)
=

1

π

∫ π

0

exp

(
sν

β2
cosα

)
dα (3.6)

1Case of few scatterers.
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where s > 0, β > 0 and α ∈ [0, π].

The parameter ν > 0 is considered as specular component which is added to the
Rayleigh pdf. Thus, when ν is null, the Rician distribution is reduced to a Rayleigh
distribution.

(a) (b)

Figure 3.2.: (a) Array of randomly located scatterers. (b) Regular array (similar to
CFRP structures).

Jakeman et al. [108] proposed to use K-distribution as a model for a weak scattering
condition which corresponds to a small number of scatterers. The pdf of the K-
distribution is given by:

PK(s, β,Ns) =
2β

Γ(Ns + 1)
·
(
βs

2

)Ns+1

·KNs (βs) (3.7)

In this equation, β > 0 is a scaling factor, Ns > −1 is the number of scatterers in
the resolution cell and KNs(·) represents the modified Bessel function of second kind
and order Ns:

KNs(βs) =

∫ ∞
0

cosh(Nst) exp(−βs cosh t)dt (3.8)

where t ∈ [0,∞) and s ≥ 0.

The function Γ(.), known as gamma function, is a generalization of factorial function
to non integer values n and defined by:

Γ(n+ 1) =

∫ ∞
0

tne−tdt (3.9)

where t ∈ [0,∞). In case of integer values, Γ(n) is reduced to be n!.

In [96], the author proposed a simpler model called the Nakagami distribution in order
to model the speckle in ultrasound data. This distribution is derived from the basic
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assumption of a Gaussian model for the back scattering phenomena. According to
the study done by Shankar et al. [96], Nakagami distribution is claimed to be suitable
for modeling almost all scattering conditions. The pdf of the Nakagami distribution
is defined as:

PN(s, ν,Ω) =
2ννs2ν−1

Γ(ν)Ων
· exp

(
−νs

2

Ω

)
(3.10)

where ν ≥ 1
2

is the Nakagami shape parameter and Ω > 0 is a scaling factor. When

ν = 1, the Nakagami pdf is equivalent to a Rayleigh pdf: PN(s,Ω) =
s

Ω
· exp

(
−s

2

Ω

)
where Ω = 2β2. Nakagami pdf becomes Rician for ν > 1.

Further investigations on modeling the statistical properties of the received echo sig-
nal and more complex models have been proposed to take into account different
scatterer conditions. Among these models are the generalized K-distribution [109],
the homodyned K-distribution [110] and the Rician inverse of Gaussian distribution
[111]. Anastassopoulos et al. [112] proposed the generalized Gamma distribution
(GΓD) [113, 114] to model the characteristics of radar clutter. In their study [112],
the authors proved and validated that the pdf of GΓD distribution performs better
than K-pdf and can model the speckle and the modulation component of the radar
clutter (speckle) in case of a high resolution radar. The GΓD pdf is given by:

PGΓD(s, β, ξ, ν) =
ξ

βΓ(ν)
·
(
s

β

)ξν−1

· exp

(
−
(
s

β

)ξ)
(3.11)

In this equation β > 0 is the scale parameter, ν > 0 is the shape parameter and ξ > 0
is the power of GΓD [112]. GΓD forms a general model. Standard models commonly
used in modeling SAR data, like exponential (ξ = 1, ν = 1), Rayleigh (ξ = 2, ν = 1),
Nakagami (ξ = 2), Weibull (ν = 1), and gamma pdf (ξ = 1) are special cases of the
GΓD.

Assuming that the real and imaginary parts of the back scattered signal are indepen-
dent zero-mean generalized Gaussian, Moser et al. [97] introduced the Generalized
Gaussian Rayleigh distribution (GGR) with a pdf given by:

PGGR(s, β, ν, α) =
β2ν2s

Γ
(

1
ν

)2 ·
∫ π

2

0

exp [− (βs)ν · (| cosα|ν + | sinα|ν)] dα (3.12)

where β > 0 is a scaling factor, ν > 0 is a shape factor dealing with the sharpness of
the pdf and α ∈ [0, π/2[.

The effectiveness of the proposed GGR model was validated on SAR images [97]. The
pdf of GGR gave a higher correlation value with the histogram of the SAR images
compared to other probability density functions (pdfs) of: the Nakagami, Skewed α
Stable (SαS) generalized Rayleigh [115, 116, 117] and K-distributions. Note that
SαS statistical model was applied by Kappor [118] to describe woodland regions in
ultra-wideband synthetic aperture radar images, where it was shown that it provides
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a better fit to the tails of the clutter amplitude distribution than the Gaussian or
K distribution. Similar work was done by Banerhee [119] where the authors proved
that SαS statistical model provides better segmentation and detection results when
compared to Gaussian models.

To summarize, theoretical models are usually derived from the analysis of the acoustic
physics and the information available of the ultrasound transducer [120]. However,
as stated by Tao et al. [49], these models only give the speckle probability density at
the transducer. The density has to be transformed into speckle density in the image.
This task is complicated for two reasons. First, the transducer signal passes through
different signal processing stages such as amplification and interpolation etc. before
its presentation as an image. Propagating the density through the complex signal
processing chain is difficult [49]. A second reason is that the complete information
during the acquisition process is not always available. A common method to avoid
these difficulties is to use empirical pdfs which can be accurately fitted to the speckle
in the image.

3.2.2. Empirical models of speckle

For P , S, T ∈ N, let ΩP,S,T ⊂ N3 be a set of coordinates defined as:

ΩP,S,T = {(x, y, z) ∈ N3 : 1 6 x 6 P ; 1 6 y 6 S; 1 6 z 6 T}

where P , S and T are respectively the dimension of the volume’s grid.

Let u denote a ultrasound noisy volume2 defined as a mapping from ΩP,S,T to R+:

u : ΩP,S,T −→ R+

(x, y, z) 7−→ u(x, y, z)

where u(x, y, z) ∈ R+ is the noisy intensity observed at coordinates (x, y, z). For
simplicity reasons, u(x, y, z) will be only written as u in the pdfs of table 3.1.

Several empirical models have been reported for modeling the speckle in ultrasound
images. These models are validated on the actual ultrasound images by measuring
the goodness of fit of the model to the actual data distribution. Thus, results are
completely data-dependent and cannot be considered as general models valid for other
types of data.

In general, many applied models in ultrasound speckle characterization are taken from
SAR speckle studies. These models include Gamma [99, 121], Weibull [99, 122, 123]
and Lognormal [124, 125] distributions (see table 3.1).

Vegas-Sanchez-Ferrero et al. [120] studied the distribution of fully developed speckle
noise by comparing the goodness of fit of ten families proposed in the literature.

2An array or an image are special cases of a volume.
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The work was done on 120 clinical cardiac ultrasound images. The compared pdfs
were for: Gamma, Lognormal, Rayleigh, Normal, Nakagami, Beta, Rician Inverse
Gaussian [111], Rice, Exponential and K-distribution. The authors used χ2 goodness
of fit test and concluded that the pdf of Gamma distribution fits at best the speckle
noise.

Tao et al. [49] compared the validity of four families of distribution of the speckle
noise on clinical cardiac ultrasound images: Gamma, Weibull, Normal and Lognormal
[126, 127]. The pdf of the Gamma distribution was found to have the best fit to the
data and classified blood and tissue at a low misclassification rate. The authors
used Rao-Robson [128] statistic to measure the goodness of fit and the generalized
likelihood ratio test to classify regions into tissue and blood.

The pdf of Fisher-Tippett distribution was proposed by [102, 129] as a model for fully
formed speckle in log-compressed ultrasound images. In fact, in ultrasound imaging
log-compression is often applied to the amplitude of the received echoes in order to
adjust their values to fit in the 8 bits digitization dynamic range [106].

In their recent contribution, Li et al. [130] proposed to use the pdf of the Generalized
Gamma distribution GΓD to empirically model SAR images data distribution. The
authors compared the pdf of GΓD distribution with Weibull, Nakagami, K, Fisher
[131], GGR [97] and Generalized Gamma Rayleigh GΓR [94] pdfs. The obtained
qualitative (visual comparison) and quantitative results proved that, in most cases,
the pdf of GΓD provided better performance in fitting SAR image data histograms
than the majority of the previously developed parametric models.

Although empirical models are used in many segmentation approaches, c.f. [47, 46]
for extensive surveys, authors often assume that speckle is Rayleigh, Gamma [121,
132, 133, 134] or Fisher-Tippett [135] etc. distributed, without proving the validity
of this assumption.

In the next section, the focus will be on finding the model which fits the speckle in
SPA volumetric data.

3.3. Speckle distribution in SPA data

The speckle degrades the quality of the reconstructed SPA volumes and it is important
to study it in order to have more knowledge about its statistics. The aim is to find
the model that fits at best the speckle affecting the data measured with the SPA
technique.
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Model Probability density function Parameters

Weibull p(u) =
ν

β
uν−1 exp

(
−u

ν

β

)
ν: shape

α, β > 0 β: scale

Normal p(u) =
1

β
√

2π
exp

(
−(u− µ)2

2β2

)
µ: location

µ ∈ R, β > 0 β: scale

Lognormal p(u) =
1

uβ
√

2π
exp

(
−(ln(u)− µ)2

2β2

)
µ: location

µ ∈ R, β > 0 β: scale

Gamma p(u) =
1

Γ(ν)βν
uν−1 · exp

(
−u
β

)
ν: shape

ν, β > 0 β: scale

Fisher-Tippett Y = ln(X), PX(u) = u
β2 exp

(
− u2

2β2

)
β: scale

PY (ρ) = 2 exp ([2ρ− ln(2β2)]− exp ([2ρ− ln(2β2)]))
X: magnitude image, Y : log of X ρ ∈ R , β > 0

Table 3.1.: Probability density functions used in modeling speckle in SAR and ultra-
sound images. Note that u is used as abbreviation (to simplify the pdf for-
mulas) for the intensity at voxel (x, y, z) in the volume u and u(x, y, z) ≥ 0.

3.3.1. Proposed model

From a methodological point of view, the parametric approach for noise distribution
statistical analysis will be followed. Here, the Four-Parameters Generalized Gamma
(4P-GΓD) distribution is proposed to model speckle in SPA data. Its pdf is defined
as:

PGΓD(u(x, y, z), β, ξ, ν, γ) =
ξ

βΓ(ν)
·
(
u(x, y, z)− γ

β

)ξν−1

·exp

(
−
(
u(x, y, z)− γ

β

)ξ)
(3.13)

where u(x, y, z) ∈ [γ,+∞[ is the intensity value, β > 0 is the scale parameter, ν is
non null and represents the shape parameter, ξ > 0 is the power of GΓD and the
new parameter γ ∈ R is the translation parameter. Note that for γ = 0 the model is
reduced to the original model of the GΓD [113, 114].

The proposed 4P-GΓD model is compared with the following commonly used pdfs to
model speckle in ultrasound images: Gamma, Lognormal, Inverse Gaussian, Weibull,
Rayleigh, Rice, Nakagami and Normal. In addition, the translation parameter γ
was introduced into each of the previously cited pdfs. For instance when introduc-
ing a translation parameter to the original Gamma distribution, the newly obtained
distribution will be:

p(u(x, y, z)) =
(u(x, y, z)− γ)ν−1

Γ(ν)βν
· exp

(
−u(x, y, z)− γ

β

)
(3.14)
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Type Original volume dimensions [x, y, z] Extracted volume dimensions [x, y, z] Voxel size [mm3]
CFRP [316, 301, 341] [100, 113, 92] [1, 1, 0.05]

Aluminum [841, 171, 951] [761, 133, 101] [1, 1, 0.05]
Ceramic [379, 95, 301] [291, 81, 41] [1, 1, 0.05]

Table 3.2.: Speckle noise study conducted on three different materials: CFRP, alu-
minum and ceramic.

In order to apply the 4P-GΓD (also applies for the other pdfs) as a model for SPA
data, it is mandatory to estimate the pdf parameters β, ξ, ν and γ from the exper-
imental data. In fact, in parametric modeling, the pdf estimation problem can be
formulated as a pdf parameters estimation problem [97]. Several strategies have been
presented in the literature to solve parameters estimation. The standard methods
include the maximum likelihood (ML) [99, 91] and the method of moments (MoM)
[136]. More explanation about different parameters estimation methods of pdfs can
be found in [137]. As for the estimation of pdfs used in this study, robust param-
eter estimation using ML estimate is obtained by using EasyFit tool provided by
MathWave [138].

Quantitative measure of the goodness of fit is obtained using the Kolmogorov-Smirnov
(K-S) statistic. The K-S statistic is a well known distance measure commonly adopted
for the study of goodness of fit [112, 139, 140]. It is a simple measure based on the
largest vertical difference D between the empirical (i.e., experimental) cumulative
distribution function (ecdf) SQ(s) of a dataset and the known cumulative distribution
function (cdf) F (s).

D = max
−∞<s<+∞

|SQ(s)− F (s)| (3.15)

Remind that the cdf of a real random variable λ, with a given pdf pλ, is the probability
that λ takes a value less than or equal to s: F (s) = pλ(λ 6 s). Moreover, the ecdf can
be defined as follows: let λ1, · · · , λQ be Q data points from a common distribution

with cdf S(s), the ecdf is defined as: SQ(s) =
1

Q

∑Q
i=1 I(λi 6 s) where I is the

indicator function (I=1 if λi 6 s and I=0 if λi > s). Small K-S distance D indicates
a better fit of the particular pdf to the experimental data.

3.3.2. Experimental results

Experiments are reported on three reference volumes, without defects, extracted from
original volumes which contain defects. The considered original volumes are: a CFRP
volume, an aluminum volume and a ceramic volume (see table 3.2). Intensity values
in the three volumes are encoded on unsigned 16 bits.

Figure 3.3a illustrates (on a layer) the selection of the reference volume (without
defects) from the original volume. The obtained reference volume is presented in
figure 3.3b and its dimensions are reported in table 3.2.
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(a) (b)

Figure 3.3.: (a) xy view of a layer in the CFRP original volume, the red rectangle
represents the zone which is selected as a reference in this layer. (b)
Reference volume extracted from the original 3D volume.

(a) (b) (c)

Figure 3.4.: One example layer extracted from the reference volume of a) CFRP, b)
aluminum and c) ceramic.

For visual comparison of speckle in the considered materials, one layer of respectively,
CFRP, aluminum and ceramic reference volumes is presented in figure 3.4.

In order to assess the effectiveness of the proposed parametric pdf, the different
pdfs for each reference volumes are estimated. Evaluation of the estimation results
are presented both: qualitatively by means of a visual comparison between the top
ranked estimated pdfs and the data distributions (reference volume intensity lev-
els histograms) and quantitatively by the K-S goodness of fit values between fitted
distributions and the experimental data.

Speckle in CFRP material: in case of CFRP material, the quantitative measure
K-S suggests that the best fit for the intensity values distribution in the reference
volume is given by the pdf of the 4P-GΓD distribution with a K-S value of 0.003
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4P-GΓD

Figure 3.5.: Plot of the volume’s normalized histogram and of the best four estimated
pdfs: for the CFRP reference volume. Note that the number of bins is
equal to the number of intensity values in the reference volume.

(see table 3.3). Moreover, a visual comparison in figure 3.5 between the normalized
histogram and the plots of the top four best estimated pdfs illustrates the result
obtained based on the quantitative measure.

Speckle in aluminum material: the analysis of the speckle in the aluminum ref-
erence volume reveals that the pdf of 3P-Lognormal fits at best the intensity values
distribution in the volume. In the second rank comes the 4P-GΓD. Table 3.4 resumes
the complete quantitative results obtained for all the considered pdfs. For a visual
comparison see figure 3.6.

Speckle in ceramic material: lastly, the speckle in the ceramic reference volume is
investigated. Table 3.5 reports the K-S distances measured between the experimental
data and the pdfs. As it can be noticed, the K-S distance obtained for the fitted pdf
of the 4P-GΓD distribution is the smallest. In the second rank comes the pdf of the
3P-Lognormal distribution. This is also visible in figure 3.7, it can be seen that the
pdf of the 4P-GΓD distribution tracks the evolution of the intensity values histogram
better than other pdfs. However, it can be noticed that the histogram is not very
well fitted by none of the pdfs.

Different conclusions can be drawn from the obtained results. Based on the quali-
tative and quantitative measures, there is a clear evidence that the speckle in high
resolution SPA data exhibit a non-Rayleigh behavior. The reason is that, with the
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Parametric model K-S distance Rank
4P-GΓD 0.003 1

3P-Gamma 0.006 2
3P-Inv.Gaussian 0.008 3
3P-Lognormal 0.01 4

Gamma 0.0138 5
GΓD 0.0157 6

Lognormal 0.0188 7
Inv.Gaussian 0.022 8
2P-Rayleigh 0.0313 9
3P-Weibull 0.032 10

Weibull 0.042 11
Rice 0.065 12

Rayleigh 0.066 13
Normal 0.073 14

Nakagami 0.079 15

Table 3.3.: Values of the K-S distance obtained using the different pdfs to model
speckle in the CFRP reference volume.

4P-GΓD

Figure 3.6.: Plot of the volume’s normalized histogram and of the best four estimated
pdfs: for the aluminum reference volume.
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Parametric model K-S distance Rank
3P-Lognormal 0.005 1

4P-GΓD 0.007 2
Lognormal 0.008 3
3P-Gamma 0.01 4

GΓD 0.0137 5
Gamma 0.0141 6

Nakagami 0.0305 7
Normal 0.0434 8

3P-Inv.Gaussian 0.0436 9
Inv.Gaussian 0.0439 10

Rice 0.0505 11
3P-Weibull 0.055 12

Weibull 0.06 13
Rayleigh 0.248 14

2P-Rayleigh 0.267 15

Table 3.4.: Values of the K-S distance obtained using the different pdfs to model
speckle in the aluminum reference volume.

4P-GΓD

Figure 3.7.: Plot of the volume’s normalized histogram and of the best four estimated
pdfs: for the ceramic reference volume.
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Parametric model K-S distance Rank
4P-GΓD 0.0214 1

3P-Lognormal 0.0264 2
3P-Gamma 0.0273 3

Gamma 0.0317 4
GΓD 0.034 5

Inv.Gaussian 0.036 6
3P-Weibull 0.055 7

Weibull 0.055 8
Lognormal 0.0623 9

Normal 0.066 10
Rice 0.068 11

3P-Inv.Gaussian 0.101 12
Nakagami 0.109 13
Rayleigh 0.111 14

2P-Rayleigh 0.128 15

Table 3.5.: Values of the K-S distance obtained using the different pdfs to model
speckle in the ceramic reference volume.

increase of resolution, the hypothesis that each resolution cell contains a sufficient
number of scatterers is not satisfied, therefore the central limit theorem cannot be
invoked. The same remark applies for the Nakagami models which could not be the
best fit to the SPA data. It was noticed that the pdf of the Rician distribution gave a
better performance than the original Rayleigh’s pdf (without the translation param-
eter). A possible explanation is that the Rician model was initially proposed for the
case of non-fully developed scatterers. Nevertheless, it was not top ranked. Other
models including Weibull/3P-Weibull, Inv.Gaussian and Normal models could not
successfully provide the best fit to the speckle in SPA data. On the contrary, the pro-
posed 4P- GΓD performed best for the CFRP and ceramic volumes, although it was
slightly inferior to the 3P-Lognormal model for the aluminum volume. Thus, it can
be seen that the speckle distribution depends on the material type, since the obtained
best fitting model for CFRP and aluminum are not the same. Indeed, the visual ap-
pearance of the speckle in the layers at figure 3.4 is different from one material to
another. The reason is because each material has a specific internal micro-structure.

To sum up, the 4P-GΓD could, in all cases, successfully track the statistical properties
of the SPA volumetric data. Visual and quantitative results proved that, in case of
CFRP and ceramic volumes, the 4P-GΓD provided better performance than all other
parametric models. Although, in case of the aluminum SPA volume, it was not the
best, it had still achieved the second rank after the 3P-Lognormal.
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NL Fitting parametric model ξ ν β γ
1 4P-GΓD 1.522 2.311 2408 501.38
2 4P-GΓD 1.568 2.067 2695 467
3 4P-GΓD 1.685 1.767 3107 481.8
4 4P-GΓD 1.739 1.643 3237 486.16
5 4P-GΓD 1.637 1.81 2978 430.8
6 4P-GΓD 1.535 1.912 2691 432.6
7 4P-GΓD 1.378 2.241 2204 433
8 4P-GΓD 1.241 2.674 1727 432.6
9 4P-GΓD 1.151 3.108 1385 431.8
10 4P-GΓD 1.096 3.415 1185 431.7
92 4P-GΓD 0.823 5.32 334.7 289.35

Table 3.6.: Variation of the fitting parametric model and its estimated parameters
with the increase of the amount of considered layers.

Influence of the number of layers on the noise distribution

The above mentioned speckle modeling results were conducted on volumetric 3D SPA
data. The aim now is to investigate how the estimated pdf varies with the variation
of the number of layers inside the reference volume. The investigation is carried out
on the CFRP reference volume. Let NL be the number of layers inside a volume. By
increasing NL, the number of voxels inside the volume will be incremented. NL was
varied between 1 and 10, and the estimated best ranked pdf was found for each value
of NL.

When NL = 1, the first layer of the reference volume is considered, the pdf of the
4P-GΓD distribution remained the best fit to the data. Then the number of layers
NL in depth z direction was increased to 2 until 10. The obtained results are shown
in table 3.6. As it can be noticed, all parameters ξ, ν, γ and β vary with the number
of layers considered due to the change in the intensity values statistics reflecting a
change in the speckle noise (see figure 3.8). Nevertheless, the pdf of the 4P-GΓD
stayed ranked first. Therefore, it represents a stable and accurate model for the
speckle in our CFRP SPA data.

After the study of speckle modeling and the investigation of speckle noise in SPA
data, the next section is devoted to present a survey of applied methods for speckle
noise reduction which represents a key step in many segmentation approaches.

3.4. Speckle noise reduction

The estimation of the speckle noise allows to find a mathematical model that fits
intensity levels in the image. Another kind of modeling is necessary to relate the
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Figure 3.8.: Influence of the number of layers NL on the fitting model to speckle in
the CFRP SPA data: volumes are shown for NL = 1 (a), NL = 5 (c) and
NL = 10 (e). The corresponding plots, respectively (b), (d) and (f), of
the normalized histogram and the best estimated pdf reveal that the pdf
of the 4P-GΓD distribution still provides the best fit for the data. This
is despite the variation in intensity values statistics and thus histogram
shapes between NL = 1, 5 and 10.
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noisy image to the ideal free noise image. If available, this model should theoretically
allow to restore the noise free intensities from the experimental ones.

In the literature, two models were proposed to take into account the characteristics
of speckle noise which is considered to be a multiplicative noise. The first model
presented by Jain [141] is:

u(x, y, z) = v(xi) · εm(x, y, z) + εa(x, y, z) (3.16)

where v is the noise free image, εm is the multiplicative noise (i.e., the speckle noise)
and εa is the additive noise. Note that the effect of additive noise (such as sensor
noise) is considerably small compared with that of multiplicative noise [142, 143].

The second model is more recent and used by [144, 145, 146, 147, 148] in which the
general speckle model is given by:

u(x, y, z) = v(x, y, z) + vψ(x, y, z) · η(x, y, z) (3.17)

where η is a zero-mean Gaussian noise and ψ ∈ R is a factor depending on the
ultrasound devices and additional processing related to image formation. This model
is more flexible and less restrictive than the first model and is able to capture reliably
image statistics [148].

Now, returning to the speckle noise reduction, filtering techniques are used to reduce
the noise level while preserving details in the ultrasound image. This process is called
image enhancement. Filtering techniques can be generally separated into two different
categories: spatial domain- and transform-domain-based filtering techniques.

3.4.1. Spatial domain filtering techniques

The spatial domain techniques are based on the image statistics. They attempt
to balance between speckle reduction and details preservation via filtering. Spatial
domain filtering can be expressed as:

ṽ(x, y, z) = g(u(x, y, z)) (3.18)

where ṽ is the filtered image, ṽ(x, y, z) is the new value of u(x, y, z) and g(·) is an
operator on the noisy image u defined over some neighborhood of voxel at coordinates
(x, y, z). In fixed filtering, a mask B(x, y, z) of a specific size (defining the neighbor-
hood of voxel at (x, y, z)) is moved over the complete image. At each iteration, the
central value of the mask will be replaced by the result of the function g applied (i.e.
convolution for linear filters, partial sorting for median filter etc.) on the intensity
values of the pixels in the mask B.

