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Abstract—Iterative reconstruction methods with regularization
become more and more popular. In the literature, amazing results
are reported that are able to reconstruct images from very few
views and from trajectories that do not acquire complete data sets
such as would be required for analytical reconstruction methods.

A large disadvantage of iterative methods is their high
computational demand. Bruder et al. have shown that if the
reconstruction is accurate enough, the regularization can be
performed in the reconstructed image only which allows for much
faster application of the regularization term.

In this paper, we present a heuristic compensation weight
that corrects for the loss of mass in a filtered back-projection
type reconstruction given a limited angle problem. Although the
reconstruction contains artifacts, we show that the application
of a bilateral filter in the reconstruction domain is able to
recover almost the same signal as a TV-regularized iterative
reconstruction. The reconstruction error is reduced from 0.130
to 0.057 which is the same as for the iterative case.

I. INTRODUCTION

Iterative reconstruction methods that use some kind of

regularization are becoming more and more popular. Using

certain assumptions, such as that the object of interest is

piece-wise constant, allows violation of the Nyquist-Shannon

sampling theorem [1], [2]. Reconstruction time, however, is

often dramatically increased. Iterative regularized reconstruc-

tions are only feasible, if they are implemented on special

hardware such as graphics cards. Still, the reconstruction time

is an order of magnitude higher than the reconstruction time

in a traditional filtered back-projection algorithm.

Recently, novel approaches have been presented providing

typical benefits of iterative algorithms, but are based on a

filtered back-projection (FBP) type algorithm. Hence, they do

not have to project forward and backward repeatedly in their

iterations. Bruder et al. have shown that there exists an image-

based non-linear filter that is equivalent to a full iterative

reconstruction with regularization [3]. However, the method

can only be applied if the initial reconstruction