In adapted filtering, largely used in ultrasound image enhancement, the weights and
size of filters are determined according to the image local statistics and position inside
the image. Early works included classical filters: Lee filter [149], Kuan filter [150] and
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Frost filter [151]. These filters consider the multiplicative noise model and include the
use of linear minimum mean square error. Their main advantage is that, they are easy
to implement and could to a certain degree reduce the speckle noise. Nevertheless,
many details in the image are lost, especially weak and diffuse edges.

An adaptive Median filter was also used for speckle reduction by Loupas et al. [152]
and Karaman et al. [153]. This non linear filter can effectively reduce the speckle
but many useful details are lost. Wiener filter is as well used to reduce the speckle
noise [154], nevertheless, this filter is developed mainly for reducing additive random
noise. To address this issue, Jain [141] proposed to convert the multiplicative into
an additive noise by taking the logarithm of the image, and consequently apply the
Wiener filter.

Yu and Acton [155] proposed an anisotropic diffusion filtering method based on
Lee filter called Speckle Reducing Anisotropic Diffusion (SRAD). Aja-Fernandez and
Alberola-Lopez [156] modified the SRAD filter to rely on the Kuan filter rather than
the Lee filter. They call this modified approach the Detail Preserving Anisotropic
Diffusion (DPAD).

Krissian et al. [145], [157] extended the SRAD filter to a matrix anisotropic diffusion,
allowing different levels of filtering across the image contours and in the principal
curvature directions. In their contribution, the authors showed a relation between
the local directional variance of the image intensity and the local geometry of the
image. Thus, this filter takes into account the local image geometry.

Sheng et al. [143] proposed an approach based on Total Variation (TV) minimization
for speckle suppression. Tay et al. [158] proposed a stochastically driven filtering
method called Squeeze Box Filter (SBF) method to despeckle B-scans. This method
iteratively removes outliers and reduces local variance at each pixel. The main draw-
back of this method is that it smooths the edges. Nevertheless, it effectively reduces
the speckle noise in the image. Thangavel et al. [159] compared 16 different noise re-
moving algorithms applied to medical ultrasonic images of prostate. Results showed
that a hybrid filter of the mean and the median filters (M3 filter) performed better
than others filters.

Buades el al. [160] introduced a new filtering method based on the redundancy prop-
erties inside images: the Non Local Means filter (NL-means). This method is based
on the idea that in any image, pixels (or voxels) with similar values exist which are not
necessarily direct neighbors (like in conventional filtering approaches). The NL-means
filter was extensively studied, updated and successfully used in many contributions
(see [161, 162, 163, 164, 165]). This filter was updated by Coupé et al. [166] to the
Optimized Bayesian NL-means and applied to Magnetic Resonance Imaging (MRI)
[166] and ultrasound data [148]. Compared to other well established filtering methods
[148], the NL-means and Optimized Bayesian NL-means filters proved quantitatively
to be much more efficient at speckle noise reduction and are qualitatively considered
to relatively preserve edges.
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3.4.2. Transform-domain filtering techniques

Transform domain techniques are based on the transformation of the original im-
age into another domain in order to take advantages of certain image characteristics
which are not seen in the original domain. In fact filtering in transform domain,
namely in frequency domain, can be more effective than in the original domain. For
example, when transformed into frequency domain, via Fourier transform, smooth
regions of the image will correspond to low frequency components while image de-
tails, edges and noise will appear as high frequency components. Frequency based
transform filtering techniques are well reputable and demonstrated remarkable per-
formance improvements [167]. Other commonly applied techniques are wavelet based
speckle reduction methods [168, 169]. Wavelet transform based methods saw exten-
sive usage in ultrasound image despeckling; Some applications of Wavelets on medical
ultrasound images can be found in [170, 171, 142].

Hence different approaches have been used to reduce the speckle noise but none of
these methods includes an explicit usage of the noise distribution model in the filtering
process. It seems that the most successful filtering approaches are the data-dependent
approaches, which aim at reducing the influence of the neighboring voxels dissimilar
to the voxel under study by exploiting the redundancy that appears in the image
(such as the NL-means filter approach which will be detailed in paragraph 4.2.4 of
chapter 4).

3.5. Conclusion

In this chapter, a review concerning the speckle noise in ultrasound data was pre-
sented. First, an examination of different theoretical and empirical techniques for
speckle modeling in SAR and ultrasound images was conducted. Then, the speckle
noise in SPA data was investigated. An extension of the original pdf of the GΓD
distribution was proposed to model speckle in SPA data. Experimental results were
reported for three different materials: CFRP, ceramic and aluminum.

Although the 4P-GΓD model is in most cases the best fit to the experimental data,
nevertheless it was shown (for the aluminum specimen) that the fitting model is
not the same for all materials types. Thus, the model is dependent of the material
micro-structure. Since the ultrasound technique can be used to inspect a wide range
of materials, the preference in this work is not to further use the speckle model
because an analysis chain with minimal prior knowledge about the inspected material
is required.

The last part of this chapter was devoted to review the main approaches followed to
reduce speckle noise in ultrasound images. The most promising results seem to be
given by filters which explore the redundancy in images.



4. Proposed method for automated
segmentation and classification of
SPA data

Contents
4.1. Analysis chain . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2. Segmentation procedure . . . . . . . . . . . . . . . . . . . 52

4.2.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.3. Data correction . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.4. Data enhancement . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.5. Detection of entrance and backwall layers . . . . . . . . . . 63

4.2.6. Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.7. Features extraction . . . . . . . . . . . . . . . . . . . . . . . 70

4.3. Classification procedure . . . . . . . . . . . . . . . . . . . 73

4.3.1. Basic concept and definitions . . . . . . . . . . . . . . . . . 74

4.3.2. Information combination . . . . . . . . . . . . . . . . . . . . 76

4.3.3. Data fusion classification . . . . . . . . . . . . . . . . . . . 77

4.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

This chapter introduces the analysis chain proposed to evaluate the information con-
tained in the 3D ultrasound volumes. The next section will give an overview on the
analysis chain. In section 4.2, detailed explanations of each step of the segmentation
procedure are presented. The classification procedure is then detailed in section 4.3.

4.1. Analysis chain

As presented in figure 4.1, the proposed analysis chain is composed of two procedures:
segmentation and classification. The input of the chain is a 3D ultrasound volume
produced by the acquisition system. The output of the chain is a list of defects where
each defect is described by geometrical and intensity based features.
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Figure 4.1.: Flow chart of the proposed analysis chain.

The objective of the segmentation procedure is to locate and characterize suspicious
regions by a list of features. A major difficulty in ultrasound image segmentation
is the presence of speckle noise distributed all over the volume. The compromise is
to detect fine defects without noise detection. Another difficulty is the detection of
defects located near the entrance and backwall (or end) layers. Strong echoes reflected
from the surface and the backwall of the inspected specimen can hide information
obtained from reflections by nearby discontinuities.

Thus, the number of suspicious regions after segmentation can be high. Therefore, a
classification procedure is necessary to distinguish the appropriate type (true or false
defect) of each region.

4.2. Segmentation procedure

4.2.1. Overview

The proposed segmentation procedure is resumed in figure 4.2. Besides the thickness
estimation by the detection of entrance and backwall layers, the main characteristic of
the segmentation procedure is a reference-less inspection, i.e. there is no need for any
a priori knowledge of the geometry of the specimen. However, the segmentation is
restricted to planar geometries. First step of the segmentation is the data correction
in the input ultrasound volume where voxels with invalid values are corrected. Then,
noise reduction takes place by filtering the corrected volume layer by layer in depth
direction. Afterward, the entrance and/or backwall layers are detected and then, the
internal volume is extracted from the pre-processed volume.

The segmentation is later carried out on the internal volume by applying a thresh-
olding method on voxel intensities and then connecting similar voxels to form labeled
suspicious regions. Each region is characterized by a list of features.
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Figure 4.2.: Flow chart showing the different stages of the segmentation procedure.

4.2.2. Definitions

Before further explanations, let us first remind of the definitions of the volume map-
ping introduced in chapter 3.2.2 and consider some further notations (see figure 4.3)
defined in a 3D Cartesian coordinates system:

• For P , S, T ∈ N, ΩP,S,T ⊂ N3 is a set of coordinates defined as:

ΩP,S,T = {(x, y, z) ∈ N3 : 1 6 x 6 P ; 1 6 y 6 S; 1 6 z 6 T}

where P , S and T are respectively the dimension of the volume’s grid.

• The volume u denote the original noisy volume defined over the domain ΩP,S,T

as:
u : ΩP,S,T −→ R+

(x, y, z) 7−→ u(x, y, z)

u(x, y, z) ∈ R+ is the noisy intensity observed at coordinates (x, y, z).



54 4.2 Segmentation procedure
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Figure 4.3.: Illustration of the coordinates system and the notations for d = 1. The
searching window V M

x,y,z is illustrated by the dashed green box. The local
3D block Bd

x,y,z is illustrated by the set of blue and red boxes. The 2D
local block Bd,0

x,y,z is illustrated by the set of red boxes. In this example,
the 3D block Bd

x,y,z and the 2D block Bd,0
x,y,z are centered at the same

coordinates (x, y, z).

• The volume v denotes the noise free volume which has the same dimensions as
volume u.

• For M ∈ N with 2M < min{P, S, T} (3D operators), ΩP,S,T
M ⊂ ΩP,S,T is defined

as:

ΩP,S,T
M = {(x, y, z) ∈ ΩP,S,T : M < x ≤ P−M ; M < y ≤ S−M ; M < z ≤ T−M}

• For M ∈ N with 2M < min{P, S} (2D operators), ΩP,S,T
M,0 ⊂ ΩP,S,T is defined

as:

ΩP,S,T
M,0 = {(x, y, z) ∈ ΩP,S,T : M < x ≤ P −M ; M < y ≤ S −M}

• V M
x,y,z is a 3D window (called searching window) centered at the voxel of coor-

dinates (x, y, z) ∈ ΩP,S,T
M and of size [2M + 1, 2M + 1, 2M + 1]:

V M
x,y,z = {(i, j, k) ∈ ΩP,S,T : x−M ≤ i ≤ x+M ; y −M ≤ j ≤ y +M ;

z −M ≤ k ≤ z +M}

• V M,0
x,y,z denotes the 2D searching window centered at the voxel of coordinates
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(x, y, z) ∈ ΩP,S,T
M,0 of size [2M + 1, 2M + 1, 1]:

V M,0
x,y,z = {(i, j, k) ∈ ΩP,S,T : x−M ≤ i ≤ x+M ; y −M ≤ j ≤ y +M ; k = z}

• For d ∈ N and d ≤ M , Bd
x,y,z ⊂ ΩP,S,T denotes the local 3D neighborhood

(block) centered at the voxel of coordinates (x, y, z) ∈ ΩP,S,T
M and of size [2d +

1, 2d+ 1, 2d+ 1]:

Bd
x,y,z = {(i, j, k) ∈ ΩP,S,T : x−d ≤ i ≤ x+d; y−d ≤ j ≤ y+d; z−d ≤ k ≤ z+d}

• For d ∈ N and d ≤ M , Bd,0
x,y,z ⊂ ΩP,S,T denotes the 2D local block, centered at

the voxel of coordinates (x, y, z) ∈ ΩP,S,T
M,0 and of size [2d+ 1, 2d+ 1, 1]:

Bd,0
x,y,z = {(i, j, k) ∈ ΩP,S,T : x− d ≤ i ≤ x+ d; y − d ≤ j ≤ y + d; k = z}

• u(Bd
x,y,z) = [u(x− d, y − d, z − d), · · · , u(x, y, z), · · · , (x+ d, y + d, z + d)]: is a

vector of size (2d + 1)3 gathering the intensities of voxels inside the 3D block
Bd
x,y,z.

Vector elements are accessible via u(p)(Bd
x,y,z) where the index p ∈ [1, (2d+1)3].

• u(Bd,0
x,y,z) = [u(x− d, y − d, z), · · · , u(x, y, z), · · · , (x+ d, y + d, z)]: is a vector

of size (2d + 1)2 gathering the intensities of voxels inside the 2D block Bd,0
x,y,z.

The same index p ∈ [1, (2p+ 1)2] allows to access the elements of this vector.

4.2.3. Data correction

During the inspection, the transducer moves with a specified speed over the surface of
the specimen (typically 70 mm/s). The inspection speed needs to be complemented
with adequate hardware architecture and efficient software implementation of recon-
struction algorithms able to track and use all the received data. It was noticed that
when a 3D inspection is conducted, points with no valid values are obtained. This
causes the appearance of black voxels in the reconstructed volume (see figure 4.4).
The higher the inspection speed, the more black voxels appear in the volume. Invalid
(or defect) voxels interpolation is necessary to correct the received data.

To interpolate the invalid voxels, a method based on a modified median filter is
proposed where a block Bd

x,y,z is applied over the volume. If the central voxel in the
block is null then, it is replaced by the median value of all non null voxels inside the
block (see algorithm 2). The position of the corrected voxel in the layer is saved into
a map, which can serve in the classification step afterward. If the central voxel is not
null then it will not be modified.
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(a) (b)

Figure 4.4.: (a) xy view of a layer of a CFRP plate where invalid voxels texture
appears. (b) Intensity profile corresponding to the red line tracker where
the sudden drops of intensity values to zero can be noticed.

The interpolation can be either applied in 2D1 or 3D. However, it is important to
remind that the 3D interpolation does not allow to interpolate all layers in the volume
due to boundaries issues.

When using a 3D block Bd
x,y,z, at least the first and the last layer (for d = 1) will

not be processed. Since these particular layers could be part of the entrance and
backwall of the sample, it is important for the ulterior stages to correct these two
layers. While by using a 2D block, all layers will be processed. However, the 2D
interpolation may be less efficient in correcting the voxels. Thus, both interpolations
need to be quantitatively compared in order to decide whether interpolating in 2D
give similar results to the 3D interpolation.

Algorithm 2 Defect voxel interpolation algorithm

Map=Zeros[P, S, T ] . the volume Map is filled with 0
for z ← d+ 1 : T − d do

for x← d+ 1 : P − d do
for y ← d+ 1 : T − d do

if u(x, y, z) == 0 then
u(x, y, z) = median

{
u(p)(Bdx,y,z) 6= 0; p = 1 : (2d+ 1)3

}
. voxel interpolated

Map(x, y, z) = 1 . position of the interpolated voxel is registered
else

continue
end if

end for
end for

end for

The interpolation algorithm is quantitatively evaluated on a volume without invalid

1To apply the interpolation algorithm 2 in 2D, two modifications are to do: z should loop from
1 : T and u(p)(Bdx,y,z) should be replaced by u(p)(Bd,0x,y,z) with index p : (2d+ 1)2
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voxels by means of two measures: the first measure is the difference measure (substi-
tution) between the original voxel’s intensity and the obtained interpolated values.
The second measure is a similarity measure and is defined as the mean value of Pear-
son distance2. The difference measure simply indicates how much the interpolated
value is close to the original value. However, a high difference measure does not
necessarily represent a poor correction. In fact, the applied modified median filter
can remove the impulse noise which corresponds to the case when the selected voxel
has an extreme intensity value compared to its surrounding. In this case, the dif-
ference measure will be high, however, the voxel’s intensity may be more similar to
its surrounding neighborhood. Therefore, the mean value of Pearson distance (dP ) is
additionally considered as a measure that gives information about the degree of simi-
larity between the interpolated value and its surrounding. The mean value of Pearson
distance is computed between the neighboring voxels inside the original volume, after
2D and 3D interpolations. In order to have a fair comparison, the calculation is done
considering all the 3D neighboring voxels of the selected voxel for both 2D and 3D
interpolations:

dP (u(x, y, z)) =
1

(2d+ 1)3

d∑
s1=−d

d∑
s2=−d

d∑
s3=−d

[u(x, y, z)− u(x+ s1, y + s2, z + s3)]2

u(x+ s1, y + s2, z + s3)

(4.2)
where u(x, y, z) stands for the voxel’s intensity before and after 2D and 3D interpo-
lations.

The evaluation approach is as follows:

• A voxel is randomly selected inside the volume and its intensity is set to zero.

• dP is computed in the original volume.

• The voxel’s intensity is interpolated using a 2D block of size [3, 3, 1] (i.e., d = 1)
and a 3D block of size [3, 3, 3].

• The difference measure and dP are computed after the interpolation.

• This procedure is repeated for an arbitrary number of voxels.

The results of the comparison will be shown in chapter 5.

4.2.4. Data enhancement

The main purposes of this stage are to: a) reduce the speckle noise without affecting
important information such as low contrasted defects, b) enhance the edges and c)
weaken or remove small isolated artifacts.

Different enhancement techniques are proposed in the literature. Among most effi-

2Pearson distance is discussed in paragraph 3.
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z = 24 z = 25 z = 26

Figure 4.5.: Delamination appearing only on layers 24 and 25 in a CFRP inspected
volume. In this volume, the voxel size ([x, y, z] in mm) is [1,1,0.5], i.e.
the resolution in z direction is 0.5 mm.

cient approaches is the approach which exploits the redundancy information in the
data [160]. Based on this reason, the NL-means filter [148] was considered as tech-
nique to enhance the corrected data. The NL-means filter will be compared with two
other spatial filters: median filter, M3 filter [159].

Filtering is applied layer by layer in the depth direction. There are two main reasons
for this choice:

• Typically a thin discontinuity perpendicular to the wave propagation, like de-
lamination, can be seen only on one or two consecutive layers of the recon-
structed volume (see figure 4.5). Thus, there is a risk to loose defects if the
filtering is applied in 3D. While by filtering the layer at a certain depth z, the
existing defect in the layer can be enhanced without having a high risk to loose
it.

• Filtering in 2D needs less time computation than in 3D because the considered
number of points inside the filtering kernel is less in 2D than in 3D. For instance,
when applying a 2D median filter of size [5, 5, 1], at each pixels position, the
number of voxels is 25 instead of 125 voxels in case of 3D median filter of size
[5, 5, 5]. The choice to filter in 2D has a vital influence on calculation time for
the NL-means filter since time consumption is its main drawback.

Non Local Means filter The NL-means filter was first introduced by Buades et al.
[160]. The concept of the filter is derived from the idea that there exists a certain
degree of redundancy in any image. NL-means filter tries to take advantage of this
redundancy.

To elaborate, for every current voxel (or pixel) of the volume, voxels with similar
intensity values and similar neighborhood exist and are not necessarily in the imme-
diate vicinity of the current voxel. Thus, a degree of similarity is evaluated between
several neighborhoods not directly close to the voxel. The similarity degree is re-
garded as a weigh contributing in the final restored intensity of the current voxel.
The restored value of the current voxel is a weighted average of all voxels in the
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Figure 4.6.: Illustration of the NL-means filter: the restored intensity at voxel, of
coordinates (x, y, z), center of the block Bd

x,y,z is the weighted average of
all intensities of voxels inside the search volume V M

x,y,z.

image. The NL-means is claimed to allow the combination of two major important
attributes of denoising algorithms: noise removal and edges preservation [166].

In the original definition of the NL-means filter, the similarity for each voxel is
searched in the complete volume. Nevertheless for computational reasons, the search
is limited only inside a search window V M

x,y,z of size [2M + 1, 2M + 1, 2M + 1] and
centered at the current voxel of coordinates (x, y, z), (see figure 4.6).

Consider u(Bd
x,y,z) and u(Bd

i,j,k) as the vectors containing the intensities of voxels in

the blocks Bd
x,y,z and Bd

i,j,k respectively centered at the current voxel of coordinates
(x, y, z) and voxel of coordinates (i, j, k) (see figure 4.6). The restored intensity at
(x, y, z) is defined as:

ṽ(x, y, z) =
∑

(i,j,k)∈VMx,y,z

ws{u(x, y, z), u(i, j, k)} · u(i, j, k) (4.3)

where ws{u(x, y, z), u(i, j, k)} is the weight assigned to u(i, j, k) in the restoration of
u(x, y, z). It measures the similarity between intensities in Bd

x,y,z and Bd
i,j,k under the

assumption that:

ws{u(x, y, z), u(i, j, k)} ∈ [0, 1] and
∑

(i,j,k)∈VMx,y,z
ws{u(x, y, z), u(i, j, k)} = 1.

Buades et al. [160] proposed to use the Gaussian weighted Euclidean distance, de-
noted by ‖·‖2

2,σ as a reliable measure for the comparison of similarity between blocks.
This distance, adapted to any additive white noise [160], is a convolution of the L2-
norm with a Gaussian kernel of zero mean and standard deviation σ > 0. It is defined
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as [172]:

‖u(Bd
x,y,z)− u(Bd

i,j,k)‖
2

2,σ
=

d∑
s1=−d

d∑
s2=−d

d∑
s3=−d

Gσ(s1, s2, s3) ·

[u(x+ s1, y + s2, z + s3)− u(i+ s1, j + s2, k + s3)]2

where Gσ(s1, s2, s3) is the 3D Gaussian kernel centered at (0,0,0) and of the same
dimension as u(Bd

x,y,z) and defined as:

Gσ(s1, s2, s3) =
1√
2πσ

exp

(
−s

2
1 + s2

2 + s2
3

2σ2

)
(4.4)

The weight is then computed as:

ws{u(x, y, z), u(i, j, k)} =
1

Zx,y,z
exp

−‖u(Bd
x,y,z)− u(Bd

i,j,k)‖
2

2,σ

h2

 (4.5)

Zx,y,z is a normalization factor ensuring that the sum of all weights will be 1. It is
computed as:

Zx,y,z =
∑

(i,j,k)∈VMx,y,z

exp

−‖u(Bd
x,y,z)− u(Bd

i,j,k)‖
2

2,σ

h2

 (4.6)

The parameter h > 0 is a smoothing parameter which controls the decay of the
exponential function and thus the smoothing degree of the image. For very high
values of h, the weights will be almost the same for all the voxels of V M

x,y,z. In this
case, the restored intensity ṽ(x, y, z) will be the average intensity of voxels V M

x,y,z which
represents a strong smoothing of the volume data. For very low values of h, the decay
of the exponential will be strong which leads to negligible weights for voxels with not
very similar neighborhood to the current voxel and significant weights for voxels with
very similar neighborhood to the current voxel. Thus, the restored intensity will only
be influenced by the latter voxels, this corresponds to a weak smoothing of the volume
data.

As introduced in equation 3.17, the most recent model relating noise free intensities
to noisy ones is: u = v + vψ · η. Speckle is not an additive noise, rather it is a
multiplicative noise. Thus, Coupé et al. [148] proposed to replace the L2-norm by
Pearson distance which is more adapted to the multiplicative aspect of the speckle
noise model. Pearson distance is given by:

dP (u(x, y, z), u(i, j, k)) =

(2d+1)3∑
p=1

[u(p)(Bd
x,y,z)− u(p)(Bd

i,j,k)]
2

(u(p)(Bd
i,j,k))

2ψ
(4.7)

As already cited in the noise study chapter, the factor ψ depends on ultrasound
devices and additional processing related to image formation [148]. Based on the
experimental estimation of the mean versus the standard deviation in Log-compressed
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images, Loupas et al. [152] showed that ψ = 0.5 is considered to be an adapted value
to the model to better fit ultrasound data than the speckle multiplicative model
(equation 3.16). This value was also adapted in the work presented in [148]. Thus,
it appears relevant to keep using the value of ψ = 0.5 in our implementation of the
NL-means (see algorithm 3).

Algorithm 3 NL-means algorithm in 2D

Size of the search window [2M + 1, 2M + 1, 1] . Volume u has a size of P × S × T
Size of the block [2d+ 1, 2d+ 1, 1]
for z ← 1 : T do . Filtering is done layer by layer

for x←M + 1 : P −M do
for y ←M + 1 : S −M do . Filtering voxels inside the layer

consider the block Bd,0x,y,z centered at (x, y, z)

consider the search window VM,0
x,y,z centered at (x, y, z)

VM,0
x,y,z =

⋃
nB

d,0
in,jn,z

, partition of the search window into overlapping blocks centered

at (in, jn, z) where n ∈ N is the distance between the centers of Bd,0in,jn,z
for each Bd,0in,jn,z do

compute its similarity weight with Bd,0x,y,z using Pearson distance (equation 4.7)
end for each
ṽ(x, y, z) =

∑
(in,jn,z)∈VM,0

x,y,z

ws{u(x, y, z), u(in, jn, z)} · u(in, jn, z)

end for
end for

end for

Median filter The median filter is commonly used to remove impulse noise. De-
pending on the kernel’s size, it relatively preserves image edges and removes the
isolated extreme values. Thus, it can be successful in reducing the speckle noise. It
is easy to implement, to modify and was applied in numerous works to enhance the
ultrasound data [173, 153, 174]. For a given layer at depth z, the median filter re-
places the current voxel value u(x, y, z) by the median value of its neighboring voxels
in the layer.

ṽ(x, y, z) = median{u(Bd,0
x,y,z)} = median

{
u(p)(Bd,0

x,y,z); p = 1 : (2d+ 1)2
}

(4.8)

At each kernel’s position, the median value is found using the quick select algorithm
[175]. It partially sorts the elements of Bd,0

x,y,z and selects the median value.

M3 filter The M3 filter is a hybrid filter of the mean and the median filters. It
replaces the current voxel value by the maximum value of the mean and median of
its neighboring voxels. Intensity values of homogeneous regions are reduced and high
frequency components are preserved [159]. Thangavel et al. [159] applied the M3 filter
and 15 different noise removing algorithms, including the median filter, on medical
ultrasonic images of prostate. Comparison between the different filters showed that
the M3 filter performed better than all the other filters.

ṽ(x, y, z) = max{mean{u(Bd,0
x,y,z)}; median{u(Bd,0

x,y,z)}} (4.9)
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Data quality evaluation metrics

Different characteristics should be considered when evaluating the performance of an
enhancement technique: noise reduction, details preservation, sharpness and contrast.
While a qualitative visual analysis is a more subjective methodology, there is a need
for an objective evaluation by means of quality metrics which can cover the different
aspects of improvement in the enhanced data. Therefore, four statistical measures are
computed to estimate the improvement in speckle noise reduction, details preservation
and defects detectability after filtering. Since the filtering was done layer by layer in
depth direction, the measures need to be computed in specific layers, where defects
with low contrast are existing.

For a given depth z, let l(x, y) be the original image and L(x, y) the filtered image of
size Nx ×Ny. σ

2
l denotes the variance of the original image and σ2

L is the variance of
the filtered images. The following metrics are computed:

• Root Mean Square Error (RMSE) measures the intensity change between the
original and processed image and is defined as:

RMSE =

√∑Nx
i=1

∑Ny
j=1[l(i, j)− L(i, j)]2

NxNy

The RMSE is lower when pixels in the original and filtered image have close
values.

• Noise Reduction Factor (NRF) measures directly the noise reduction and is
computed as:

NRF = 10 log10

σl
2

σL2

A higher NRF corresponds to a smoother image.

• Peak Signal to Noise Ratio (PSNR) is defined as:

PSNR = 20 log10

gmax
RMSE

where gmax is the maximum possible intensity value3. The PSNR is higher when
the RMSE is low, i.e. when the intensities of the original and filtered image are
close.

These first three metrics inform on the noise reduction or the global intensity change
in the image. However, they do not inform on the compromise between noise reduction
and edge preservation. Thus, another metric has been introduced, which is directly
measured around a chosen defect’s zone.

3gmax = 216 − 1 for 16 unsigned bits images
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Figure 4.7.: CNR: defect zone and neighboring reference zone.

• Contrast to Noise Ratio (CNR) informs on the defect detectability after denois-
ing and is defined as:

CNR =
|Mdef −Mbackground|√
σ2

def + σ2
background

Where Mdef and σ2
def are respectively the mean intensity value and variance of

the defect’s zone and Mbackground and σ2
background are the corresponding mean

and variance values of a neighboring reference background (see figure 4.7). A
higher CNR indicates a better defect detectability.

4.2.5. Detection of entrance and backwall layers

The objective of this stage is to detect the layers which correspond to the entrance
and backwall of the specimen. This allows to extract the inner volume denoted ṽin
(volume of interest) located between the entrance and backwall layers.

The strong entrance and backwall echoes produced by the acoustic impedance mis-
match between the coupling medium (water) and the inspected specimen appear over
many consecutive layers in the reconstructed volume. Thus, they influence the in-
tensity in the internal layers at depths near the surface and the end of the specimen.
Moreover, in the settings of the inspection process, the inspection depth is manually
set by the operator. For instance, for a part of 10 mm thickness, the expert can
choose to inspect 15 mm in depth. Therefore in the reconstructed volume, the layers
from 11 to 15 mm are not necessary and should be automatically eliminated from the
total volume. By detecting the backwall layers, deeper layers will not be considered in
the analysis. Additional important benefits can be gained by detecting the entrance
and backwall layers. They are resumed as follows:

• Entrance and backwall layers contain valuable information which help into suc-
cessfully distinguish defects from artifacts. For instance the shadowing effect,
which can be clearly seen in the backwall layers (see figure 2.16), represents a
clear indication of presence of a defect at a certain position z above the backwall
layer.
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• The detection of entrance and backwall echoes allows to estimate the thickness
of the specimen without prior information.

• Entrance and backwall layers are characterized by higher intensity values com-
pared to the inner volume. Therefore, it will be more simple to find an adequate
threshold for ṽin than to find the threshold considering the complete volume
because in this case, the global histogram of the intensity values will be much
influenced by the voxels of the entrance and backwall layers.

Indeed, the detection of entrance and backwall layers is a critical task because defects
may be present near the surface or the backwall. In case when the corresponding
layer(s) is (are) considered as entrance or backwall layer(s) then, those defects will
not be detected. Therefore, an inner volume with a maximal size and less influenced
by the strong entrance and backwall echoes is requested in order to detect all defects
which appear in the input volume. In the reminder of this work, entrance and backwall
layers will respectively be denoted by EE layers and BWE layers.

The detection of the EE and BWE layers can be seen as an edge detection issue
where corresponding voxels are characterized by high intensities. The proposed al-
gorithm will try to use this criterion by investigating the second derivative variation
of intensity level in depth direction. To better explain the principle of the algorithm,
let us again consider the CFRP volume shown in figure 2.16: the CFRP plate has
a thickness of 8 mm, the volume dimensions ([x, y, z]) are [345, 357, 161] voxels with
a voxel size in z direction of 0.05 mm. By a visual evaluation of the data, it can
be noticed that the EE layers begin at z = 0 and end at z = 11. At z = 12, the
first defect starts to appear in the corresponding layer (see figure 4.8). The BWE
layers start at z = 146 because high intensity values corresponding to strong echoes
of the backwall start to clearly appear on this layer and end at z = 160 (see figure
4.9). Note that results shown in this stage will not be commented, they only serve to
illustrate the explanations.

Proposed approach

The proposed approach to detect the EE and BWE layers relies on the mean value
of intensity in each layer. By computing the mean intensity value of each layer, this
approach will be restricted for specimens of planar geometries. Note, however, that
the mechanical scanning system in the present experimental device can only be used
to scan planar specimens (see figure 2.15). The obtained volume, containing the mean
intensity of each layer, is shown in figure 4.10a. The corresponding mean value profile
in depth direction is shown in figure 4.10b. Notice that the EE and BWE layers have
higher mean values than other layers, but it is difficult to automatically specify where
exactly do the EE layers and the BWE layers begin and end.

Thus, to detect the EE and BWE layers, the proposed procedure is as follows:

(1) Consider a single signal I gathering the mean intensity of each layer in the volume



4.2.5 Detection of entrance and backwall layers 65

(a) (b)

Figure 4.8.: (a) Last layer of the entrance layers. (b) First layer of the inner volume
with the first defect (red box) starting to appear and the high intensity
regions corresponding to strong echoes of the entrance fad out.

going from depth z = 0 to z = T − 1 (the end of the volume).

(2) Marr-Hildreth operator is applied on I.

Marr-Hildreth operator is an edge detection operator which consists of convolving
the signal I with the Laplacian of Gaussian (LoG) function. It can be seen as an
application first of a low pass filter (Gaussian function of zero mean) which at first
stage will smooth the image followed by a high pass filter (Laplace operator) which
will enhance the high frequencies. Remind that in one dimension, the Gaussian
function is defined as:

Gσ(z) =
1√
2πσ

e
−
z2

2σ2

The Laplacian of Gaussian is then:

52Gσ(z) =
1√
2πσ

z2 − σ2

σ4
e
−
z2

2σ2

Applying the Marr-Hildreth operator corresponds to the convolution of 52G(x, σ)
with the input signal I. The output signal is shown in figure 4.11.

I∗(z) = 52Gσ(z) ∗ I(z)

(3) The EE layers are finally to be searched between z = 0 and the middle of I∗

(z = T
2
) and the BWE layers are to be searched between z = T

2
and z = T . The end

of the EE corresponds to the absolute maximum of the signal between 0 and T
2

and
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(a) (b)

Figure 4.9.: (a) Last layer of the inner layers. (b) First layer of the BWE where
high intensity regions corresponding to echoes from the backwall start to
strongly appear. Note that the defect at the top right (red box) is more
intense in the BWE layer (b) than in the inner layer (a), thus there is a
risk to miss such a defect which is very close to the backwall.

the start of the BWE corresponds to the absolute maximum of the signal between T
2

and T . The last backwall layer corresponds to the absolute minimum of I∗(z) between
T
2

and T . This layer is called BWE slice. The complete EE and BWE detection is
resumed in algorithm 4.

The layers forming the entrance (same for backwall) are members of the EE volume
(and BWE volume). Thus, the reconstructed 3D volume is divided at the end of this
step into: EE volume, inner volume and BWE volume. The thickness of the specimen
can be estimated as the difference between the z position of the BWE slice and the
z position of the first layer of the EE volume.

4.2.6. Thresholding

Thresholding will be applied on the voxels of ṽin in order to divide them between
background and foreground. Background voxels are not suspicious, thus, they are
set to null. Foreground voxels are suspicious and are set to 1. Finding the optimal
threshold is still not a trivial task even when working on the enhanced inner volume.
Indeed, the noise will be reduced to a certain degree after filtering, however, it will
not be completely removed. Furthermore, the remaining artifacts after filtering could
have been amplified by the enhancement process. Thus, there will be foreground re-
gions which correspond to false alarms, nevertheless mandatory is to have all existing
defects as foreground even if they have weak contrast.
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(a) (b)

Figure 4.10.: (a) 3D view of the CFRP mean volume where the mean intensity of each
layer is computed and presented. (b) Mean values profile along Z axis
(signal I): EE is on the left position and BWE is on the right position.

0 50 100 150
-4000

-2000

2000

0

EE end BWE start

BWE endEE start
Position

In
te

n
si

ty
va

lu
e

Figure 4.11.: Marr-Hildreth output signal where the end of EE and the start of BWE
layers can be detected (σ = 1).

Algorithm 4 Entrance and backwall layers detection

I = Zeros[T ]
EndEE = 0 . Layer where EE ends
StartBWE = 0 . Layer where BWE starts
EndBWE = 0 . Layer where BWE ends
for z ← 1 : T do

I(z) =mean intensity of layer z in ṽ
end for
Convolve I with LoG: I∗(z) = 52Gσ(z) ∗ I(z)
for z ← 1 : T2 do

Search the maximum intensity value in I∗(z) and save its position at
EndEE

end for
for z ← T

2 : T do
Search the maximum intensity value in I∗(z) and save its position at
StartBWE

Search the minimum intensity value in I∗(z) and save its position at
EndBWE

end for
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(a) (b)

Figure 4.12.: (a) Illustration of selection of a reference zone. (b) Histogram of inten-
sities inside the reference zone: TL and TH are computed based on the
statistics of intensity in the reference zone.

An attempt to automatically find a threshold without operator’s intervention, by
using the Otsu method [176], was done. Nevertheless, one major inconvenient of the
Otsu method is that it gives a threshold even in the case where no defect exists in
the volume. In addition, many low contrasted defects are lost with the automatic
thresholding. Indeed, speckle noise can have a high contrast and can thus mask the
presence of low contrasted defects. Therefore, a data dependent thresholding method
is applied in order to keep all potential defects present in the volume.

Two thresholds are computed from the intensity statistics of the inner layers of a
reference volume Vref . The reference volume is a volume obtained by scanning a
sample, without defects, of the same material type and geometry as the analyzed
specimen. A high threshold TH ≥ 0 and a low threshold 0 ≤ TL ≤ TH can take values
as follows:

TL = MTL ·mean[Vref ] + STL · std[Vref ] (4.10)

TH = MTH ·mean[Vref ] + STH · std[Vref ] (4.11)

where mean[Vref ] ∈ R+ and std[Vref ] ∈ R+ are the mean value and the standard
deviation of intensities of the inner layers of Vref , MTL , MTH , STL and STH are weights
of the mean intensity and standard deviation and take values ∈ {0, 1, 2, 3}.

For this work, no reference volumes were available. Therefore, the operator’s inter-
vention was necessary in order to manually select a reference zone Zref inside ṽin in
order to compute the thresholds. This is the only input required from the operator.

The two thresholds are then applied on all voxels of ṽin as follows: voxels with
intensity values higher than TH are considered as foreground. Voxels with intensity
values lower than TL are attached to background. Voxels with intensity values higher
than TL and connected with a foreground voxel are finally considered as foreground.
The advantage of this thresholding method, known as hysteresis threshold, is to
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recover more precisely the size of suspicious regions (role of TL) while preventing
the noise detection as much as possible by application of the hard threshold TH on
intensity values.

Algorithm 5 Hysteresis thresholding algorithm

Binary Volume VB = Zeros[P, S,EndBWE − StartBWE − 1] . Volume VB has a size of ṽin
Foreground = 255
Background = 0
for z ← 1 : EndBWE − StartBWE − 1 do

for x←M + 1 : P −M do
for y ←M + 1 : S −M do . non filtered border voxel will not be considered

consider the block Bx,y,z of size d = 1 centered at (x, y, z)
if ṽin(x, y, z) ≥ TH then

VB(x, y, z) = Foreground
for each voxel (i, j, k) inside Bx,y,z do

if ṽin(i, j, k) ≥ TL then
VB(i, j, z) = Foreground

end if
end for each

end if
end for

end for
end for

After threshold application (algorithm 5), ṽin is divided into background and fore-
ground. Voxels belonging to the same region are now to be connected to each other.
For each foreground voxel at coordinates (x, y, z), the 26 neighboring voxels are
checked and voxels which do belong to the foreground are connected to the voxel
at (x, y, z). Connected voxels are grouped into one binary large object (blob) with a
unique identification number (labeling) which additionally serves as an intensity level
for the display of this label.

The selection of the optimal thresholds {TL, TH} must be done in a training phase on
a sample with a known number of defects. The approach is based on the quantitative
analysis of the number of suspicious regions classified as defects versus the amount
of false alarms.

In the case when the operator is not satisfied with the outputs given by the hysteresis
thresholds, for example because a low contrasted defect is missing from the binary
volume, another thresholding option (called manual threshold) is given. The idea is to
manually select the low contrasted defect itself as a zone to compute the thresholds
TL and TH . In this case, the default values of the hysteresis thresholds are set to
TL = TH = Mdef where Mdef is the mean intensity of the selected low contrasted
defect.
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4.2.7. Features extraction

After thresholding, each detected suspicious region will be characterized by a list of
features. Computed features are centered principally around the measurement of the
geometric properties and the intensity characteristics of detected blobs. Consequently,
the measured features (names in italic) are divided into two categories:

Geometric features

• BlobSize: is the number of voxels of the blob.

• BlobVolume: knowing the Blobsize and the voxel size, the BlobVolume in mm3

can be deduced.

• BlobPosition: the position of blob in 3D is given by the integer features Blob-
PosX, BlobPosY and BlobPosZ.

• Feret diameters: Feret diameters Fα serve to measure the features: length,
width and elongation of suspicious regions. To compute the Feret diameters,
3D suspicious regions are projected into xy, xz and yz planes. Then in each
2D space, the Feret diameters are measured as the diameters of the projection
over four directions: α = 0◦, α = 45◦, α = 90◦ and α = 135◦ (see figure 4.14).
Afterward, the computation of length [in mm], width [in mm] and elongation
in xy, xz and yz is done as follows:

Lxy, Lxz, Lyz are the maximal values of Feret diameters in the respective
xy, xz and yz planes.

L = max{F0◦ , F45◦ , F90◦ , F135◦}

Wxy, Wxz, Wyz are the minimal values of Feret diameters in the respective
xy, xz and yz planes.

W = min{F0◦ , F45◦ , F90◦ , F135◦}

Exy, Exz, Eyz are given by: E =
L

W
.

• Maximum inscribing sphere (MIS) and minimum covering sphere (MCS): an-
other way to describe the form in 3D of the blob is by finding the diameter d1

of the maximum sphere which can be included inside the blob and the diameter
d2 of the minimum covering sphere which includes the blob. The corresponding
features are then the radius MISRadius of the maximum inscribing sphere and
the radius MCSRadius of the minimum covering sphere (see figure 4.14).
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• MISToMCSRatio is the ratio between d1 and d2. It represents the distance
between the form of the suspicious region and a 3D sphere, for which this
feature is equal to 1. In addition, the ratio between the size of the minimum
covering sphere and the BlobSize is computed, MCSToBlobSizeRatio.

• BlobFillingLevel : is the ratio between the blob and the size of the minimum
covering 3D square which includes the blob. This is also another distance
between the form of the suspicious region and a 3D square.

Intensity characteristics

• Intensity characteristics measured on the filtered volume ṽ(x, y, z): for each
blob, the mean and standard deviation of intensity values of the blob’s voxels
are measured. The blob’s intensity characteristics are called MeanValueOfBlob
and StdOfBlob.

Moreover, the intensity characteristics of the neighborhood of the blob are com-
puted. The neighborhood is specified using a mask of fixed size. For instance a
mask size of 11 means that the blob is dilated by a [11, 11, 11] 3D structuring
element. Then, the neighboring region to the blob is computed by subtracting
the blob from the obtained dilation. Obtained features for the neighborhood are
the mean intensity value called MeanValueOfNeighbourhood and the standard
deviation of intensity values StdOfNeighbourhood.

Then, the feature MeanBlobContrast is measured as the difference between
MeanValueOfNeighbourhood and MeanValueOfBlob.

• Contrast statistics of the blob (CS) are measured using ṽ and a reference vol-
ume Vref : in this case the blob of the filtered volume ṽ and the corresponding
zone of the reference volume are considered. This zone has the same size and
spatial location as the blob. Afterward, the difference between the mean, mini-
mum, maximum, standard deviation are computed. In addition, the difference
between each voxel of the two zones is computed and stacked inside a buffer
called MaximumBlobDifference (MBD). The outputs are the following contrast
measures:

CSMean = |mean[Vref ]−MeanValueOfBlob|

CSMin = |min[Vref ]−min[blob]|

CSMax = |max[Vref ]−max[blob]|

CSStd = |std[Vref ]− std[blob]|

MBDMin = |min[MBD]|

MBDMax = |max[MBD]|

MBDMean = |mean[MBD]|

MBDStd = Std[MBD]
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MBDVar = Var[MBD]

In the case when no reference volume is available, the reference zone Zref , se-
lected in the thresholding stage (paragraph 4.2.6) can be used to compute the
features which require a reference volume. In this case, the minimum, maxi-
mum, mean, standard deviation and variance of Zref are used in the calculus.

• Shadow : shadows are indeed traces of presence of discontinuities above them,
this information is very valuable and is used as a feature called shadow. The
simplest way to compute the shadow is by projecting the blob on the backwall
(see figure 4.13), then to consider the mean intensity of the zone occupied by
the projection in the BWE layer (zone called BWEblob) and divide it by the
mean intensity of the complete BWE layer (see figure 4.14).

mean[BWEblob] =

∑
(x,y,z)∈BWEblob

ṽ(x, y, z)

|BWEblob|
where |BWEblob| is the number of voxels in the BWEblob zone.

mean[BWE] =

∑
(x,y,z)∈BWE

ṽ(x, y, z)

|BWE|
where |BWE| is the number of voxels in the BWE layer.

Shadow =
mean[BWEblob]

mean[BWE]

Figure 4.13.: BWE layer where shadows corresponding to defects can be clearly seen.

• Damage index : the damage index (DI ) is defined as the ratio between the mean
intensity of the 3D blob and the mean intensity of the zone (called EEblob)
occupied by the blob projection on the EE layer (see figure 4.14).

MeanValueOfBlob =

∑
(x,y,z)∈blob

ṽ(x, y, z)

BlobSize
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mean[EEblob] =

∑
(x,y,z)∈EEblob

ṽ(x, y, z)

|EEblob|

DI =
mean[blob]

mean[EEblob]

Resumed in tables B.1 and B.2, in total 35 features are computed for each blob. They
will form the input of the classification procedure described in the next section.

Backwall layer

blob

z

y

x

Entrance layer

BWEblob

EEblob

F90◦

Projection over xy

Figure 4.14.: Illustration of features in 3D space: the dark zone (BWE blob) under the
blob corresponds to its projection over xy in the BWE layer (defect’s
shadow), the projection of the blob over xy in the entrance layer corre-
sponds to the EEblob zone. The F90◦ is the Feret diameters in xy plane
for a 90◦ angle. The minimum covering 3D sphere is also illustrated.

4.3. Classification procedure

The input data of the classification procedure is a list of segmented suspicious regions,
among which some are true defects, while others are false alarms. Thus, the issue is
to classify them into one of the two classes: class H1=True Defect (TD) or H2=False
Defect (FD). A third class is introduced in order to take into account the ignorance,
H3 = {H1, H2}. This class allows us to model the part of doubt or uncertainty



74 4.3 Classification procedure

existing when the available information is not sufficient to decide between H1 and
H2.

This type of uncertainty can be considered as epistemic uncertainty4 which is due to a
lack of knowledge. The Bayesian model of the probability theory represents a classical
framework for reasoning with uncertainty. Nevertheless, the main disadvantage of
this model is its inability to represent ignorance. Accordingly, last decades have seen
the appearance of other theories such as the possibility theory proposed by Zadeh
[178] and the theory of evidence, initiated by Dempster [179] and further developed
by Shafer [180] and then Smets [181, 182, 183] under the name Transferable Belief
Model (TBM).

The Dempster-Shafer evidence theory forms a theoretical framework for uncertain
reasoning and has the particular advantage to enable handling of uncertain, imprecise
and incomplete information. It overcomes the limitation of conventional probability
theory .

4.3.1. Basic concept and definitions

In evidence theory, a fixed set of J hypotheses, called the frame of discernment, is
defined and symbolized by Θ = {H1, H2, · · · , HJ}, where J ∈ N. In Dempster-Shafer
(DS) theory, all hypotheses are considered mutually exclusive5 and exhaustive6. The
frame of discernment Θ defines the working space for the application being considered
since it consists of all propositions for which the information sources can provide
evidence through the so-called confidence measure or mass function m. The mass
function m is defined as a mapping from the power set 2Θ, called the fusion space7,
to [0,1] and it verifies the property that

∑
A⊆Θ

m(A) = 1, A is a subset of Θ.

m : 2Θ −→ [0, 1]
A 7−→ m(A)

Here, A designates a single hypothesis Hi or a union of simple hypotheses (composite
hypothesis). The value m(A) represents a measure of belief that is assigned to subset
A ⊆ Θ by a source of information and that cannot be committed to any strict subset
of A [184]. An information source assigns mass values only to those hypotheses, for
which it has a direct evidence. That is, if an information source cannot distinguish
between two hypotheses Ai and Aj, it assigns a mass value to the set including both

4Epistemic uncertainty represents a lack of knowledge about the appropriate value to use for a
quantity [177].

5Hi ∩Hj = ∅ for any i 6= j
6i.e., at least one hypothesis has to be true
7E.g., if Θ = {H1, H2, H3}, the power set 2Θ of Θ is the set of all hypotheses and all possible

unions of hypotheses: (∅, H1, H2, H3, {H1, H2}, {H1, H3}, {H2, H3}, {H1, H2, H3}) where ∅ is
the empty set and m(∅) = 0.
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hypotheses (Ai∪Aj). This point is precisely the reason for us to choose the DS theory
because it reflects the hesitation between two hypotheses.

Every subset A ⊆ Θ such that m(A) > 0 is called a focal set of m. If all focal
sets are singletons (the cardinality of A denoted |A| is 1), then the mass function
is equivalent to a probability distribution. In fact, the main difference between the
probability theory and DS theory is that, a mass function gives the possibility to
assign a measure of belief to non singleton subset of Θ. Thus, a mass function can
be seen as a generalized probability distribution.

A mass function m is:
- Bayesian if all focal elements are singleton. In this case, the mass function is
equivalent to a probability distribution.
- Vacuous if the only focal set is Θ (total ignorance).
- Simple if it has only two focal sets including Θ.

A simple mass function m such that [185]:{
m(A) = 1− wA, ∀A ⊂ Θ

m(Θ) = wA
(4.12)

where wA ∈ [0, 1], can be in this case be denoted as AwA . Consequently, a vacuous
mass function can be denoted as A1, ∀A ⊆ Θ.

Equivalent representation of the mass function m are belief bel, plausibility pl, com-
monality q and conjunctive weight function w [185]. They are respectively defined,
for all A and B ⊆ Θ, as follows:

• bel : 2Θ −→ [0, 1]
A 7−→ bel(A)

(4.13)

where bel(A) =
∑

∅6=B⊆A
m(B), ∀A ⊆ Θ.

• pl : 2Θ −→ [0, 1]
A 7−→ pl(A)

(4.14)

where pl(A) =
∑

B∩A 6=∅
m(B), ∀A ⊆ Θ.

• q : 2Θ −→ [0, 1]
A 7−→ q(A)

(4.15)

where q(A) =
∑
B⊇A

m(B), ∀A ⊆ Θ.

• w : 2Θ \Θ −→ (0,+∞)
A 7−→ w(A)

(4.16)
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The weights w(A) for every A ⊂ Θ can be obtained from the commonalities q using
the following formula [185]:

w(A) =
∏
B⊇A

q(B)(−1)|B|−|A|+1

=


∏

B⊇A,|B|/∈2N q(B)∏
B⊇A,|B|∈2N q(B)

if |A| ∈ 2N∏
B⊇A,|B|∈2N q(B)∏
B⊇A,|B|/∈2N q(B)

otherwise

(4.17)

where |A| and |B| are the cardinals of A and B and 2N denotes the set of even natural
numbers.

4.3.2. Information combination

Depending on the independence and reliability conditions of available information
sources, there exist different combination rules to combine mass functions given by
different sources and defined on the same frame of discernment Θ.

Dempster orthogonal combination rule

The orthogonal combination rule of Dempster, denoted by ⊕, assumes that the in-
formation sources are independent (i.e., they are assumed to provide distinct, non
overlapping pieces of evidence (i.e., mass values) [185]) and reliable. Mass functions
m1, m2 from two different sources combined with Dempster’s orthogonal rule result
in a new function m1 ⊕ m2, which carries the joint information, about hypothesis
A ⊆ Θ, provided by the two sources:

m1⊕2(A) =


0 if A = ∅∑
B∩C=A

m1(B)m2(C)

1−K
Otherwise

(4.18)

K =
∑

B∩C=∅
m1(B)m2(C) is the mass assigned to the empty set ∅. It is interpreted

as a measure of conflict between sources and it is introduced in equation 4.18 as
a normalization factor. The larger K is, the more the sources are conflicting and
the less makes sense to combine their mass values. As a consequence some authors,
Smets in particular [181], require the use of the Dempster combination rule without
normalization, the obtained new rule is called conjunctive combination. Indeed, when
the conflict increases, the fused mass increases although it is not related to an increase
of confidence.

Thus, the conjunctive rule ∩©, as proposed by Smets [181], also assumes that the
sources are independent and reliable. Resulting mass function by usage of the con-



4.3.3 Data fusion classification 77

junctive combination rule is denoted m1 ∩©m2 and defined for all A ⊆ Θ as:

m1 ∩©m2(A) =
∑

B∩C=A

m1(B)m2(C) (4.19)

The conjunctive rule is thus equivalent to Dempster’s rule without normalization.
Both rules are commutative and associative.

Cautious conjunctive combination

In case when the sources of information are dependent, Denoeux [185] introduced
the cautious conjunctive combination rule ∧© to be applied in this case. For this
combination rule, mass functions m1 and m2 are considered to be separable, i.e. they
can be decomposed as conjunctive combinations of simple mass functions [180, 183,
185]:

m1 = ∩©A⊂ΘA
w1(A) (4.20)

m2 = ∩©A⊂ΘA
w2(A) (4.21)

where Aw1(A) and Aw2(A) are simple mass functions and weights w1(A) and w2(A) ∈
(0, 1] for all A ⊂ Θ. The combination of m1 and m2 using the cautious rule is given
by:

m1 ∧©m2(A) = ∩©A⊂ΘA
w1(A)∧w2(A) (4.22)

In this equation, the operator ∧ is the minimum operator. The cautious rule in
addition to being commutative and associative, is idempotent, i.e. m ∧©m = m.
Moreover it is distributive with respect to ∩©:

(m1 ∩©m2) ∧©(m1 ∩©m3) = m1 ∩©(m2 ∧©m3) (4.23)

The distributivity property explains why the cautious rule is more relevant than the
conjunctive rule when combining dependent mass functions since the shared mass m1

in equation 4.23 is not computed twice [185].

In a recent paper [184], the evidence theory was used in the study done on the fault
diagnosis of railway track circuits. Condition of railway track circuits was examined
using an inspection vehicle that delivered a measurement signal which needed to be
classified into three classes: fault free, medium defect and major defect. Authors used
the evidence theory framework to build the classifier and they compared the perfor-
mance of cautious rule with the performance of conjunctive rule in the classification
of defects of railways track circuits and found out that the cautious rule outperforms
the conjunctive rule.

4.3.3. Data fusion classification

The data fusion classification (DFC) method [186] is based on the DS theory and has
the goal to automatically classify each input segmented suspicious region as defect
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Figure 4.15.: Illustration of the data fusion classification steps in case of two sources:
knowledge modeling, information combination and decision making.

or not, without expert supervision. This is done by analyzing the feature values
extracted from an input region, assigning to it a confidence level (or mass value) and
then combining mass values obtained from different features. Once the mass values
are combined, a decision must be taken based on a threshold applied on the final
mass (see figure 4.15).

In this work, the extracted features measured on each suspicious region (denoted
X) represent the sources of information (denoted fk, where k = 1 · · · 35). Thus, in
order to permit the fusion of these sources, feature values must be translated into
mass values which will be assigned to the hypotheses of the frame of discernment
Θ = {H1, H2}. The adopted power set 2Θ contains the following hypotheses:

- H1: suspicious region is a defect.
- H2: suspicious region is a false defect (i.e, false alarm).
- H3 = Θ = {H1, H2} : ignorance.
- ∅: empty set.

Conflict will occur when a source classifies a region as a defect and another source
considers the region as false alarm. To avoid the conflict in our modeling approach,
a source can give a mass value m only to the hypothesis H1 and the rest is assigned
to H3, i.e. no mass is assigned to H2. Thus, simple mass functions are obtained:

m(H1) = m

m(H2) = 0

m(H3) = 1−m
m(∅) = 0

The proposed approach consists of a learning phase and a validation phase, which are
described hereafter. The approach will be illustrated using two classes of normally
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distributed data points: 500 data points of class A standing for true defects (TDs)
and 500 data points of class B standing for false defects (FDs). Let X ∈ [1, 1000] be
a random input data point which can be either element of class A or B. Let fk be an
information source: fk(X) ∈ R represent the feature value of X.

Learning phase

The learning is conducted on a set of input data points (i.e., suspicious regions) of
known classes (see figure 4.16). The learning phase can be decomposed into several
steps:

Step 1: building regions of confidence which permit the translation from feature values
to mass values.

Step 2: combining the mass values using different rules of combination.

Step 3: application of a decision rule on the obtained mass values.

Step 4: performance measurement and selection of the combinations with optimum
classification rates..

The first step of the learning phase will be described in more details as it is the crucial
step of the method. For each feature (i.e., information source fk), the translation from
feature values to mass values is done as follows:

• Computation of histogram of feature values for the two classes: class A (TDs)
and class B (FDs) takes place. Each histogram is divided into 100 bins or
intervals (see figure 4.16).

• In each histogram interval i, the proportion of points of class A is computed
and denoted by PA,B(i) ∈ [0, 1] .

PA,B(i) =
hA(i)

hA(i) + hB(i)
(4.24)

where hA(i) and hB(i) are respectively the number of data points of class A
(TDs) and class B (FDs) inside the interval i ∈ [1, 100].

• Let ∆PA,B be the derivative of PA,B computed as:

∆PA,B(j) = |PA,B(j + 1)− PA,B(j)| (4.25)

where j ∈ [1, 99]. Consecutive intervals j and j + 1 are merged into one region
Rj if ∆PA,B(j) is lower than a threshold DV:

∆PA,B(j) < DV (4.26)

The standard value of DV is fixed at 20%.
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• In order to have significant regions (called regions of confidence), a minimum
number of data points (Nc) inside each region Rj is imposed (a threshold,
denoted by Perc, on the percentage of points inside each region is applied).
Let NM be the maximal number of data points found inside one region after
merging consecutive intervals based on equation 4.26. The minimal number of
points to be respected inside each region of confidence is:

Nc = Perc ·NM (4.27)

The standard value of Perc is fixed at 10%.

Let TR, 1 ≤ TR ≤ 100, be the total number of obtained regions of confidence.
Each region Rj is characterized by the proportion of points of class A (PA,B(Rj))
inside it.

• Mass values are attributed to each region of confidence as follows:
m(H1) = m(Rj) = PA,B(Rj)

m(H2) = 0

m(H3) = 1−m(H1)

m(∅) = 0

The regions of confidence obtained for the example of figure 4.16 are illustrated
on figure 4.17.

• Fuzzy transitions are defined between consecutive regions of confidence: a fuzzy
set is attributed to each region with corresponding membership functions. Then,
the final mass of the input data point X is obtained by the mass of each region
of confidence weighted by the degree of membership of the feature value of X
to the region (see figure 4.17). The mass attributed by the source (or feature)
fk to the input X is:

m(X ∈ H1/fk) =

TR∑
j=1

µj(fk(X)) ·m(Rj) (4.28)

TR∑
j=1

µj(fk(X)) = 1

where Rj is the region of confidence and µj(fk(X)) ∈ [0, 1] is the degree of
membership of the feature value of X to Rj.

In the second step, the obtained mass values are combined using:

• The conjunctive combination rule is used to combine sources pairwise, to com-
bine the three sources which give the maximal mass values8 (called DSF{3 max
mass}) or all sources together (called DSF{all sources}).

8Each suspicious region has 35 single mass values given by the information sources (features).
For each suspicious region, the maximal three mass values of individual features are found and
combined using the conjunctive rule.
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Figure 4.16.: Illustration of the starting step of the DFC method on two normal dis-
tributions. (a) For one feature, the values measured for the objects are
represented. The overlapping between the two classes A (blue star) and
B (red cross) is obvious. (b) The histogram of the values obtained for
this feature is represented, class A (full line) and class B (dotted line),
where the overlapping is also clearly visible.

• The cautious rule.

• The statistical combination rules: mean mass and median mass. The mean
mass is the mean value of all the mass values attributed to X. It gives a sort of
equal influence to the different sources. The median mass is the median value
of all the mass values attributed to X. It allows to discount some sources when
they are not in accordance with the others.

With a total number of 35 features, 635 different combinations are obtained
including: each feature alone, all the DS combinations (pairwise, 3 sources and
all sources), the cautious combination and the statistical combinations.

In the third step, the decision rule is applied:

• A decision threshold Sm is applied on the mass value m(X ∈ H1) of X to
classify it as: an element of class A (TD) if m(X ∈ H1) > Sm or an element of
class B (FD) if m(X ∈ H1) < Sm

The last step of the learning phase is to select the optimal combinations:

• The combinations which classify at best the true and false defects are chosen
based on selection criteria which are explained after the next paragraph.

Validation phase

The validation is done on a test database with input suspicious regions of known class
and the following steps take place:
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Figure 4.17.: a) Illustration of the regions of confidence and their corresponding mass
values m(H1) in the right side of the graph. (b) Membership (blue full
line) functions defined to obtain a fuzzy transition between the regions
of confidence and mass function m(H1) (red dotted line) obtained after
weighting the initial mass of the region by the membership function.
In this example: m(R1) = 0.159, m(R2) = 0.525 and m(R3) = 0.891.
µ1(fk(X)) = 1 and µ2(fk(X)) = µ3(fk(X)) = 0.

.

• First, features extraction is performed via the segmentation procedure.

• Then, the translation from feature values to mass values is done using the
relation in equation 4.28 given in learning phase of the DFC method.

• Afterward, the optimal combinations selected in the learning phase are used
here. Note here that there is no need to compute all the 35 features if the
analysis chain user is only interested in detecting defects without more details
about all their characteristics. In this case, only features which contribute in
the selected combination need to be computed.

• Performances on the test database are then compared with the performances
obtained during the learning phase.

Performance evaluation

To evaluate the performance of a source in discriminating between two classes, the
well known Receiver Operating Characteristics (ROC) graphs and some statistical
classification rates are used. Additionally, a global classification rate dedicated to
industrial applications is proposed.

First let us consider two classes: true defects (i.e., positives) and false defects (i.e.,
negatives). Let: NP be the total number of positives, NN be the total number of neg-
atives, NTP be the total number of positives correctly classified (i.e., true positives),
NTN be the total number of negatives correctly classified (i.e., true negatives), NFN
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be the total number of positives incorrectly classified as negative (i.e., false negatives)
and NFP be the total number of negatives incorrectly classified as positives (i.e., false
positives).

Receiver operating characteristics curves ROC curves are useful for organizing
classifiers and visualizing their performance. One of the earliest adopters of ROC
curves in machine learning was Spackman [187], who demonstrated the value of ROC
curves in evaluating and comparing algorithms. Recent years have seen an increase
in the use of ROC curves in the machine learning community, in part due to the
realization that simple classification accuracy is often a poor metric for measuring
performance [188]. In addition to being a generally useful performance graphing
method, they have properties that make them particularly useful for domains with
skewed class distribution and irregular classification error costs. These characteristics
have become increasingly important as research continues into the areas of cost-
sensitive learning and learning in the presence of unbalanced classes [188].

ROC curves are two-dimensional graphs in which false positives rate fp is plotted
on the x-axis and true positives rate tp is plotted on the y-axis. Following are the
definitions of tp and fp:

tp =
NTP

NP
(4.29)

fp =
NFP

NN
(4.30)

The higher the value of area under the ROC curve is, the better is the ability by
using the corresponding source to separate between two classes. In figure 4.18 are
presented the ROC curve of the illustration example of figure 4.16, using feature
values (figure (a)) and using mass values (figure (b)) to construct the ROC curves.
Each point of the ROC curve corresponds to a different decision threshold applied
either on the feature values or on the mass values. A high threshold yields a low
number of false positives rate, but also a rather low number of true positives (left
part of the ROC curve). The area under ROC curve (AROC) can be used to select
the pertinent (or accurate) sources. An AROC = 1 represents a perfect classifier; an
AROC = 0.5 represents a worthless classifier.

Performance measures In order to measure the performance of a source (can be
a feature or a combination of features), a threshold Sm is first applied to the mass
value m(X ∈ H1). Remind that each input data point (i.e., suspicious region) whose
mass m(X ∈ H1) > Sm is classified as a true defect, otherwise it is classified as a
false defect. The classification results are then compared to the true decision given
by the expert (human inspector) and the following rates are computed:

• Correct decisions rate PCD (also called accuracy by [188]):

PCD =
NTP + NTN

NP + NN
(4.31)
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Figure 4.18.: (a) ROC curve obtained for the example of feature values shown in
figure 4.16. (b) ROC curve obtained for the same feature, after mass
attribution.

• True defects classification rate PTD, already defined as true positive rate tp:

PTD =
NTP

NP
= tp (4.32)

• False defects classification rate PFD:

PFD =
NTN

NN
= 1− fp (4.33)

• Apart from those classical classification rates, a new measure called overall
classification rate R is introduced in order to summarize the performance in
one single value, industrially relevant. It is defined as:

R =
Wtp · PTD +Wtn · PFD +Wc · PCD

Wtp +Wtn +Wc

(4.34)

The use of Wtp > 0, Wtn > 0 and Wc > 0 to compute the overall classification
rate R is driven by industrial requirements. It is very important in industrial in-
spection to detect as many real defects as possible, while preventing the increase
in the false alarm rate. Thus, the overall rate R is computed with Wtn = Wc = 1
and Wtp = 5 in order to put higher emphasis on true defects.

Related DFC results

The obtained results using DFC method were published during the doctoral thesis in
two journal papers [186, 189] and in conferences (appendix E). In the following, the
published work is briefed.

In reviewed publication [186], the DFC method was introduced and applied to clas-
sify 2D radioscopy images. It was compared with the Automatic X-ray Inspection
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System (ISAR) [190]. Obtained results in [191] showed that the use of DFC leads
to a significant improvement of classification performances with respect to the actual
system especially in false defects classification.

The paper presented at the 10th European Conference on Non-Destructive Testing
(ECNDT) [192] studied the stability and the optimization of DFC by changing two
internal parameters (derivation variation DV, percentage of points inside regions of
confidence Perc and the threshold Sm applied on the mass function). The optimum
parameters were investigated using the same radioscopy database used in [186]. The
optimal performance was given by DV=0 and Perc=0.1 and Sm had a small influence
on the optimization of the system. The DFC results outperformed the Support Vector
Machine (SVM) and ISAR.

The DFC method was additionally used to classify 3D Computed Tomography (CT)
datasets. Results showed high classification rates, of defects and false defects, and
they were reported in the conference paper [193] presented in the International Sym-
posium on Digital Industrial Radiology and Computed Tomography.

The most recent reviewed publication [189] reported about the possibility to improve
the DFC performance. The improvement approach was based on the selection of
most pertinent features based on the area under their corresponding ROC curves.
Performance was studied on 3D CT datasets and compared to SVM, where DFC
method showed comparable performance.

Lately, results given by applying the complete analysis chain proposed in this chapter
to segment and classify ultrasound SPA volumes of CFRP specimens were presented
in the International Symposium on Ultrasound in the Control of Industrial Processes
[194]. The classification of suspicious regions was done using the DFC method. The
paper will appear in the AccessIOP Conference Series: Materials Science and Engi-
neering published by the Institute of Physics Publishing in the United Kingdom.

Cautious and conjunctive rules comparison

The DFC method uses the non normalized Dempster rule (i.e., the conjunctive rule)
to combine the information sources. This rule assumes that sources are independent
and reliable. The reliability of the sources is not doubted in this research. Interested
readers can find more information about sources reliability in [195]. Concerning the
independence condition between sources (i.e., a piece of evidence is not shared by more
than one source), this condition is not always guaranteed. The cautious rule [185]
was proposed to overcome the independence assumption about combined sources.
This is due to the distributivity property of the cautious rule which implies that a
shared evidence is not counted twice (see equation 4.23). This paragraph presents
a comparison of the conjunctive rule with Cautious rule for the case of the DFC
method.

Let m1 and m2 be the two simple mass functions shown in table 4.1 attributed
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A m1(A) m2(A) q1(A) q2(A) w1(A) w2(A) w1∧2(A) m1∧©2(A) m1∩©2(A)
∅ 0 0 1 1 1 1 1 0 0
H1 a b 1 1 1− a 1− b 1− b b a+ b− ab
H2 0 0 1− a 1− b 1 1 1 0 0
H3 1− a 1− b 1− a 1− b 1− b (1− a)(1− b)

Table 4.1.: Table of combinations of mass functions using conjunctive and cautious
rules: 0 6 a 6 1; 0 6 b 6 1 and a 6 b.

to the hypotheses ∅, H1, H2 and H3 by two reliable sources. In this comparison,
m1 and m2 are simple mass functions (our case). Commonalities q1(A) and q2(A)
can be computed from the mass functions using equation 4.15. For example, the
commonality given by the first source to hypothesis H1 can be computed as follows:

q1(H1) =
∑
B⊇H1

m(B) = m1(H1) +m1(H3) = 1.

Weights are computed using equation 4.17. For example, the weight w1(H1) is given
as:

w1(H1) =

∏
B⊇H1,|B|∈2N q(B)∏
B⊇H1,|B|/∈2N q(B)

=
q1(H3)

q1(H1)
= 1− a

Considering that factor a 6 b will not reduce the generality of the demonstration. In
this case w1(H1) = 1− a is greater than w2(H1) = 1− b, and w1∧2(H1) is thus equal
to 1− b.

Thus, using the notation introduced in (4.12), Hw1∧2
1 = H1−b

1 yields the following final
mass values: {

m1∧©2(H1) = 1− (1− b) = b

m1∧©2(H3) = 1− b

Thus, the cautious rule in our case, simply selects the maximal mass value given to
the hypothesis H1. The rest is assigned to H3. This fact can be generalized to the
case of combination of all sources of information where the cautious rule will select
the maximum mass value from all available mass values (for simple mass functions
as ours).

As for the mass combination using the conjunctive rule, the application of equation
4.19 yields:

m1∩©2(H1) = m1(H1)m2(H1) +m1(H1)m2(H3) +m1(H3)m2(H1) = a+ b− ab

m1∩©2(H3) = m1(H3)m2(H3) = (1− a)(1− b)

The cautious rule will be used in the fusion step of the DFC method and will be
compared with the conjunctive rule. Moreover, the performance of the DFC method
will be compared with SVM classifier using the performance measures introduced in
equations 4.31–4.34.
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Support vector machine

Support Vector Machines (SVM) are a new generation learning system based on
recent advances in statistical learning theory. Support Vector Machines are among
the standard tools for machine learning and data mining [196].

They work in a two step process. The first is the training (with representative learning
data) where the support vectors are generated determining the optimal separating
hyperplane or set of hyperplanes with the maximum distance to these support vectors.
The second step is the regression/classification of unknown data in the features space.
Support Vector Machines can handle two or more classes. A Support Vector Machine
is a maximal margin hyperplane in feature space, built by using a kernel function in
input space. A detailed theoretical introduction to SVM can be found in [197] and a
good overview of two categories classification using SVM is presented in [198].

The SVM classifier used in this work, was obtained from [199] and is implemented
in a software library. The library includes different SVM kernels. It also includes a
routine to select the optimal kernel for different applications.

4.4. Conclusion

This chapter has introduced and explained the algorithms proposed to evaluate the
reconstructed 3D ultrasound data. The complete analysis chain is composed of a
segmentation followed by a classification procedure. The output of the chain is a list
of detected defects inside the volume with a features list describing the geometrical
and intensity properties of each defect. Next chapter will present the experimental
evaluation of the chain.
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This chapter presents the results obtained using the proposed analysis chain. Next
section will be devoted to explain the experimental environment of the work. The
remaining of the chapter is dedicated to present the experimental results of different
stages of the chain. The chapter ends with a discussion section.

5.1. Experimental environment

By experimental environment are meant the available datasets on which the analysis
chain is tested and the developed tools used for data segmentation and classification.

89
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5.1.1. 3D ultrasound datasets of CFRP specimens

The proposed approach is tested on the following two CFRP specimens:

• Specimen (denoted CFRP-8) of 8 mm thickness, presented in figure 5.1, which
contains:
- 25 circular shaped artificial defects (bottom drilled circular holes) with diam-
eters ranging from 7 mm to 20 mm and positions in z direction from 0.6 mm
to 6 mm.
- 5 border rectangular shaped artificial Iron (Fe) inclusions of size 13x30 mm2.

The specimen was scanned from the side without drilled holes.

• Specimen (denoted CFRP-14) of 14 mm thickness which contains 24 rectangular
shaped artificial defects, including delamination, at different z positions: at 0.6
mm, at 7.2 mm and at 13.7 mm (see figure 5.2).

Defects close to the surface and to the end of the specimens are considered difficult
to detect due to the influence of the entrance echo and backwall echo signals. Thus,
these two specimens are representative examples to show the performance of SPA
technology and the proposed chain for detecting and classifying defects which are
present in the reconstructed volume.
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Figure 5.1.: CFRP specimen of thickness 8 mm (CFRP-8): circular defects and rect-
angular inclusions.

The available volumetric data for this work are from two sources: EZRT and IZFP
laboratories. The volumes are presented in table 5.1 with their corresponding iden-
tification names (ID) and all available technical information. As it can be noticed,
different resolution, applied gain, volume dimensions and inspection speed are used.
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Figure 5.2.: CFRP specimen of thickness 14 mm (CFRP-14): defects at 0.6 mm, at
7.2 mm and at 13.7 mm z location.

ID Specimen Dimensions [x, y, z] Resolution [mm3] Gain [dB] Scan speed [mm/s] F [MHz] Technique

V14-15 CFRP-14 [310, 265, 31] [1, 1, 0.5] 14 15 5 SPA 1× 16

V14-70 CFRP-14 [310, 265, 31] [1, 1, 0.5] 17.5 70 5 SPA 1× 16

V14-100 CFRP-14 [310, 265, 31] [1, 1, 0.5] 17.5 100 5 SPA 1× 16

V14-IZFP CFRP-14 [316, 301, 341] [1, 1, 0.05] - - 5 SPA 1× 16

V8-21 CFRP-8 [339, 359, 43] [1, 1, 0.2] 21 30 5 SPA 1× 16

V8-22 CFRP-8 [345, 357, 161] [1, 1, 0.05] 22 10 5 SPA 1× 16

V8-24 CFRP-8 [339, 359, 46] [1, 1, 0.2] 24 30 5 CPA

Table 5.1.: Available 3D ultrasound data of CFRP specimens. The SPA 1× 16 refers
to the sampling phased array technique mode were one element trans-
ducer sends and all elements receive. The CPA refers to the use of the
conventional phased array technique.

5.1.2. Ultrasound data segmentation tool

The proposed algorithms of the segmentation approach are developed in C++ code
and integrated in a graphic user interface (GUI) framework. The GUI is developed
using Microsoft Foundation Class Library (MFC). The obtained tool, called Ultra-
sonic ImageProcessing, is shown in figure 5.3. Each step of the segmentation can be
called using the corresponding field in the image processing menu bar.

5.1.3. Data fusion classification tool

The classification approach based on data fusion is developed into a tool called Data
Fusion Classification (DFC) system. The tool is composed of C++ kernels integrated
in GUI developed using Qt application framework (see figure 5.4).
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Figure 5.3.: GUI of the ultrasound image processing tool with the image processing
menu including inner volume localization (i.e., detection of entrance and
backwall layers) and other segmentation steps.

The input of the DFC tool is the list of features measured during the segmentation
procedure. The translation from features values to mass values is done automatically
after loading the features. The user has the possibility to control all the classification
approach parameters (i.e., DV, Perc etc.). The tool can combine the mass values
given by different information sources using the following rules: conjunctive rule,
cautious rule and the statistical combination rules. The user has the possibility to
specify the decision threshold Sm which is applied on the mass value m(H1).

Moreover, the DFC tool gives the possibility to specify the required classification rates
(PTD, PFD, and R). The tool selects all the combinations which have a performance
higher or equal to the required performance. It furthermore selects the combination
which has the highest PTD, the combination which has the highest PFD and the
combination which gives the optimal overall rate R. In addition, the DFC tool allows
to test the performance of selected sources on a testing dataset.



5.2 Experimental results of the segmentation procedure 93

Wtp = 5
Wtn = 1
Wc = 1

m(H1) > (Sm=0.9)

PTD> 0.95
PFD> 0.9
PCD> 0.9

DV=0.2
Perc=0.1

Figure 5.4.: GUI of the DFC tool.

5.2. Experimental results of the segmentation
procedure

The segmentation steps are systematically applied on all input volumes. Illustra-
tive results will be shown for V14-IZFP, V14-70 and V8-22 CFRP volumes. The
segmentation results for the other volumes are in the corresponding appendixes.

5.2.1. Data correction results

First step of the segmentation procedure is the data correction.The interpolation
can be either applied in 2D or 3D. However, it is important to remind that the 3D
interpolation does not allow to interpolate all layers in the volume due to boundaries
issues. Following the 2D and 3D interpolations are to be quantitatively compared in
order to investigate the difference between both methods.

The volume V14-IZFP, acquired in IZFP laboratory, contains no invalid voxels.
Therefore, it can serve to evaluate the influence of the interpolations on real data
instead of simulated data. Table 5.2 reports the results obtained for 10 randomly
selected voxels inside the volume. Three important remarks can be elaborated from
this table:

• When the selected voxel is in a homogeneous region, such as voxel at coordinates
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Original volume 2D interpolation 3D interpolation

(x, y, z) Intensity dP Intensity Difference dP Intensity Difference dP
(51, 63, 9) 14686 348.46 14685 -1 348.52 32767 240 337.43

(199, 210, 278) 32767 0 32767 0 0 32767 0 0
(170, 183, 51) 3475 204.22 3724 249 230.69 3198 -277 214.01
(251, 264, 320) 23558 5469.3 14711 -8847 1262 12775 -10783 1415.9
(83, 26, 288) 13251 1675.6 8908 -4343 955.5 9445 -3806 865.6
(221, 190, 18) 3798 467.4 2577 -1221 156.7 2735 -1063 146.8
(269, 46, 87) 2581 502.4 1635 -946 392.8 1717 -864 369.7
(98, 272, 57) 1171 798.1 2310 1139 194.2 2336 1165 196.2
(248, 223, 90) 2494 467.6 3630 1136 220.9 3556 1062 213.3
(272, 206, 63) 5274 572.6 4212 -1062 279.9 4212 -1062 279.9

Table 5.2.: Original intensity of a randomly selected voxel at coordinates (x, y, z), 2D
and 3D interpolated intensities using a 2D and 3D modified median filter
(d = 1). For each interpolation, two parameters are given: the difference
between the original and interpolated intensities and the similarity mea-
sure dP between the voxels in the neighborhood of the considered voxel,
before and after interpolation. A null dp means that the region is homo-
geneous.

(199, 210, 278), both 2D and 3D interpolations are able to interpolate the exact
intensity of the voxel. Notice that dP is null in the original volume, i.e. the
voxel is in a completely homogeneous neighborhood.

• When the intensity of the voxel is much different than the neighboring voxels,
such as voxel at coordinates (83, 26, 288), the interpolated intensity values are
far from the original intensity. Thus, the difference between the interpolated 2D
and 3D intensities and original intensity is high. However, values of dP in 2D
and 3D are much less than in the original volume. Therefore, the interpolated
intensity is more similar to its surrounding.

• Although modifying the original intensity, the 2D and 3D interpolations improve
the similarity measure by giving in most cases a lower dP than in the original
volume.

Thus, the interpolations would either reduce the extreme values in the volume or give
a close interpolation to the original value in cases of homogeneous volumes. Figures
5.5 and 5.6 present respectively the difference and similarity measures obtained in case
of 30 randomly selected voxels. It can be clearly noticed that the difference measures
given by the 2D and 3D interpolations have globally similar values. Concerning the
similarity measures, both interpolations could repeatedly improve the similarity of
intensity to the surrounding.

Since the 2D and 3D interpolation have similar performance, later on, the data cor-
rection will be carried out using the 2D interpolation. Illustrative result of the data
correction step is presented in figure 5.7. The figure shows a layer at position z = 25
of the V8-22 volume. Notice that before correction (figure 5.7a), invalid voxels are
affecting the complete original layer including the defects zone. Invalid voxels cause
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Figure 5.5.: Difference between the 2D and 3D interpolated intensity values and the
original intensity values of 30 voxels randomly selected in the volume
V14-IZFP.

Figure 5.6.: Similarity measure between the 2D and 3D interpolated intensity values
of the selected voxel and the intensity values of the voxel’s surrounding
neighborhood.

sudden falls to zero inside the defects intensity values zone. The output of the data
correction algorithm, presented in figure 5.7b shows the successful removal of all
invalid voxels.

It is worth noting that the map of all corrected voxels is kept in memory in order that
after the whole processing, the final decision about a defect’s zone can be compared
with the map. If too many voxels of the defect belong to the map, the decision can
be considered as non valid.
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(a) (b) (c)

(d) (e) (f)

Figure 5.7.: V8-22: (a) xy view of the original layer at depth z = 25. (b) Corrected
layer (c) Map of the position of the interpolated voxels in the layer. (d)
Intensity profile corresponding to the red line tracker on the original layer.
(e) The intensity profile after correction. (f) Positions in the map of the
interpolated voxels along the line tracker.

5.2.2. Data enhancement results

After invalid voxels interpolation, the corrected volume is then filtered by consider-
ing separately median, M3 and NL-means filters applied with different kernels size.
Significant layers (i.e., low contrasted defects and high noise) of V14-IZFP and V8-22
will be used to select the optimal filters. The validation of the selected filters will be
done on a layer of V14-70.

Optimal filter selection on V14-IZFP

Median filter The median filter is applied on the corrected input layer of V14-IZFP.
Visual comparison is presented in figure 5.8. Median filters are qualitatively (visual
analysis) efficient in removing the impulsive noise. Nevertheless, the image structures
are lost especially at structures corners when the kernel size exceeds the size [7,7,1]
(i.e., d = 3).

Quantitative comparison is achieved via the data quality evaluation metrics. The
results of RMSE, NRF, PSNR and CNR are given in table 5.3. CNR is measured
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on the upper right side defect1 (red box in figure 5.8a). The maximal CNR value is
obtained using the kernel of size [7, 7, 1] (i.e., d = 3). Consequently, the use of this
kernels to filter the image should permit a better detection of defects inside the image
(however the maximal CNR value is rather low). As for NRF, it only measures the
noise reduction. Thus, NRF increases with the increase of the kernel size.

Median kernel RMSE NRF PSNR CNR M3 kernel RMSE NRF PSNR CNR
0 - - - 0.98 0 - - - 0.98
1 3.31 3.23 37.72 1.35 1 3.25 3.43 37.87 1.55
2 3.94 5.44 36.21 1.36 2 3.93 6.02 36.24 1.36
3 4.15 6.93 35.76 1.38 3 4.15 6.93 35.76 1.38
4 4.31 8.04 35.43 1.29 4 4.31 8.04 35.43 1.29
5 4.41 8.88 35.22 1.09 5 4.41 8.88 35.22 1.08

Table 5.3.: Quantitative evaluation metrics of the median and M3 filters on a layer
of the V14-IZFP volume for d = {1, 2, 3, 4, 5} .

The metrics PSNR and RMSE should be interpreted simultaneously because the
computation of the PSNR is based on the RMSE. When the kernel size increases,
the filtered image becomes more smoothed and more homogeneous in terms of noise
repartition. However, more smoothing corresponds to a higher loss of details in the
image. This means that the similarity between the original image and the filtered
image decreases. RMSE measures the degree of dissimilarity between images. Thus,
it increases (i.e., PSNR decreases) with the increase of the kernel’s size.

M3 filter Application of the M3 filter on the input layer yields the results presented
in the right part of table 5.3. Figure 5.9 gives a visual illustration. The M3 with
a kernel size [3, 3, 1] (i.e., d = 1) gives the best performance with the highest CNR,
PSNR and the lowest RMSE. Nevertheless, it has the lowest NRF.

Note that for d ≥ 3, filters M3 and median give the same result. This is related to the
definition of the M3 filter which is the maximal value between the mean and median
intensity inside the filtering block.

NL-means filter Based on the optimization work done by Coupé et al. [166], the
NL-means filter is tested for M = {3, 4, 5}, corresponding respectively to searching
windows of size [7, 7, 1], [9, 9, 1] and [11, 11, 1]. The block size varies between d =
{1, 2, 3}. The following notation is considered in order to facilitate the presentation
of results for all NL-means: NLMWiBj stands for a NL-means filter of a search
window with M = i and a block with d = j.

The block size specifies the local kernel around the voxel to process and the searching
window is the global zone inside which all the local neighborhoods are considered for
similarity measurement. Ideally, the bigger is the searching window size, the better

1This is the smallest defect in the image and has a low contrast.
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(a) Original layer (b) Median: d = 1 (c) Median: d = 2

(d) Median: d = 3 (e) Median: d = 4 (f) Median: d = 5

Figure 5.8.: Results obtained using median filters of different kernels size [2d+1, 2d+
1, 1] to filter a layer of the V14-IZFP volume. Important details and low
contrasted defects are lost when the kernel size exceeds [7,7,1]. The red
box in (a) corresponds to the zone where CNR is calculated.

NL-means RMSE NRF PSNR CNR
Initial Image - - - 0.98
NLMW3B1 3.7 5.38 36.67 1.92
NLMW3B2 3.14 3.71 38.17 1.55
NLMW4B1 3.94 6.51 36.21 2.12
NLMW4B2 3.78 5.5 36.56 1.99
NLMW4B3 3.15 3.71 38.14 1.54
NLMW5B1 4.09 7.36 35.88 2.56
NLMW5B2 4.01 6.65 36.05 2.18
NLMW5B3 3.8 5.54 36.51 1.94
NLMW5B4 3.16 3.72 38.12 1.52

Table 5.4.: Quantitative evaluation metrics of the NL-means filter on a layer of the
V14-IZFP volume.

is the filtering. However, for computational reasons, it is necessary to limit it. The
block size is more interesting to analyze because it corresponds more to the scale of
the similarity that is expected. The optimal block size is the one for which a lot of
similar neighborhoods can be found.
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(a) Original layer (b) M3: d = 1 (c) M3: d = 2

(d) M3: d = 3 (e) M3: d = 4 (f) M3: d = 5

Figure 5.9.: Results obtained with different kernels size M3 filters on a layer of the
V14-IZFP measure of CFRP-14. The red box in (a) corresponds to the
zone where CNR is calculated.

Visual comparison is provided in figure 5.10 which presents the output of the con-
figurations of the NL-means filter. As for quantitative evaluation, table 5.4 resumes
the obtained data quality evaluation metrics. It can be noticed that the NLMW5B1
gives the highest CNR and NRF.
The RMSE metric increases (i.e., PSNR decreases) when the window size increases.
Inversely, RMSE decreases when the block size increases. The same tendency is ob-
served for NRF. This can be interpreted by the fact that the filter is more severe
(higher smoothing) when the searching window increases, but only for a small block
size. When the block size is too high, there are no more similar neighborhoods in
the searching zone. Visually, it is clear that when d increases, the smoothing of the
image does not increase. The smoothing of the image (i.e. the severity of the filter)
increases when M increases for d = 1 only.

CNR measures simultaneously the defect’s contrast and the noise reduction. Thus,
CNR describes better the objective of the data enhancement step. Consequently, the
final decision about the optimal filter will be principally based on CNR.

The values of the evaluation metric CNR in table 5.4 suggest that, the NL-means filter
NLMW5B1 (M = 5 and d = 1) gives the optimal performance with a CNR=2.56.
This CNR value is higher than all CNR values given by the median, M3 and other
NL-means configurations.
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(a) Original layer

(b) NLMW3B1 (c) NLMW3B2 (d) NLMW4B1

(e) NLMW4B2 (f) NLMW4B3 (g) NLMW5B1

(h) NLMW5B2 (i) NLMW5B3 (j) NLMW5B4

Figure 5.10.: Results obtained with different configurations of the NL-means filter on
a layer of the V14-IZFP volume. The red box in (a) corresponds to the
zone where CNR is calculated.
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Optimal filter selection on V8-22

The same procedure is followed for the V8-22 volume, where a noisy layer containing
defects of different sizes is considered. In this layer appears the smallest defect in the
CFRP-8 specimen. The metric CNR is measured for this defect which has a diameter
of 7 mm (see figure 5.11a).

First, results obtained by applying the median and M3 filters are presented. Both
filters have similar effects on this layer. Visual assessment, as given in figure 5.11 and
5.12, reveals a strong blurring and defects distortion with the increase of the kernel
size.

(a) Original layer (b) Median: d = 1 (c) Median: d = 2

(d) Median: d = 3 (e) Median: d = 4 (f) Median: d = 5

Figure 5.11.: Results obtained using median filters of different kernels size to filter a
layer of the V8-22 volume of CFRP-8. The 7 mm defect (red box) is
severely eroded and the image becomes very blurred when the kernel
size exceeds [7,7,1].

Quantitative evaluation metrics for the median and M3 filters are presented in table
5.5. Clearly, the M3 filter for d = 1 has the best performance in comparison with
other configurations of the M3 and median filters. Moreover, notice the reduction in
CNR which occurs when the size of the filtering kernel increases.

As for the NL-means filter, figure 5.13 is given for visual comparison. Quantitative
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(a) Original layer (b) M3: d = 1 (c) M3: d = 2

(d) M3: d = 3 (e) M3: d = 4 (f) M3: d = 5

Figure 5.12.: Results obtained using M3 filters of different kernels size to filter a layer
of the V8-22 volume. The 7 mm defect (red box) is severely eroded and
the image becomes very blurred when d > 3.

Median kernel RMSE NRF PSNR CNR M3 Kernel RMSE NRF PSNR CNR
0 - - - 1.64 0 - - - 1.64
1 1.87 0.84 42.67 1.76 1 1.82 0.86 42.88 2.03
2 1.94 1.25 42.36 1,6 2 1.93 1.31 42.37 1.6
3 2.12 1.65 41.58 1.38 3 2.12 1.65 41.58 1.38
4 2.2 2.05 41.27 1.28 4 2.2 2.05 41.27 1.28
5 2.35 2.5 40.68 1.25 5 2.35 2.5 40.68 1.25

Table 5.5.: Quantitative evaluation metrics of the median and M3 filters on a layer
of the V8-22 volume.

comparison is presented in table 5.6. Yet again, NLMW5B1 gives the highest value
of CNR=3.22.

Validation on V14-70

The analysis of the previously shown results indicates that the NLMW5B1 is the
optimal filter for data enhancement. As for the median and M3 filters, it appears
that the M3 of size [3, 3, 1] gives the best performance between all configurations of
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(a) Original layer

(b) NLMW3B1 (c) NLMW3B2 (d) NLMW4B1

(e) NLMW4B2 (f) NLMW4B3 (g) NLMW5B1

(h) NLMW5B2 (i) NLMW5B3 (j) NLMW5B4

Figure 5.13.: Results obtained with different configurations of the NL-means filter on
a layer of V8-22.
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NL-means RMSE NRF PSNR CNR
Initial Image - - - 1.64
NLMW3B1 1.97 1.29 42.2 2.59
NLMW3B2 1.85 0.98 42.78 2.2
NLMW4B1 2.15 1.53 41.47 2.84
NLMW4B2 2 1.33 42 2.69
NLMW4B3 1.85 0.98 42.74 2.17
NLMW5B1 2.18 1.76 41.33 3.22
NLMW5B2 2.18 1.58 41.33 3.19
NLMW5B3 2.01 1.35 42.04 2.72
NLMW5B4 1.86 0.98 42.73 2.19

Table 5.6.: Quantitative evaluation metrics of the NL-means filter on a layer of the
V8-22 volume.

these two filters.

To validate the obtained results, the NLMW5B1 and M3 of size [3, 3, 1] are tested on
a layer of the V14-70 volume. Low contrasted defects, large artifacts and high noise
exist in this layer as shown in figure 5.14a.

Visual comparison of the filtered layers can be seen in figure 5.14. Qualitatively, it
is clear that the NLMW5B1 filter effectively removes the noise, while the M3 filter
partially removes the noise. Nevertheless, the NL-means filter tends to dilate the
borders of structures as it can be seen in the difference image. When the defect is close
to an artifact, the dilation caused by the NL-means could provoke the attachment
of their voxels. In this case, there is a risk to wrongly classify this defect as a false
alarm.

Quantitatively (see table 5.7), the NLMW5B1 much improves the defects detectability
with a CNR=4.75 instead of a CNR=1.15 in the original image. The M3 filter has
lower CNR value (CNR=2.16).

Later on, the NLMW5B1 filter is used in the data enhancement step of the analysis
chain.

NL-means RMSE NRF PSNR CNR
Initial Image - - - 1.15
M3 (d = 1) 14.88 0.95 24.67 2.16

NLM (M = 5, d = 1) 16.37 1.11 23.84 4.75

Table 5.7.: Data enhancement evaluation metrics for the NL-means filter NLMW5B1
(M = 5, d = 1) and M3 (d = 1) obtained on the validation layer of the
V14-70 volume.
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(a) Original layer (b) M3: d = 1 (c) NLMW5B1

Difference image:

(d) Original - M3 denoised
layer

(e) Original - NLMW5B1 de-
noised layer

Figure 5.14.: Comparison of the M3 filter and the NL-means filter on a layer of the
V14-70 measure of CFRP-14. The CNR is measured on the defect inside
the red box. The blue box surrounds a defect which is close to a large
artifact. The NLMW5B1 dilates this defect which could provoke the
attachment of voxels of the defect and the artifact.

5.2.3. Entrance and backwall layers detection results

Using the NL-means filtered volume ṽ, the mean volume is first computed. Afterward,
the EE and BWE layers are to be automatically located.

Next, results of the EE and BWE layers detection are discussed only for the V14-
IZFP volume. Results for the remaining volumes are presented in appendix C. Table
5.8 resumes the results of this step.

V14-IZFP

This volume corresponds to the 14 mm thick CFRP specimen. It has a voxel size of
[1,1,0.05] mm3, thus 20 layers in z direction represent 1 mm of thickness. The first
layer of the volume is at z = 0. The backwall slice (last layer of the backwall) should
be at z = 279 which corresponds to a thickness of (279 + 1) · 0.05 = 14 mm.

Applying the proposed algorithm yields the output presented in figure 5.15: the last
layer of the BWE is at z = 269 which means that the thickness of the specimen is



106 5.2 Experimental results of the segmentation procedure

ID Resolution in z [mm] start of ṽin [mm] end of ṽin [mm] BWE slice [mm] Estimated thickness [mm] Error [mm]

V14-15 0.5 1 13.5 13.5 to 14 14 0

V14-70 0.5 1 13.5 13.5 to 14 14 0

V14-100 0.5 1 13.5 13.5 to 14 14 0

V14-IZFP 0.05 0.8 13.1 13.45 to 13.5 13.5 -0.5

V8-21 0.2 0.4 7.4 7.6 to 7.8 7.8 -0.2

V8-22 0.05 0.06 7.3 8 to 8.05 8.05 +0.05

V8-24 0.2 0.8 7.2 7.6 to 7.8 7.8 -0.2

Table 5.8.: Results of EE and BWE detection obtained on all the input volumes.

13.5 mm; Thus, there is a 0.5 mm thickness estimation error. Defects within this
depth will not be detected. Remind that layers after the BWE slice are not useful,
they are present in the volume because the maximal depth (z = T ) in the sampling
software is set to a value higher than the specimen’s thickness.

EE Volume

BWE Volume

BWE slice

Inner volume

x

z

y

Figure 5.15.: Outputs of the Ultrasound Image processing tool for the volume V14-
IZFP: the EE volume, the inner volume z start and z end, the BWE
volume and the position z of the BWE slice (last layer of the backwall
at z = 269 (13.45 to 13.5 mm).

Notice in figure 5.16 the remaining effect of the BWE (traces) in the inner volume.
These BWE traces have high contrast and could form large artifacts and potentially
get attached to some nearby defects, especially because the NL-means filter tends to
dilate structures. This issue will be addressed later on.

Although minimal errors in locating EE and BWE remain (see table 5.8), the impor-
tant point for us is to keep all defects present in the specimens in the inner volume.
Among all the acquisitions, only one inclusion was missed as it was considered part
of the BWE volume. This occurred in the volume V8-24 which might be due to the
CPA acquisition mode which apparently is less favorable to such defects which are
close to the end of the specimen.
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(a) Meanz=259=9467 (b) Meanz=260=10661 (c) Meanz=261=111501

(d) Meanz=262=13781 (e) Meanz=263=16104 (f) Meanz=264=18727

Figure 5.16.: V14-IZFP: comparison of last three layers of the inner volume (a,b,c)
and first three layers of the BWE (d,e,f). Notice the strong influence of
the BWE echoes which affects layers close to the end of the specimen.

5.2.4. Thresholding results

First, the thresholding step requires to select a reference zone (without defect) inside
the filtered inner volume. Afterward, the hysteresis thresholds TL and TH can be
computed.

In order to find the optimal thresholds selection, a study (manual classification) of all
output labeled volumes obtained for every thresholds selection was carried out. Here,
from the total number of suspicious regions, the number of detected defects (NTP)
and the number of false positives2 (NFP) were computed and analyzed. The optimal
thresholds selection should give the highest value of NTP and the lowest value of
NFP. Next, the results for the three illustrative volumes are discussed. Results for
the remaining volumes can be found in appendix D. Note that the possible thresholds
selections which did not provide an NTP higher than 90 % of the total number of
positives (NP) will not be mentioned in the tables.

2Reminder: a false positive (i.e., false alarm) is a suspicious region which is not a defect but was
misclassified as a defect by the classifier.
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V14-IZFP

The selected reference zone Zref inside ṽin is presented in figure 5.17a. The hysteresis
threshold dialogue box is presented in figure 5.17b. It allows to specify the dimensions
of the reference zone, to select the values of TL and TH and needs the dimensions of
the enhancing filter (i.e., NLMW5B1) as additional information. This information
is required in order to specify the borders of the filtered volume. The non filtered
borders are excluded from the binary volume. Remind that, in this volume the
number of defects is NP=24. Table 5.9 resumes the output of the thresholding step
for selections of TL and TH which satisfy the condition on the number of NTP.

Hysteresis thresholds NTP NFP

TL = 2 ·mean[Zref ], TH = 3 ·mean[Zref ] 22 18

TL = 3 ·mean[Zref ], TH = 3 ·mean[Zref ] 22 25

Table 5.9.: Number of defects (NTP > 21) and false positives (NFP) obtained by
hysteresis thresholds applied on the volume V14-IZFP.

On the first hand, it can be surprising that low thresholds did not provide enough high
NTP. Indeed, a low threshold should allow to detect all true defects, at the expense of
a high number of false alarms. This is not the case here because a very low threshold
effectively detect the defects, however, they are all connected to large artifacts (such
as BWE artifacts) and thus, they are manually classified as false defects.

Results proved that for this volume, a TL equal to double of the mean intensity and
a TH equal to triple of the mean intensity inside Zref give the optimal results. The
output of the thresholding method is presented in figure 5.18, where the number
of found suspicious regions (labels) is: NTP+NFP=40. Notice that the amount of
artifacts dramatically increases in layers at the end of the inner volume because of
the influence of the BWE traces. This is the reason behind the loss of two defects
which are located near the backwall.

In fact, for the selection of TL = 2 ·mean[Zref ] and TH = 3 ·mean[Zref ], all defects
do appear (i.e., set as foreground) in the binary volume. Nevertheless, two of them
get attached to nearby large artifacts and they are labeled with the artifact as one
suspicious region.

To further explain the effect of the BWE traces, let us take a look on 2D views of
the layers presented in figure 5.19. The BWE traces have high intensity values and
are set as foreground. While some artifacts corresponding to the BWE traces are
isolated, other large artifacts get attached to the neighboring two defects. This cause
the loss (see red dotted box) of these two defects. Another smaller artifact distorts
the shape of another defect (see red box).
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(a)

(b)

Figure 5.17.: (a) V14-IZFP: selection of the reference zone using the red rectangular
tracker. (b) Dialogue box corresponding to the hysteresis thresholding
method containing the possibilities: to select the reference zone, setting
TL and TH and the specify the borders of the filtered volume. The non
filtered borders are excluded from the binary volume.
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defect

BWE artifact

x

y

z

Figure 5.18.: V14-IZFP: 3D view of labeled suspicious regions (label=intensity value)
where defects and artifacts can be seen. Total number of suspicious
regions (NTP+FTP) is 40.

(a) Inner volume at z = 255 (b) Inner volume at z = 256 (c) Inner volume at z = 260

(d) Binary volume at z = 255 (e) Binary volume at z = 256 (f) Binary volume at z = 260

Figure 5.19.: V14-IZFP: Artifacts caused by the BWE traces in the inner volume
at different z locations close to BWE (a,b,c) and their corresponding
binary layers (d,e,f). Two defects (dotted box) are lost because they get
connected to the voxels of the remaining traces of the BWE. Another
smaller artifact distort the shape of the defect surrounded by a red box
(still considered as true defect).
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V14-70

The results of the hysteresis thresholds applied on the inner volume intensities of V14-
70 indicated that the hysteresis thresholds selection which gave the required NTP is
again: TL = 2 · mean[Zref ] and TH = 3 · mean[Zref ] (table 5.10). For this output
volume, the number of suspicious regions is 45. However, two defects were missed:
a) as presented in figure 5.20, one very low contrasted defect does not appear in the
binary volume when using this thresholds selection. b) one defect near the backwall
get attached to the backwall artifact.

The manual threshold option was used to ensure the appearance of the low contrasted
defect. Figure 5.21 shows the result where the low contrasted defect is clearly visible.
Nevertheless, as presented in figure 5.22, the number of detected suspicious regions
increases to 105 (NTP=23 and NFP=82) due to the less hard threshold applied on
the intensity values. This of course gives more artifacts set as foreground.

Note that in this case, the user needs to select another reference zone in order to
measure the features which need a reference zone. Figure 5.23 shows the results after
thresholding for the first two layers and the last layer of the inner volume. It can be
seen that in the last layer, one defect is attached to the artifact of the BWE.

(a) (b)

Figure 5.20.: (a) V14-70: selection of the reference zone without defects. (b) View
of the corresponding layer in the obtained binary volume using TL =
2 · mean[Zref ] and TH = 3 · mean[Zref ]. The low contrasted defect
(pointed at by the blue arrow) is missing in the binary volume.
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Hysteresis thresholds NTP NFP
TL = 2 ·mean[Zref ], TH = 3 ·mean[Zref ] 22 23

Table 5.10.: Number of defects (NTP>21) and false positives (NFP) obtained by the
hysteresis threshold applied on the volume V14-70.

(a) (b)

Figure 5.21.: (a) V14-70: selection of the low contrasted defect to compute TH and
TL as TH = TL = Mdef. (b) View of the binary layer where all defects
are seen.

x

y

z

defect
artifact

Figure 5.22.: V14-70: 3D view of labeled suspicious regions (label=intensity value)
obtained using the low contrasted defect to select the thresholds. Total
number of suspicious regions is 105.
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(a) Inner volume at z = 2 (b) Inner volume at z = 3 (c) Inner volume at z = 26

(d) Binary volume at z = 2 (e) Binary volume at z = 3 (f) Binary volume at z = 26

Figure 5.23.: V14-70: (a,b) first and second layers in the inner volume (near the EE
volume). (c) Last layer of the inner volume near the BWE slice (at
z = 27). (d,e) binary layers obtained for the first two layers of the inner
volume. (f) Binary layer near the backwall slice. Note that one defect
gets attached to the BWE artifact (red dotted box).

V8-22

The number of defects inside this volume is NP=30. The selected reference zone Zref
without defects is presented in figure 5.24. As reported in table 5.11, three selections
allowed to have NTP=30. Nevertheless, two selections gave the lowest NFP, one of
them is the selection of: TL = 2 · mean[Zref ] and TH = 3 · mean[Zref ]. For this
selection, all defects are seen, even their ghosts (i.e., reverberations of reflectors)
appear when their amplitude is higher than the threshold TH .

Hysteresis thresholds NTP NFP

TL = mean[Zref ] , TH = 3 ·mean[Zref ] 30 17

TL = 2 ·mean[Zref ], TH = 3 ·mean[Zref ] 30 17

TL = 3 ·mean[Zref ], TH = 3 ·mean[Zref ] 30 19

Table 5.11.: Number of defects (NTP ≥ 27) and false positives (NFP) obtained by
different hysteresis thresholds selections applied on the volume V8-22.
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(a) Inner volume at z = 17 (b) Binary volume at z = 17

Figure 5.24.: V8-22: (a) Selection of the reference zone used to compute the hysteresis
threshold TL and TH . (b) Output binary layer for TL = 2 ·mean[Zref ]
and TH = 3 ·mean[Zref ]

Figure 5.26 shows the 3D binary volume, where in total 47 suspicious regions were
detected. Note that, for layers at z = {12, 13, 14}, not all five defects which are
present in these layers appear in the corresponding binary layers. The selected hys-
teresis threshold failed to set them as foreground in these layers. However, all five
defects start to appear in the binary layer at depth z = 15 (see figure 5.25).

Thresholding results for the other volumes can be found in appendix D.

The analysis of all obtained results revealed that the following thresholds selection:
TL = 2 ·mean[Zref ] and TH = 3 ·mean[Zref ] gives very good results (high NTP and
low FTP). Only three low contrasted defects were missed from the inner volumes
when applying this selection. Those defects were successfully detected by selecting
them as zones to compute the thresholds such that: TL and TH are equal to the mean
intensity inside the selected defect’s zone. Naturally, this came at the cost of larger
amount of false positives.

For the next stages, it was decided to take the thresholding selections for which all
existing defects inside the input inner volumes were considered as foregrounds. This
means more artifacts that needs to be distinguished from the real defects. However,
the aim of the classification procedure is to successfully classify these artifacts as false
defects. Table 5.12 resumes the results considered for the ulterior stages.
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(a) Inner volume at z =
12

(b) Inner volume at z =
13

(c) Inner volume at z =
14

(d) Inner volume at z =
15

(e) Binary volume at
z = 12

(f) Binary volume at
z = 13

(g) Binary volume at
z = 14

(h) Binary volume at
z = 15

Figure 5.25.: V8-22: (a,b,c,d) Layers of the inner volume near the EE layers. (e,f,g,h)
Binary layers obtained using TL = 2·mean[Zref ] and TH = 3·mean[Zref ].
Some defects are not seen in the binary volume until z = 15.

defect

ghost

x

y

z

Figure 5.26.: V8-22: 3D view of labeled suspicious regions (label=intensity value)
where defects and their ghosts can be seen. Total number of suspicious
regions is 47.
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ID TL TH suspicious regions NTP NFP lost defects reason of loss

V14-15 Mdef Mdef 94 23 71 1 attachment to a BWE artefact

V14-70 Mdef Mdef 105 23 82 1 attachment to a BWE artefact

V14-100 Mdef Mdef 180 23 157 1 attachment to a BWE artefact

V14-IZFP 2 ·mean[Zref ] 3 ·mean[Zref ] 40 22 18 2 attachment to a BWE artefact

V8-21 2 ·mean[Zref ] 3 ·mean[Zref ] 77 30 47 0 -

V8-22 2 ·mean[Zref ] 3 ·mean[Zref ] 47 30 17 0 -

V8-24 2 ·mean[Zref ] 3 ·mean[Zref ] 36 29 7 1 defect is part of the BWE volume

Table 5.12.: Results of thresholding obtained for all the input volumes.

5.2.5. Features extraction results

The final step of the segmentation procedure is to characterize each suspicious region
by a list of features in order to classify it as defective or not. Illustrative features,
damage index (DI) and elongation in yz plane (Eyz), are presented in figures 5.27
and 5.28 for V14-70 and V8-22. In figure 5.27, it can be seen that defects have
a high DI and artifacts (false defects) have a low DI. Defects in V14-70 have high
Eyz = Lyz/Wyz values while defects in V8-22 has low Eyz values. The reason is that,
defects in V14-70 are thin delaminations (elongated shape with thin width and high
length). While in V8-22, most defects are bottom drilled circular holes which have
nearly the same length and width (elongation values are around 1).

Figure 5.27.: (a) Damage Index (DI) values of suspicious regions found in the volume
V14-70. (b) DI values for suspicious regions found in V8-22.
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Figure 5.28.: (a) Elongation in yz plane (Eyz) values of suspicious regions found in
the volume V14-70. (b) Eyz values for suspicious regions found in V8-22.

5.3. Experimental results of the classification
procedure

The classification methods DFC and SVM are supervised processes. They need to be
trained and tested on inputs of known classes. Thus, suspicious regions were manually
classified into TD or FD.

The classification procedure will be conducted separately for the CFRP-14 specimen
(V14-IZFP, V14-15, V14-70, V14-100) and for the CFRP-8 specimen (V8-21, V8-22,
V8-24). The methodology, for each specimen, is to merge all the suspicious regions (or
potential defects) of the corresponding input volumes into one dataset. Afterward,
the resulting dataset is divided (separation: odd IDs, even IDs) into two datasets on
which the learning and testing phases are done.

5.3.1. Results for CFRP-14

The suspicious regions obtained for segmented volumes V14-15, V14-70, V14-100 and
V14-IZFP are merged into one dataset forming a total of 419 potential defects. The
dataset contains 91 TDs and 328 FDs. Next, it is divided into learning and testing
datasets:

• Learning dataset: 212 potential defects consisting of 164 FDs and 48 TDs.

• Testing dataset: 207 potential defects consisting of 164 FDs and 43 TDs.



118 5.3 Experimental results of the classification procedure

At first ROC curves are built, for the learning dataset, to give us a primary idea
about the accuracy of the measured features. The ROC curves for feature values are
built using thresholds on the feature values. The ROC curves for mass values are
build using thresholds on the obtained mass values from the learning phase. Remind
that the first step of the learning phase is the elaboration of the regions of confidence
which allow the translation from feature values to mass values. An example of the
output of this step is presented in figure 5.29.

Figure 5.29.: Regions of confidence elaborated during the learning phase (DV=0 and
Perc=0.1) for the features: (a) Eyz. (b) MISRadius.

The AROC for all sources of information (using original feature values and mass values
to build the ROC curves) is presented in figure 5.30. In this figure, features are
referred to by their identification numbers (see tables B.1 and B.2). Remind that the
AROC informs about the accuracy of the source and corresponds to the probability of
correctly identifying the TDs and FDs [200]. Thus, the AROC will be used to select
features which satisfy the condition (AROC ≥ 0.9). The aim of this selection is to
improve the classifiers performance [189].

Classification using all features

The learning phase for DFC and SVM is at first done using all measured features.
Afterward, the testing phase takes place. The optimal performance for the DFC
system is given for values of DV=0 and Perc=0.1 as demonstrated in [186]. Con-
cerning the threshold Sm on the mass value, different thresholds are applied Sm =
{0.6, 0.7, 0.8, 0.9}. The threshold which gives the best performance is specified.

Results obtained by the DFC method are reported in table 5.13.

On the learning dataset: the statistical combination rules have very high FDs clas-
sification rates (PFD). However, they have low TDs classification rates (PTD). The
reason is that the majority of the individual sources (features) assign low mass values
to the true defect hypothesis (H1) and they assign high mass values to the ignorance
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Figure 5.30.: CFRP-14: Area under ROC curves for feature values and their corre-
sponding mass values. Mean value of the area under ROC curves for
features is 0.791. Mean value of the area under ROC curves for mass
values is 0.85.

hypothesis.
The DS fusion (DSF) of all the sources almost classify all inputs as TDs. It has a
PFD close to zero. In fact, using the Dempster rule for the whole set of 35 features is
wrong here because they are not all independent sources. Thus, if several sources are
dependent, the same piece of information can be counted twice which yields a higher
mass on the hypothesis H1.
The DSF of the three maximal mass values is compared with the cautious rule. In
fact, in DFC method, the cautious rule selects the maximal mass value among all
mass values attributed to H1 by the sources of information. Comparison of the re-
sults show that the cautious rule has an overall rate (R) which overcomes the R given
by the DSF{3 max mass}.
The best source for TDs classification is the DSF of features 14 (Eyz) and 15 (MIS-
Radius) with a PTD=1. This combination also has the highest overall rate R=0.984.
Note that these two features do not have AROC ≥ 0.9. However, when combined,
they give the optimal performance. Another remark is that, these two features are
indeed independent. The DSF of features 12 (Exy) and 29 (CSMax) gives the highest
FDs classification (PFD=0.981) rate. Those two features are independent (geomet-
ric/intensity features) and both got an AROC > 0.9.

On the testing dataset: the statistical combination rules have the same behavior.
They give a high PFD and a low PTD. Same for DSF{all sources}, its performance is
the same as on the learning dataset. Concerning the DSF{3 max mass} and cautious
rule, it is clear that both combinations have a drop in their PFDs rates. However,
the cautious rule is still giving a better overall rate than the DSF{3 max mass}.
The overall rate for the DSF {14&15} is slightly reduced because of the drop in the
PFD, nevertheless PTD is kept at value 1, which means a perfect classification of



120 5.3 Experimental results of the classification procedure

DV=0, Perc=0.1 Learning phase Testing phase

Source PTD PFD R PTD PFD R
DSF{12&29} [Sm=0.8] 0.958 0.981 0.964 1 0.93 0.982
DSF{14&15} [Sm=0.8] 1 0.94 0.984 1 0.896 0.973
Cautious rule [Sm=0.9] 0.979 0.975 0.979 1 0.786 0.945
DSF{3 max mass} [Sm=0.9] 1 0.756 0.938 1 0.6 0.89
DSF{all sources} [Sm=0.9] 1 0.05 0.76 1 0.06 0.759
Median mass [Sm=0.6] 0.66 0.99 0.749 0.465 0.981 0.597
Mean mass [Sm=0.6] 0.395 1 0.548 0.209 1 0.411

Table 5.13.: CFRP-14: performance of DFC combinations using all available features
for learning and testing of DFC method. Combinations are sorted by
decreasing overall rate R obtained on the testing dataset.

true defects.
For DSF{12&29} which represents the best source for FDs classification, the PTD
increases to 1 on the testing dataset while PFD decreased, still the overall rate R for
this source increased due to the increase in the PTD rate. The fact that these last two
combinations could give a perfect TDs classification while maintaining a classification
rate of FDs (PFD≥ 0.89) is a very promising result for industrial applications. Still
some optimization could be done to improve PFD. A further important remark is
the fact that both sources have a stable overall performances despite the fact that
the datasets are unbalanced. This is also interesting for industrial applications where
usually there is a lack of TDs comparing to the large amount of FDs.

The performance of the SVM on the testing dataset, after being trained on the same
learning dataset, is presented in table 5.14. The PTD given by the SVM on the
testing dataset is limited to 0.976 while it gives a PFD higher than the PFD values
given by the sources of DFC system. However, the overall rate for the SVM is lower
than the R given by DSF{12&29}.

Testing phase PTD PFD R
SVM 0.976 0.957 0.971

Table 5.14.: CFRP-14: SVM performance on the testing dataset using all available
features.

Classification using selected features

In the next section, selected features with AROC ≥ 0.9 are used to train the classifiers.

Selection from feature values The analysis of values of the area under ROC for
feature values, in figure 5.30, reveals that 14 features (1, 2, 6, 7, 6, 9, 12, 16, 20, 21,
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23, 26, 27, 29, 30 and 34) have an AROC ≥ 0.9, thus they are considered to be more
reliable sources of information. As in the previous section, learning and testing takes
place but this time only using these features. Performances for DFC and SVM are
respectively reported in tables 5.15 and 5.16.

DV=0, Perc=0.1 Learning phase Testing phase

Source PTD PFD R PTD PFD R
DSF{12&29} [Sm=0.8] 0.958 0.981 0.964 1 0.93 0.982
Cautious rule [Sm=0.9] 0.979 0.975 0.979 1 0.871 0.967
DSF{all sources} [Sm=0.9] 1 0.841 0.959 1 0.762 0.939
DSF{3 max mass} [Sm=0.8] 1 0.871 0.967 1 0.75 0.935
Median mass [Sm=0.6] 0.833 0.987 0.872 0.837 0.957 0.867
Mean mass [Sm=0.6] 0.833 0.987 0.872 0.813 0.969 0.853

Table 5.15.: CFRP-14: performance of DFC combinations using features with
AROC ≥ 0.9 for learning and testing of DFC method. Combinations
are sorted by decreasing overall rate R obtained on the testing dataset.

Testing phase PTD PFD R
SVM 0.976 0.981 0.978

Table 5.16.: CFRP-14: SVM performance on the testing dataset using features with
AROC ≥ 0.9.

For the DFC method, notably the performances of all the combinations was improved.
This is certainly due to the fact that the independence of the sources is better re-
spected here. The mean and median combinations became much more reliable. This
is because all the sources are reliable. They assign a high mass value to TDs and a low
mass value to FDs. This reason is also behind the amelioration of DSF{all sources}
and DSF{3 max mass}. As for the cautious rule source, its overall rate increased due
to the improvement in the PFD. Still, the optimal performance is given by the fea-
tures combination DSF{12&29} having the same performance as presented in table
5.13. The SVM performance (table 5.16) had a slight improvement in the overall rate
because of the increase in the PFD rate. However, the PTD rate given by the SVM
did not improve. This result is different to what was obtained in our previous study
[189]. In [189], a great improvement in the SVM’s PTD rate was achieved when the
SVM was trained on pertinent features which were selected based on the AROC of
feature values.

Selection from mass values By using the mass values to build the ROC curves, 16
features (2, 3, 4, 6, 7, 9, 12, 16, 20, 21, 22, 23, 27, 29, 30 and 34) become more reliable
(AROC ≥ 0.9). Globally, the pertinence of the majority of the sources is improved. In
fact, the mean value of all areas under ROC curves for feature values (mean(AROC for
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feature values)=0.791) is less than the mean value of all areas under ROC curves for all
mass values (mean(AROC for mass values)=0.85). Thus, the translation from feature
values to mass values via the proposed mass attribution method [186] improves the
pertinence of several features. Results for the DFC system and SVM are respectively
reported in tables 5.17 and 5.18.

DV=0, Perc=0.1 Learning phase Testing phase

Source PTD PFD R PTD PFD R
DSF{12&29} [Sm=0.8] 0.958 0.981 0.964 1 0.93 0.982
Cautious rule [Sm=0.9] 0.979 0.975 0.979 1 0.81 0.953
DSF{3 max mass} [Sm=0.8] 1 0.865 0.966 1 0.743 0.934
DSF{all sources} [Sm=0.9] 1 0.804 0.95 1 0.695 0.921
Median mass [Sm=0.6] 0.854 0.987 0.88 0.837 0.975 0.872
Mean mass [Sm=0.6] 0.791 0.987 0.841 0.79 0.975 0.838

Table 5.17.: CFRP-14: performance of DFC combinations using features with AROC
for mass values higher or equal to 0.9 for learning and testing of DFC
method. Combinations are sorted by decreasing overall rate R obtained
on the testing dataset.

Testing phase PTD PFD R
SVM 0.976 0.969 0.974

Table 5.18.: CFRP-14: SVM performance on the testing dataset using features with
AROC for mass values higher or equal to 0.9.

While the DSF{12&29} is still the source with the optimal performance, the overall
rate of the cautious rule source decreased (lower PFD rate) compared to the previous
results obtained using features with AROC ≥ 0.9 for feature values. Same is the case
for DSF{all sources} and DSF{3 max mass}. However, all DFC combinations were
improved compared to the case when the training was done using all features.

As for the SVM classifier, it was noticed that its performance slightly decreased (lower
PFD rate) compared with the performance obtained using features with AROC ≥ 0.9
for feature values. Still, the SVM’s performance was slightly improved compared
with the performance obtained using all features to train the SVM. In all cases, SVM
could not outperform the DSF{12&29} given by the DFC method.

5.3.2. Results for CFRP-8

Difficulty for the CFRP-8 specimen case is the presence of ghost artifacts inside the
corresponding measured volumes. These artifacts need to be classified as FDs despite
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the fact that they have very similar characteristics to real defects. Therefore, they
are difficult to distinguish from TDs by machine learning.

First, all the suspicious regions obtained by segmenting volumes V8-21, V8-22 and
V8-24 are merged in order to form the learning and testing datasets for DFC and
SVM. Obtained sets are as follow:

• Learning dataset: 81 potential defects including 36 FDs and 45 TDs.

• Testing dataset: 79 potential defects including 35 FDs and 44 TDs.

The AROC , for features values and mass values, obtained on the learning dataset is
presented in figure 5.31. Only 5 features, (10, 13, 23, 29, 30), have a AROC ≥ 0.9.
While by using mass values to build the ROC curves, 16 features become perti-
nent (10, 13, 15, 17, 19, 20, 21, 22, 23, 27, 29, 30, 31, 32, 33 and 34). The same

Figure 5.31.: CFRP-8: Area under ROC curves for feature values and their corre-
sponding mass values. Mean value of the area under ROC curves for
features is 0.685. Mean value of the area under ROC curves for mass
values is 0.859.

procedure applied for CFRP-14, in the classification of potential defects and opti-
mization of DFC and SVM performance using ROC curve, is followed for CFRP-8.
Therefore without detailing each steps, only the optimal performances given by each
combination and the corresponding necessary information about DV, Perc, Sm and
the features used in the training will be reported. Results for DFC and SVM are
resumed in tables 5.19 and 5.20.

For the DFC method: different combinations gave very good rates on the learning
dataset with all combinations achieving an overall rate R≥0.96. However, R dropped
for all the combinations on the testing dataset mostly because of the decrease in
the PFDs rates. This reflects the difficulties encountered by the combinations to
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distinguish ghosts from defects. The best performance given by the cautious rule
occurs when it is trained using only the selected features having AROC ≥ 0.9 for
feature values.

DV=0, Perc=0.1 Learning phase Testing phase

Source PTD PFD R PTD PFD R
Cautious rule [Sm=0.7] 1 0.941 0.987 0.976 0.6 0.898
DSF{3 max mass} [Sm=0.6] 1 0.852 0.969 0.976 0.6 0.898
DSF{all sources} [Sm=0.6] 1 0.852 0.969 0.976 0.6 0.898
Median mass [Sm=0.6] 1 1 1 0.9 0.8 0.884
DSF{23&34} [Sm=0.7] 1 1 1 0.88 0.71 0.848
Mean mass [Sm=0.6] 1 1 1 0.79 0.885 0.81

Table 5.19.: CFRP-8: Optimal performance of cautious rule, DSF{3 max mass} and
DSF{all sources} are obtained using features with AROC ≥ 0.9 for learn-
ing and testing of the DFC method. The statistical combinations (me-
dian and mean mass) give their optimal performances when using all
features. The best performance of the conjunctive rule DSF{23&34}was
given using features with AROC ≥ 0.9 for mass values.

For the SVM: its best performance is given when using all features to train and test
the classifier. Results show that the SVM outperforms the DFC method for the case
of CFRP-8.

Testing phase PTD PFD R
SVM 0.953 0.8 0.921

Table 5.20.: CFRP-8: SVM performance on the testing dataset using all available
features.

5.4. Discussion

In this chapter were presented the experimental results obtained using the proposed
analysis chain. The beginning was with the experimental CFRP volumes which were
available for this work. Then, a brief description of the developed segmentation and
classification tools was given. Each step of the segmentation procedure was closely
studied and the corresponding results obtained on each input volume were presented
and discussed.

The first step of the segmentation procedure was the interpolation of defect voxels.
The interpolation was done using a 2D and a 3D modified median filter. A quantita-
tive study proved that both methods gave similar results.



5.4 Discussion 125

Afterward, the input volumes were filtered using NL-means, median and M3 filter.
The NL-means filter (M = 5 and d = 1) was most successful in enhancing the image
and improving the detectability of defects. In fact, the CNR metric suggested that
the NLMW5B1 filter largely improves the detectability of low contrasted defects.
However, it was also noticed that this filter tends to dilate the borders of structures.
The dilation effect caused minor number defects to get attached to backwall’s large
artifacts. Another note concerns the computation time of NLMW5B1 filter. While
the median and M3 filter need seconds to filter the input volume, the NLMW5B1
has a computation time which is roughly about an hour for a [300,300,200] volume.
Thus, the filter needs to be accelerated in order to permit its usage in real time
application. A good solution was proposed in [165], where the authors proposed a
Graphics Processing Unit (GPU) implementation of the NL-means algorithm.

Concerning the difficulties encountered in detecting the entrance and backwall layers:
the mechanical scanning system is assumed to be parallel to the surface of the speci-
men, which must be planar in the present experimental device. This means that the
water thickness is assumed to be constant. However, misalignment can occur, or the
sample’s surface can be not ideal. Consequently, the EE and/or BWE layers can have
distorted appearance in the measured data. Another cause of distortion, precisely in
the BWE appearance, is the speed of sound (see figure 5.32). The speed of sound can
be slightly different from one region to another in the anisotropic CFRP structure.

As a consequence of the non planar appearance of the EE and BWE layers, large
artifacts (called EE and BWE traces) were present in the layers near the entrance
and the backwall of the specimen.

Hysteresis thresholds TL = 2 ·Mean[Zref ] and TH = 3 ·Mean[Zref ] successfully led
to the setting of all defects as foreground. The only exception was in the case of the
volumes V14-15, V14-70 and V14-100. In these volumes, one low contrasted defect
was set as a background. This is possibly caused by the wrong setting of the voxel
size in the image. In fact, the voxel size in z direction was set to 0.5 mm, which is
almost equal to the wavelength (0.576 mm). This emphasizes the importance of the
right choice of the voxel size for a given wavelength.

After thresholding, foreground voxels were connected to form labeled suspicious re-
gions. Each region was characterized by geometric and intensity features.

The measured features were used in the classification procedure in order to distinguish
true defects from false defects. The classification was carried out using the DFC
method and the SVM classifier. The performance of the classifiers was quantified
in terms of correct classification rates, respectively for TDs and FDs and also using
ROC. The area under ROC curves allowed to select the most pertinent features and to
compare the discrimination performance by directly using the feature or mass values.

The obtained results for the CFRP-14 specimen showed a very good performance of
the classification chain where all defects were correctly classified (PTD=1) with only
7 % error in false defects classification (PFD=0.93). This result was obtained by the
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BWE

EE

Figure 5.32.: A B-scan (xy view) of the V14-IZFP volume: the difference of the speed
of sound in the anisotropic CFRP material cause the non planar appear-
ance of the BWE. Notice that the EE and BWE of the specimen are
seen over many layers in the reconstructed volume due to the strong
reflected echoes from the entrance and the backwall of the specimen.

conjunctive combination of two independent features (DSF{12&29}) which gave an
overall classification rate R=0.982. The performance given by the cautious rule was
close to the performance given by the conjunctive combination. Cautious rule gave a
maximal overall classification rate R=0.967 when using features with AROC ≥ 0.9 to
train and test the DFC method. As for the SVM, its best performance was given as
well when using features with AROC ≥ 0.9. SVM gave an R=0.978 and had a higher
false defects classification rate than the DFC method. Nevertheless, SVM did not
correctly classify all true defects. Thus, the DFC method performed better on the
CFRP-14 reconstructed volumes.

The presence of ghost artifacts in the CFRP-8 reconstructed volumes induced a re-
duction in the performance of the both classifiers. The DFC method gave at best a
overall classification rate R=0.898 using the cautious rule of combination, although
the false defects detection rate was low (PFD=0.6). SVM performed better than
the DFC on this dataset. It had a better performance on false defects classification
(PFD=0.8) and gave an overall rate R=0.921. However, the true defects classifica-
tion rate given by SVM (PTD=0.953) was less than what was achieved by the DFC
method (PTD=0.976).



6. Summary and outlook

6.1. Summary

With the vast application of ultrasound technology in industry and the need to con-
duct large scale inspection tasks, an increasing need to automate the inspection pro-
cedure arises. While the main focus was on the technique itself, there is an imminent
need to complete the inspection system with an analysis chain that can automatically
interpret the large amount of produced data.

This thesis proposed a complete analysis chain dedicated to segment and classify
defects in 3D ultrasound volumes. The work also included a study of the speckle
noise in SPA volumes. The analysis chain was experimentally evaluated on CFRP
volumes. The chain was stable and gave promising results. The segmentation and
classification algorithms of the analysis chain were successfully implemented in two
prototype softwares.

Speckle noise formation, distribution estimation and reduction techniques were the
subject of chapter 3. Theoretical and empirical speckle models were reviewed and
discussed in the first section of this chapter. Then, the pdf of the 4P-GΓD distribution
was proposed as a model which fits the noise distribution in SPA data. The model
was tested on SPA 3D volumes of three different materials: CFRP, aluminum and
ceramic. The obtained results showed that the proposed model successfully fits the
noise in CFRP and ceramic ultrasound data. In case of aluminum material, the
model was in the second rank after the 3P-Lognormal pdf. After studying in detail
the nature of noise, the speckle noise reduction techniques were tackled, where a
review of the state of the art techniques employed to enhance ultrasound images was
presented. The out coming conclusion was that filters which exploits the redundancy
in the image, such as the NL-means filter, appear to be among the most successful
approaches.

In chapter 4, the analysis chain formed of segmentation and classification procedures
was proposed. The objective of the segmentation procedure was to detect all potential
defects inside the volume. Difficulties were mostly encountered when defects are
close to the entrance and backwall layers. The segmentation procedure is composed
of different stages. First, an algorithm to interpolate the invalid voxels inside the
reconstructed volume was proposed . Then objective was to reduce the noise and
enhance the image by means of spatial filtering techniques. NL-means, median and
M3 filters were separately applied in 2D over each layer of the volume. Afterward, a
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method to automatically detect the entrance and the backwall was presented. This
method is based on the second derivative of the mean intensity in depth direction.
After the detection of the entrance and the backwall layers, the inner volume was
extracted. The hysteresis thresholding was applied on the inner volume in order
to separate voxels into background and foreground. Two hysteresis thresholds were
computed using the statistical mean intensity of a selected reference zone inside the
inner volume. The outputs of the thresholding stage were 3D suspicious regions,
each labeled by a unique identifier. Geometric and intensity characteristics of these
regions were measured. In total, 35 features were measured including two proposed
features which are especially dedicated for ultrasound data (shadow and damage
index). Features extraction formed the last stage of the segmentation procedure,
output suspicious regions were to be classified by the classification procedure.

The classification procedure was based on the theory of evidence which allows to
reason with uncertainty. The data fusion classification method (DFC) considered each
measured features as a source of information. Different sources of information were
combined together in order to improve the true classification rates of true defects and
false alarms of the classification method. To make the sources combination possible,
first a translation from the features space into a common space (mass values space)
was done. Then, features were combined using the non normalized Dempster rule
(conjunctive rule) and the cautious rule. The cautious rule is more tolerant to the
independence between sources. The DFC method was intended to be compared with
the well known Support Vector Machine classifier.

Chapter 5 was dedicated to the experimental evaluation of the analysis chain. Seven
input volumes, with different acquisition parameters, size and resolution were used
to test the chain. Here, the segmentation procedure was successful in detecting the
majority of defects existing in the inner volumes (180 from 186 defects) with minor
losses (6 defects) caused by the backwall echo remaining influence in the inner volume.
The problem was identified as scan alignment problem where the backwall is not over
one layer. The origin of this problem was due to the non ideally parallel contact
between the transducer and the planar specimen and to the anisotropy (i.e., speed
of sound is not constant) of the CFRP medium. The backwall influence started to
appear over layers close to the end back of the specimen causing minor mistakes in
detecting the end of the specimen. This led to minor losses of some defects which
either get attached to a remaining backwall artifact inside the inner volume or were
considered as part of the backwall volume.

The classification procedure gave very promising results when no ghost artifacts were
among the suspicious region. The DFC method outperformed the SVM classifier and
could reach 100 % classification of true defects with only 7 % error in false defects
classification. In case when ghost artifacts are among the suspicious region, both
classifiers had difficulties mainly in distinguishing false defects.
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6.2. Outlook

This research activity had the aim to propose an analysis chain to segment and classify
3D ultrasound SPA volumes. The chain showed promising results when evaluated on
CFRP specimen. However, different points can be further optimized.

The data correction algorithm needs to be compared with some more complex in-
painting algorithms.

The elaborated speckle model can be potentially used to optimize the filtering step.
This point can represent an interesting subject of a future research activity.

The entrance and backwall echoes/layers misalignment caused difficulties in the de-
tection of the layers corresponding to the entrance and the end of the specimen. This
led in some cases to a marginal failure in the estimation of the part thickness. Correc-
tion of this effect can be done by using reference signals for scan alignment. This will
reduce the error in the BWE and EE locations and should result in more accurate
indications about defects. Moreover, a Computer Aided Design (CAD) model of the
specimen could help in having a more accurate evaluation. In fact, for non planar
specimens, the use of a CAD model could give information on the positions of the
EE and BWE of the specimen.

The backwall volume can be furthermore processed. Indeed, shadows can serve as
verification if all the defects in the inner volume were found by the analysis chain.

A reference volume obtained on a sample without defects will allow to reduce the
user intervention. The volume can be used to automatically compute the hysteresis
thresholds and in the extraction of features which need a reference volume.

The presence of strong absorbers in the 8 mm thick CFRP (circular holes) caused
the appearance of ghost artifacts in the corresponding reconstructed volumes. A
decrease was noticed in the classifiers performance when trained and tested on this
specimen. Indeed, it is difficult to distinguish the defects from their ghosts because
of the strong similarity between them. It appears that a solution, in a future work,
could be to compute features between the blobs (such as distance between the blobs
or difference in contrast). Another possibility is to train the classifier on a third class
corresponding to ghosts in addition to the other two classes: true defects or false
alarms. This could help into improving the classification results.

A future development could incorporate the image processing and data classification
codes in a single software. The software can be integrated into the inspection system
and then eventually, the automated inspection system (acquisition + data analysis)
can be part of the production chain.

The analysis chain was evaluated on specimens with artificial defects. Nevertheless,
different defects types and shapes were present including delamination, inclusions and
voids of different sizes (down to 7 mm diameter). Future work could be the testing
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of the evaluation method on parts with real defects. The type of defects has not
been investigated in this work. Hence, the follow up of this research could involve the
determination of the type of defects such as delamination and gas porosities using
the geometrical and intensity characteristics which could help to distinguish different
defect types.

Our work has included 3D ultrasound and X-ray tomography techniques [189]. The
association of these two inspection modalities, using data fusion techniques, represents
a promising research subject.



A. Definitions

Necessary definition of topics covered in this thesis and other aspects related to the
physics of ultrasound waves are presented in this appendix.

A.1. Ultrasonic imaging concepts

Ultrasound waves are generated by electrical excitations of a piezoelectric transducer.
Propagating inside a medium, these acoustical waves are scattered by discontinuities
(figure A.1) due to a change in the acoustic impedance between the propagation
medium and the discontinuities. The acoustic impedance is a measure relating the

sound pressure Pac to the particle velocity ϑ as Z =
Pac
ϑ

. A discontinuity at distance z

from the transducer causes an echo at time t =
2z

c
, where c is the speed of sound inside

the medium. Reflected waves received by the transducer at time t are associated with

the discontinuity at depth z =
ct

2
. The reflected waves detected by the transducer

are converted into an electrical signal.

A.1.1. Reflection and transmission coefficients

Consider an ultrasound wave propagating at a speed c1 in a homogeneous medium
(1) of acoustic impedance Z1 as presented in figure A.2. The wave reaches a planar
boundary, with an incidence angle θi, separating medium (1) from a homogeneous
medium (2) of acoustic impedance Z2. Part of the incident wave is reflected into
medium (1), while another part is transmitted/refracted into medium (2). Let Paci
denote the pressure of the incident wave, Pacr the pressure of the reflected wave and
Pact the pressure of the transmitted wave. In addition, let ϑi, ϑr and ϑt be the cor-
responding particle velocities provoked by the (progressive) incident and transmitted
waves and the (regressive) reflected wave. The continuity conditions on the sound
pressure and particle velocity across the boundary interface permit to write:

Paci + Pacr = Pact (A.1)

and

ϑi cos θi + ϑr cos θr = ϑt cos θt (A.2)
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Figure A.1.: Ultrasound simple transducer sending and receiving reflected waves.

where θr = −θi.

While the Snell-Descartes law states that:

sin θi
sin θt

=
c1

c2

(A.3)

The acoustic impedance of the medium (1) is given by:

Z1 =
Paci
ϑi

= −Pacr
ϑr

(A.4)

The acoustic impedance of the medium (2) is given by:

Z2 =
Pact
ϑt

(A.5)

Substituting the acoustic impedance into particle velocity condition in equation A.2
yields that: (

Paci
Z1

− Pacr
Z1

)
cos θi =

Pact
Z2

cos θt (A.6)
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Medium (1): Z1, c1

Medium (2): Z2, c2

Incident Reflected

Transmitted

Paci Pacr

Pact

θrθi

θt

Figure A.2.: Incident ultrasound wave reaching a separation boundary at a speed of
sound c1 and angle θi. Part of the wave is reflected back inside medium
(1) and another part is transmitted into medium (2).

Taking into consideration the equation A.1, equation A.6 can be formulated as:

1 + Cr
1− Cr

=
cos θi
cos θt

Z2

Z1

(A.7)

where Cr =
Pacr
Paci

is the pressure reflectivity at the boundary. Using the latter equa-

tion, Cr can be expressed as:

Cr =
Z2 cos θi − Z1 cos θt
Z1 cos θt + Z2 cos θi

(A.8)

For inspection tasks, only the surfaces parallel to the wavefront reflect waves back to
the transducer (other surfaces reflect away from the transducer). The incidence angle
for these surfaces is null: θi = θr = θt = 0. Finally the reflection coefficient for waves
at normal incidence to surface is:

Cr =
Pacr
Paci

=
Z2 − Z1

Z1 + Z2

(A.9)
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In addition, the transmission coefficient defined as Ct =
pt
pi

can be expressed as:

Ct =
Pact
Paci

=
Paci + Pacr

Paci
=

2Z2

Z1 + Z2

(A.10)

For a strong absorber (like air voids), the acoustic impedance Z2 << Z1 which means
that the transmission coefficient is very low while the reflection coefficient is close to
-1. Therefore shadows occur behind such discontinuities.

A.1.2. Ultrasound display formats

A.1.3. A-scan displays

Amplitude modulation scan, referred to as an A-scan, is a simple one dimensional
presentation showing the amplitude of the received envelope signal (or energy) versus
the time (or depth). Figure A.3 is an illustrative example of the A-scan obtained
when the transducer is at the position showed in figure A.1. In an A-scan display,
the depth of a reflector can be determined by the position of its corresponding peak
on the horizontal sweep. The size of a reflector can be also estimated by comparing
the signal amplitude obtained from it to that from a known reflector.

Defect echo

Backwall echo

0 1 2 3 4 5 6 7 8

5

10

15
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25
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|A(x, t)|

t

Initial
pulse

Figure A.3.: Illustration of the display format: A-scan.

A.1.4. B-scan displays

Consider that the transducer is moving over the surface of the specimen in a straight
line at a uniform speed from point x1 to x2 (figure A.4). The brightness scan (B-
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scan) is a profile view (xz view) of the specimen, where the time of flight (or depth) is
displayed versus the linear position of the transducer. from the B-scan, the depth and
linear dimensions of the reflectors can be approximated. A typical method to produce
B-scans is by establishing a trigger gate on the A-scans: when the signal intensity is
large enough to trigger the gate, a bright point is produced on the B-scan. The gate
can be triggered by the reflections coming from the backwall (BW) and reflecting
discontinuities inside the medium. The pulse line is caused by the transducer’s initial
pulses at each sending. They appear in the B-scan when the inspection is done via
contact mode. In immersion control, the initial pulses can be gated out and thus they
do not appear in the displayed B-scan.
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Figure A.4.: Illustration of the display format: B-scan obtained by a horizontal move-
ment of the transducer from x1 to x2.

A.1.5. C-scan display

A Computerized scan (C-scan) can be considered as a planar view of the medium’s
inner structure at a particular depth. C-scans can be constructed by gating the A-
scan signal and recording the amplitude of the gated signal (or time of flight) at
regular intervals as the transducer is scanned over the specimen. The relative signal
amplitude is displayed for each of the positions where data was recorded. In the
C-scan, the form of the reflecting surface of the defect can be seen (figure A.5).
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Figure A.5.: Illustration of the display format: C-scan at depth zp.





B. List of features

B.1. Input data format for the DFC method

The data format required by the DFC method is as follows:

ID Expert decision Feature 1 Feature 2 ...
1 0 or 1 ... ... ... ...

B.2. Features characterizing suspicious regions

Identifier Geometric features Unit 2D 3D Need a reference zone/volume
1 BlobSize - - X -
2 BlobVolume mm3 - X -
3 BlobPosX - - X -
4 BlobPosY - - X -
5 BlobPosZ - - X -
6 Length in xy plane: Lxy mm X - -
7 Length in xz plane: Lxz mm X - -
8 Length in yz plane: Lyz mm X - -
9 Width in xy plane: Wxy mm X - -
10 Width in xz plane: Wxz mm X - -
11 Width in yz plane: Wyz mm X - -
12 Elongation in xy plane: Exy - X - -
13 Elongation in xz plane: Exz - X - -
14 Elongation in yz plane: Eyz - X - -
15 MISRadius mm - X -
16 MCSRadius mm - X -
17 MISToMCSRatio - - X -
18 MCSToBlobSizeRatio - - X -
19 BlobFillingLevel - - X -

Table B.1.: Geometric features measured for each suspicious region. MIS and MCS
are abbreviations for maximum inscribing sphere and minimum covering
sphere.
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Identifier Intensity features unit 2D 3D Need a reference zone/volume
20 Shadow - - X -
21 Damage Index: DI - - X -
22 MeanValueOfBlob - - X -
23 StdOfBlob - - X -
24 MeanValueOfNeighbourhoodOfBlob - - X -
25 StdOfNeighbourhoodOfBlob - - X -
26 MeanBlobContrast - - X -
27 CSMean - - X X
28 CSMin - - X X
29 CSMax - - X X
30 CSStd - - X X
31 MBDMin - - X X
32 MBDMax - - X X
33 MBDMean - - X X
34 MBDStd - - X X
35 MBDVar - - X X

Table B.2.: Intensity based features measured for each suspicious region. CS and
MBD are abbreviations for contrast statistics and maximum blob differ-
ence.



C. Experimental results: Entrance
and Backwall layers detection

C.1. Results for the CFRP-14 volumes

The acquisition conditions, including the resolution in z direction (0.5 mm), are the
same for V14-15, V14-70 and V14-100. The scanning speed is different, however the
results of the EE and BWE detection algorithm are the same for these volumes. Thus,
results are presented only for the volume V14-70.

The EE and BWE detection algorithm gives the output presented in figure C.1a. The
BWE slice is at z = 27, which means that the estimated thickness is equal to the
real thickness ((27 + 1) · 0.5 = 14mm) of the CFRP component (figure C.1f). The
inner volume starts at z = 2, this means that the defects at depth 0.7 mm are part
of the EE layer at z = 1. Main reason is because of the EE strong echo (figure C.1b).
Nevertheless, these defects still appear in the layers z = {2, 3}, thus they are detected
(figure C.1c and C.1d).
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(a) (b) EE layer at
z = 1 (0.5 to 1 mm)

(c) Inner layer at
z = 2 (1.5 to 2 mm)

(d) Inner layer at
z = 3 (2 to 2.5 mm)

(e) Inner layer at
z = 26 (13 to 13.5 mm)

(f) BWE layer at
z = 27 (13.5 to 14 mm)

Figure C.1.: V14-70: (a) Output of the Ultrasound Image processing tool. (b) Last
layer of the EE volume. (c,d) First two layers of the inner volume. (e)
Last layer of the inner volume. (f) The BWE slice where the shadows of
the defects are visible.
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C.2. V8-21 and V8-24

The volume V8-21 was measured with the SPA 1× 16 technique while the V8-24 was
measured with the CPA technique. The scanning speed, spatial resolution (5 MHZ)
and image resolution are the same for both volumes.

For both volumes, the resolution in z direction is 0.2 mm. This means that five layers
correspond to 1 mm depth. The CFRP specimen is 8 mm thick. Therefore, the BWE
slice should be at z = 39 (first layer is at z = 0). The output of the EE and BWE
detection algorithm is presented in figure C.2.

(a) V8-21 (b) V8-24

Figure C.2.: (a) V8-21: Output of the Ultrasound Image processing tool. (b) V8-24:
Output of the Ultrasound Image processing tool.

For V8-21, the inner volume starts at z = 2. Thus, the EE volume has a thickness of
0.4 mm. For V8-24, the inner volume starts at z = 4, the EE volume has a thickness
0.8 mm. This result shows the interest of the SPA technique which provides a better
image quality near the surface of the specimen. Thus, the possibility to detect defects
near the surface is improved with the SPA technique.

The backwall volume of V8-21 starts at z = 37 and ends at z = 38 which means that
it has a thickness of 0.4 mm. The backwall volume of V8-24 starts earlier at z = 35
and ends at z = 38, thus it has a thickness of 0.8 mm. The following remarks can be
concluded:

• The inner volume of V8-21 has a thickness of 7 mm since it starts at 0.4 mm
(z = 2) and ends at 7.2 mm (z = 36). While the inner volume of V8-24 starts
at 0.8 mm and ends at 7 mm z = 35. Thus, it is has a thickness of 6.4 mm.
Therefore, the CPA technique gives a inner volume of a smaller size than the
inner volume given by the SPA technique.

• The BWE echo obtained by the CPA technique has a strong influence on the
layers close to the backwall of the specimen. It starts to appear at 7.2 mm and
it could hide defects that are located near the end of the specimen. Indeed, it
was noticed that one inclusion located near the end of the specimen (ca. 7.2
mm) is missed from the inner volume of V8-24 and is included in the BWE
volume.
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• The BWE echo in the V8-21 starts at 7.4 mm, i.e. 0.2 mm are less disturbed
by the strong echo reflected by the end of the specimen. Therefore, defects
close to the end are better detected with SPA technique. Indeed, all defects are
included in the extracted inner volume of V8-21.

• There is a 0.2 mm error in the thickness estimation of the specimen for both
SPA and CPA techniques

(a) V8-21: Inner layer at
z = 3 (0.6 to 0.8 mm)

(b) V8-24: EE layer at z = 3
(0.6 to 0.8 mm)

Figure C.3.: (a) Inner layer of V8-21 at z = 3. (b) Layer part of the EE volume of
V8-24 at z = 3.

C.3. V8-22

The volume’s resolution in depth is 0.05 mm and its size in z direction is 161 layers
(z = 0 to z = 160). Since the specimen has 8 mm as thickness, the BWE slice should
be at z = 159. The output of the proposed algorithm is given in figure C.4. The
inner volume starts at z = 12 (0.6 mm) and ends at z = 145 (7.25 mm), thus, the
inner volume thickness is 6.7 mm. The first defect starts to appear at z = 12, it will
be completely included in the inner volume. As for the BWE volume, it starts at
z = 146 (7.3 mm), defects that may appear after this depth will be lost. However,
the last inclusion is at ca. 7.2 mm, therefore it is detected. The BWE slice is at
z = 160, this corresponds to a thickness of 8.05 mm, which is a very good estimation
of the real thickness of the specimen.

The resolution in V8-22 volume is much higher than in V8-21. However, the thickness
of the inner volume is almost the same in both cases. The only difference is that the
image quality in V8-22 is much better than in V8-21 as it can be seen from figure
C.5. Thus, the SPA technique should be used with a image high resolution (small
voxel size) in order to have a better quality of reconstruction.
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(a) (b) EE layer at
z = 11 (0.55 to 0.6 mm)

(c) Inner volume at layer
z = 12 (0.6 to 0.65 mm)

(d) Inner volume at layer
z = 145 (7.25 to 7.3 mm)

(e) BWE volume at layer
z = 146 (7.3 to 7.35 mm)

(f) BWE slice at
z = 160 (8 to 8.05 mm)

Figure C.4.: V8-22: (a) Output of the Ultrasound Image processing. (b) Last layer
of the EE volume. (c) First layer of the inner volume. (d) Last layer of
the inner volume. (e) A layer of the BWE volume. (f) the BWE slice
where defects shadows can be seen.

(a) V8-21: Inner layer at
z = 4 (0.8 to 1 mm)

(b) V8-22: Inner layer at
z = 16 (0.8 to 0.85 mm)

Figure C.5.: Comparison of image quality with SPA technique using different depth
resolutions (a) Inner layer of V8-21 at z = 4. (b) Inner layer of V8-22 at
z = 16.





D. Experimental results: hysteresis
thresholding

D.1. V14-15

The number of defects in this volume is 24. Thresholding results for this volume using
a reference zone without defects are presented in table D.1. The satisfactory value of
NTP was given by several selections. Still, the lowest NFP is given by two thresholds
selection, one of them is: TL = 2 · mean[Zref ], TH = 3 · mean[Zref ]. Same as in the
case of V14-70: a) one very low contrasted defect is missed and b) a defect near the
backwall is set as foreground, nevertheless it gets attached to a BWE artifact. The
same procedure of manual thresholding, followed for V14-70, was followed to detect
the low contrasted defect in V14-15.

Hysteresis thresholds NTP NFP

TL = mean[Zref ], TH = 2 ·mean[Zref ] 22 35

TL = mean[Zref ] , TH = 3 ·mean[Zref ] 22 9

TL = 2 ·mean[Zref ], TH = 2 ·mean[Zref ] 22 56

TL = 2 ·mean[Zref ], TH = 3 ·mean[Zref ] 22 9

TL = 3 ·mean[Zref ], TH = 3 ·mean[Zref ] 22 10

Manual threshold TL = TH = Mdef 23 71

Table D.1.: Number of defects (NTP>21) and false positives (NFP) obtained by dif-
ferent hysteresis thresholds selections applied on the volume V14-15. Last
row in the table is for the manual threshold using the low contrasted de-
fect to compute TL and TH as: TL = TH = mean of the selected low
contrasted defect.

Figures D.1 and D.2 illustrate the obtained results. In total 94 suspicious regions
(NTP=23, NFP=71) are detected. All defects are seen in the original volume, only
one defect gets attached to a BWE artifact.
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(a) (b)

Figure D.1.: (a) V14-15: selection of the low contrasted defect to compute TL and
TH as both equal to the mean of the selected defect. (b) 3D view of
suspicious regions obtained using the low contrasted defect to select the
thresholds. Total number of suspicious regions is 94.

(a) Inner volume at z =
2

(b) Inner volume at z =
3

(c) Inner volume at z =
25

(d) Inner volume at z =
26

(e) Binary volume at
z = 2

(f) Binary volume at
z = 3

(g) Binary volume at
z = 25

(h) Inner volume at z =
26

Figure D.2.: V14-15: (a,b,c) Original inner layers near the EE and the BWE layers.
(d,e,f) Output binary layers. Note that one defect gets attached to a
BWE artefact
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D.2. V14-100

The number of defects in this volume is 24. Using a reference zone without defects,
thresholding results for this volume are presented in table D.2. The maximal NTP
is given by several sources. While the lowest NFP is given by the selection: TL =
mean[Zref ] , TH = 3 ·mean[Zref ]. Note that the difference in NFP is only 1 between
this selection and the thresholds selection TL = 2 ·mean[Zref ], TH = 3 ·mean[Zref ].
Thus, the last selection is also optimal. Same as in the case of V14-70 and V14-15:
a) one very low contrasted defect is missed and b) a defect near the backwall is set as
foreground, nevertheless, it gets attached to a BWE artifact. The same procedure,
followed for V14-70 and V14-15, was followed to detect the low contrasted defect in
V14-100. Results are presented in the last row of the table D.2. All defects were set
as foreground and only one defect gets attached to a BWE artifact.

Hysteresis thresholds NTP NFP

TL = mean[Zref ] , TH = 3 ·mean[Zref ] 22 33

TL = 2 ·mean[Zref ], TH = 2 ·mean[Zref ] 22 160

TL = 2 ·mean[Zref ], TH = 3 ·mean[Zref ] 22 34

Manual threshold TL = TH = Mdef 23 157

Table D.2.: Number of defects (NTP>21) and false positives (NFP) obtained by dif-
ferent hysteresis thresholds selections applied on the volume V14-100.
Last row in the table is for the manual threshold using the low con-
trasted defect to compute TL and TH as: TL = TH = mean of the selected
low contrasted defect.

Figures D.3 and D.4 illustrate the obtained results. In total 180 suspicious regions
are detected.
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(a) (b)

Figure D.3.: V14-100: (a) selection of the low contrasted defect to compute TL and
TH as both equal to the mean of the selected defect. (b) 3D view of
suspicious regions obtained using the low contrasted defect to select the
thresholds. Total number of suspicious regions is 180.

(a) Inner volume at z =
2

(b) Inner volume at z =
3

(c) Inner volume at z =
25

(d) Inner volume at z =
26

(e) Binary volume at
z = 2

(f) Binary volume at
z = 3

(g) Binary volume at
z = 25

(h) Inner volume at z =
26

Figure D.4.: V14-100: (a,b,c) Original inner layers near the EE and the BWE layers.
(d,e,f) Output binary layers. Notice in (f) that, one defect gets attached
to a BWE artifact (red box) and another defect has a distorted shape
(blue box).
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D.3. V8-21

The number of defects in this volume is 30. Hysteresis thresholds were computed on
a reference zone without defects. The obtained thresholding results are presented in
table D.3. The thresholds selection TL = mean[Zref ] , TH = 3 · mean[Zref ] slightly
outperforms the selection TL = 2 · mean[Zref ], TH = 3 · mean[Zref ] by giving less
amount of NFP. Nevertheless, both selections could successfully detect all defects
and give the lowest NFP. Figure D.5 illustrates the obtained thresholding results for

Hysteresis thresholds NTP NFP

TL = mean[Zref ] , TH = 3 ·mean[Zref ] 30 44

TL = 2 ·mean[Zref ], TH = 3 ·mean[Zref ] 30 47

TL = 3 ·mean[Zref ], TH = 3 ·mean[Zref ] 30 64

Table D.3.: Number of defects ((NTP ≥ 27)) and false positives (NFP) obtained by
different hysteresis thresholds selections applied on the volume V8-21.

TL = 2 · mean[Zref ] and TH = 3 · mean[Zref ]. In total 77 suspicious regions are
detected including all defects seen in the original volume.

(a) (b)

Figure D.5.: V8-21: (a) selection of the reference zone to compute TL and TH .(b) 3D
view of suspicious regions obtained for TL = 2 · mean[Zref ] and TH =
3 ·mean[Zref ]. Total number of suspicious regions is 77.



D.4. V8-24

Thresholding results for this volume are presented in table D.4 and figure D.6. Two
thresholds selections give the optimal values of NTP=29 and NFP=7. One of the
selections is: TL = 2 · mean[Zref ] and TH = 3 · mean[Zref ]. In total 36 suspicious
regions are detected using this selection. However, one defect is missing. This defect is
a border rectangular inclusion, very close to the BWE. It starts to appear at z = 36
(7.2 mm), while the end of the inner volume as given by entrance and backwall
detection step was at z = 35 (7 mm). Thus, the defect is outside the inner volume
and is therefore lost. Otherwise, all defects inside the inner volume are successfully
kept after thresholding.

Hysteresis thresholds NTP NFP

TL = mean[Zref ] , TH = 3 ·mean[Zref ] 29 7

TL = 2 ·mean[Zref ], TH = 3 ·mean[Zref ] 29 7

TL = 3 ·mean[Zref ], TH = 3 ·mean[Zref ] 28 4

Table D.4.: Number of defects ((NTP ≥ 27)) and false positives (NFP) obtained by
different hysteresis thresholds selections applied on the volume V8-24.

(a) (b)

Figure D.6.: V8-24: (a) selection of the reference zone to compute TL and TH .(b) 3D
view of suspicious regions obtained for TL = 2 · mean[Zref ] and TH =
3 ·mean[Zref ]. Total number of suspicious regions is 36.
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List of abbreviations and symbols

∧© . . . . . . . . . . . . . . Cautious conjunctive combination rule

∩© . . . . . . . . . . . . . . Conjunctive combination rule

∗ . . . . . . . . . . . . . . . Convolution operator

⊕ . . . . . . . . . . . . . . Dempster combination rule

∧ . . . . . . . . . . . . . . . Minimum operator

1×N . . . . . . . . . . Operating mode of the SPA transducer, in which one element sends
and all other elements receive.

2Θ . . . . . . . . . . . . . . Power set or fusion space

[P, S, T ] . . . . . . . . Dimensions of the volume respectively in x, y and z direction

αi . . . . . . . . . . . . . . Amplitude of the back scattered echo ∈ R+

β . . . . . . . . . . . . . . . Scaling parameter of the pdf ∈ R∗+
52Gσ . . . . . . . . . . Laplacian of Gaussian (LoG)

∆PA,B . . . . . . . . . . Derivative of PA,B ∈ R+

η . . . . . . . . . . . . . . . Gaussian noise of zero-mean

γ . . . . . . . . . . . . . . . Translation parameter of the pdf ∈ R

Γ(.) . . . . . . . . . . . . gamma function

λ . . . . . . . . . . . . . . . Random variable of a known distribution, ∈ R

‖·‖2
2,σ . . . . . . . . . . . Gaussian weighted Euclidean distance ∈ R+

CNR . . . . . . . . . . . Contrast to Noise Ratio ∈ R+

DV . . . . . . . . . . . . . Derivative variation: threshold on ∆PA,B ∈ R+

fp . . . . . . . . . . . . . . False positives rate ∈ [0, 1]

NFN . . . . . . . . . . . Number of False Negatives ∈ N

NFP . . . . . . . . . . . Number of False Positives ∈ N

NN . . . . . . . . . . . . . Number of Negatives ∈ N

NP . . . . . . . . . . . . . Number of Positives ∈ N

NRF . . . . . . . . . . . Noise Reduction Factor ∈ R
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NTN . . . . . . . . . . . Number of True Negatives ∈ N

NTP . . . . . . . . . . . Number of True Positives ∈ N

PCD . . . . . . . . . . . Correct decision rate ∈ [0, 1]

Perc . . . . . . . . . . . . Threshold on the percentage of points inside each region of confi-
dence ∈ N

PFD . . . . . . . . . . . Rate of false defects correctly classified ∈ [0, 1]

PSNR . . . . . . . . . . Peak Signal to Noise ratio ∈ R+

PTD . . . . . . . . . . . Rate of true defects correctly classified ∈ [0, 1]

RMSE . . . . . . . . . . Root Mean Square Error ∈ R+

R . . . . . . . . . . . . . . Overall classification rate ∈ [0, 1]

Sm . . . . . . . . . . . . . Decision threshold on the mass value ∈ [0, 1]

tp . . . . . . . . . . . . . . True positives rate ∈ [0, 1]

µ . . . . . . . . . . . . . . Location parameter of the pdf ∈ R

µi . . . . . . . . . . . . . . Degree of membership ∈ [0, 1]

ν . . . . . . . . . . . . . . . Shape parameter of the pdf ∈ R∗+
ΩP,S,T . . . . . . . . . . Set of coordinates or volume grid over which the noisy volume u

is defined, ⊂ N3

dP . . . . . . . . . . . . . . Mean value of Pearson distance

φi . . . . . . . . . . . . . . Phase of the back scattered echo ∈ [0, 2π[

ψ . . . . . . . . . . . . . . . Factor related to ultrasound image formation ∈ R

σ . . . . . . . . . . . . . . . Standard deviation of the Gaussian kernel ∈ R+

σ2
background . . . . . . Variance of intensities value of a background zone ∈ R+

σ2
def . . . . . . . . . . . . . Variance of intensities value of a defect’s zone ∈ R+

u(Bd
x,y,z) . . . . . . . . Vector gathering the intensities of voxels inside the block Bd

x,y,z

u(p)(Bx,y,z) . . . . . Intensity value in vector u at index p

Θ . . . . . . . . . . . . . . Frame of discernment ⊂ 2Θ

θ . . . . . . . . . . . . . . . Incidence angle ∈ [−π
2
, π

2
]

∆τ . . . . . . . . . . . . . Time delay between adjacent elements (unit: second)

εa . . . . . . . . . . . . . . Additive noise

εm . . . . . . . . . . . . . Multiplicative noise

Λ . . . . . . . . . . . . . . . Sum of all back scattered echoes interfering in the resolution cell

Λi . . . . . . . . . . . . . . Back scattered echo from a random scatterer i, ∈ C
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∅ . . . . . . . . . . . . . . Empty set ⊂ 2Θ

ϑ . . . . . . . . . . . . . . . Velocity of particle (unit: m/s)

ṽ(xi) . . . . . . . . . . . Correspond to the filtered original image u

ṽin . . . . . . . . . . . . . Inner volume located between the end of the entrance volume and
the start of the backwall volume.

ξ . . . . . . . . . . . . . . . Power of the pdf ∈ R∗+
a . . . . . . . . . . . . . . . Width of the transducer (unit: mm)

Aij . . . . . . . . . . . . . detected reflection of the signal emitted by array element i and
received by array element j, ∈ R+

Bd,0
x,y,z . . . . . . . . . . . 2D Block centered at voxel of coordinates (x, y, z))

Bd
x,y,z . . . . . . . . . . . 3D Block centered at voxel of coordinates (x, y, z))

bel . . . . . . . . . . . . . Belief function

c . . . . . . . . . . . . . . . Speed of sound m/s

Cr . . . . . . . . . . . . . . Reflection coefficient ∈ R

Ct . . . . . . . . . . . . . . Transmission coefficient ∈ R+

D . . . . . . . . . . . . . . K-S distance ∈ R+

Di, Dj . . . . . . . . . Distance between elements i, j and the central axis (unit: mm)

dP . . . . . . . . . . . . . . Pearson distance ∈ R+

DT . . . . . . . . . . . . . Distance between adjacent elements of the array (unit: mm)

DI . . . . . . . . . . . . . Damage index

EEblob . . . . . . . . . . Zone occupied by the blob projection on the BWE layer

EEblob . . . . . . . . . . Zone occupied by the blob projection on the EE layer

Exy, Exz, Eyz . Blob elongations in the respective xy, xz and yz planes

f(xr, zr) . . . . . . . . back projected signal amplitude function at focusing point (xr, zr),
∈ R+

fk . . . . . . . . . . . . . . Information source fk(X) ∈ R

Fα . . . . . . . . . . . . . Feret diameter: diameter of the blob’s projection on direction of
angle α in the plane.

g . . . . . . . . . . . . . . . Filtering operator

Gσ . . . . . . . . . . . . . Gaussian kernel of zero mean

h . . . . . . . . . . . . . . . Smoothing factor ∈ R

H1 . . . . . . . . . . . . . Hypothesis of True Defects ⊂ Θ

H2 . . . . . . . . . . . . . Hypothesis of False Defects ⊂ Θ
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H3 = Θ = {H1, H2} Ignorance Hypothesis

hA(i), hB(i) . . . . Number of data points of class A (TDs) and class B (FDs) respec-
tively inside the interval i, ∈ N

I . . . . . . . . . . . . . . . Vector gathering the mean intensity of each layer of a volume

I0(·) . . . . . . . . . . . . Modified Bessel function of the first kind of order zero

K . . . . . . . . . . . . . . Measure of conflict between sources

KNs(·) . . . . . . . . . . Modified Bessel function of second kind and order Ns

Lxy, Lxz, Lyz . Maximal values of Feret diameters in the respective xy, xz and yz
planes

m . . . . . . . . . . . . . . Mass function

m(H1) . . . . . . . . . . Mass value attributed to the hypothesis H1 ∈ [0, 1]

Mbackground . . . . . Mean intensity value of a background zone ∈ R+

Mdef . . . . . . . . . . . . Mean intensity value of a defect’s zone ∈ R+

MTH . . . . . . . . . . . Weight of the mean value of intensities in the high threshold com-
putation

MTL . . . . . . . . . . . . Weight of the mean value of intensities in the low threshold com-
putation

N . . . . . . . . . . . . . . Number of elementary transducers in the array ∈ N

N × 1 . . . . . . . . . . Operating mode of the SPA transducer, in which all elements send
and only one element receives.

N ×N . . . . . . . . . Operating mode of the SPA transducer, in which all elements send
and receive.

Ns . . . . . . . . . . . . . Number of scatterers interfering in a resolution cell

NL . . . . . . . . . . . . . Number of layers inside a volume considered for the speckle esti-
mation ∈ N

PN . . . . . . . . . . . . . pdf of Nakagami distribution

PA,B(i) . . . . . . . . . Proportion of points from class A in interval i ∈ [0, 1]

PGΓD . . . . . . . . . . . pdf of Four-Parameters Generalized Gamma distribution

PGΓD . . . . . . . . . . . pdf of Generalized Gamma distribution

PK . . . . . . . . . . . . . pdf of K-distribution

PRician . . . . . . . . . . pdf of the Rician distribution

PR . . . . . . . . . . . . . pdf function of Rayleigh distribution

Pac . . . . . . . . . . . . Acoustic pressure (unit: N/m3 or Pa)

pl . . . . . . . . . . . . . . Plausibility function

156



q . . . . . . . . . . . . . . . Commonality function

r . . . . . . . . . . . . . . . Focal length ∈ R+

Rj . . . . . . . . . . . . . . Region of confidence

rk . . . . . . . . . . . . . . Discrete focal distance in the sampled image ∈ N

s . . . . . . . . . . . . . . . Intensity value in the range cell of the transducer

STH . . . . . . . . . . . . Weight of the standard deviation of intensities in the high thresh-
old computation

STL . . . . . . . . . . . . . Weight of the standard deviation of intensities in the low threshold
computation

t0 . . . . . . . . . . . . . . Travel time from the central element of the transducers array to a
focal point (unit: second)

ti . . . . . . . . . . . . . . . Travel time from the element i of the transducers array to a focal
point (unit: second)

tr . . . . . . . . . . . . . . Travel time in the forward and backward path from the transducer
to the focusing point (xr, zr) (unit: second)

TH . . . . . . . . . . . . . High threshold ∈ R+

TL . . . . . . . . . . . . . . Low threshold ∈ R+

u . . . . . . . . . . . . . . . Noisy ultrasound image

u(x, y, z) . . . . . . . Intensity value in volume u at voxel of coordinates (x, y, z)

v . . . . . . . . . . . . . . . Noise free image

V M,0
x,y,z . . . . . . . . . . . Similarity searching 2D window centered at voxel (x, y, z)

V M
x,y,z . . . . . . . . . . . Similarity searching 3D window centered at voxel (x, y, z)

Vref . . . . . . . . . . . . A reference volume obtained by inspecting a sample without de-
fects.

w . . . . . . . . . . . . . . Weight function

ws . . . . . . . . . . . . . . Similarity weight ∈ [0, 1]

Wc . . . . . . . . . . . . . Weight given for correct classification ∈ R+

Wtn . . . . . . . . . . . . Weight given for false defects classification ∈ R+

Wtp . . . . . . . . . . . . Weight given for true defects classification ∈ R+

Wxy, Wxz, Wyz Minimal values of Feret diameters in the respective xy, xz and yz
planes

X . . . . . . . . . . . . . . Suspicious region

x, y, z . . . . . . . . . . Cartesian coordinates

Z . . . . . . . . . . . . . . Acoustic impedance (uint: N.s.m−3)
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Zref . . . . . . . . . . . . A reference zone with no defect inside it.

Zx,y,z . . . . . . . . . . . Normalization factor ∈ R+

2D . . . . . . . . . . . . . Two dimensional

3D . . . . . . . . . . . . . three dimensional

I . . . . . . . . . . . . . . . The indicator function

A-scan . . . . . . . . . Amplitude modulation scan

ANN . . . . . . . . . . . Artificial Neural Networks

B-scan . . . . . . . . . Brightness scan

Blob . . . . . . . . . . . Binary large object

BWE . . . . . . . . . . . Backwall of the specimen

BWE slice . . . . . . Last layer of the backwall of the specimen

C-scan . . . . . . . . . Computerized scan

cdf . . . . . . . . . . . . . Cumulative distribution function

CFRP . . . . . . . . . . Carbon Fiber Reinforced Polymers

CPA . . . . . . . . . . . Conventional Phased Array

CT . . . . . . . . . . . . . Computed Tomography

DFC . . . . . . . . . . . Data Fusion Classification

DSF . . . . . . . . . . . . Dempster-Shafer fusion

DWT . . . . . . . . . . Discrete Wavelet Transform

E-scan . . . . . . . . . Electronic scanning

ecdf . . . . . . . . . . . . Empirical cumulative distribution function

EE . . . . . . . . . . . . . Entrance of the specimen

FD . . . . . . . . . . . . . False defect

FRP . . . . . . . . . . . Fiber Reinforced Polymer

K-S . . . . . . . . . . . . Kolmogorov-Smirnov

ML . . . . . . . . . . . . . Maximum Likelihood

NDT . . . . . . . . . . . Non-destructive testing

NL-means . . . . . . Non Local means filter

pdf . . . . . . . . . . . . . Probability density function

ROC . . . . . . . . . . . Receiver Operating Characteristics

S-scan . . . . . . . . . . Sector scan
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SAFT . . . . . . . . . . Synthetic Aperture Focusing Technique

SAR . . . . . . . . . . . Synthetic Aperture Radar

SPA . . . . . . . . . . . . Sampling Phased Array

SVM . . . . . . . . . . . Support Vector Machine

SynFo-SPA . . . . . Synthetic Focusing-Sampling Phased Array

TD . . . . . . . . . . . . . True defect

TGC . . . . . . . . . . . Time Compensation Gain
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lencia, “On the influence of interpolation on probabilistic models for ultra-
sound images,” International Symposium on Biomedical Imaging: From Nano
to Macro, IEEE, Rotterdam, Netherlands, pp. 292–295, 14-17 April, 2010.

[121] I. B. Ayed, A. Mitchie, and Z. Belhadj, “Multiregion level-set partitioning of
synthetic aperture radar images,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 27, no. 5, pp. 793–800, May, 2005.

[122] C. J. Oliver, “Optimum texture estimators for sar clutter,” J. Phys. D.: Appl.
Phys., vol. 26, no. 11, pp. 1824–1835, November, 1993.

[123] C. Tison, J. M. Nicolas, F. Tupin, and H. Maitre, “New statistical model for
markovian classification of urban areas in high-resolution sar images,” IEEE
Trans. Geosci. Remote Sens., vol. 42, no. 10, pp. 2046–2057, October, 2004.

169



[124] W. Szajnowski,“Estimator of log-normal distribution parameters,” IEEE Trans.
Aerosp. Electron. Syst., vol. 13, no. 15, pp. 533–536, September, 1977.

[125] S. George, “The detection of non fluctuating targets in log-normal clutter,”
NRL Report 6796; Naval Research Laboratory: Washington, DC, USA, Octo-
ber, 1968.

[126] Y. Zimmer, R. Tepper, and S. Akselrod, “A lognormal approximation for the
gray level statistics in ultrasound images,” Proceedings of the 22 Annual EMBS
International Conference, Chicago, IL, vol. 4, pp. 2656–2661, 23-28 July, 2000.

[127] G. Xiao, M. Brady, J. A. Noble, and Y. Zhang, “Segmentation of ultrasound
b-mode images with intensity inhomogeneity correction,” IEEE Trans. Med.
Imag., vol. 21, no. 1, pp. 48–57, January, 2002.

[128] R. B. D’Agostino and M. A. Stephens, “Goodness-of-fit techniques,” New York:
Marcel Dekker, June, 1986.

[129] O. Michailovich and D. Adam, “Robust estimation of ultrasound pulses using
outlier-resistant de-noising,” IEEE Transactions on Medical Imaging, vol. 22,
no. 3, pp. 368–392, March, 2003.

[130] H. C. Li, W. Hong, Y. R. Wu, and P. Z. Fan, “On the empirical-statistical
modeling of sar images with generalized gamma distribution,” IEEE Journal of
selected topics in signal processing, vol. 5, no. 3, pp. 386–397, June, 2011.

[131] C. Tison, J. Nicolas, and F. Tupin, “Accuracy of fisher distributions and log-
moment estimation to describe histograms of high-resolution sar images over
urban areas,” In Proceedings of IGARSS, Toulouse, France, vol. 3, pp. 1999–
2001, 21-25 July, 2003.

[132] C. J. Oliver, I. McConnell, and R. G. White, “Optimum edge detection in
sar,” IEE Proceedings Radar, Sonar and Navigation, vol. 143, no. 1, pp. 31–40,
February, 1996.
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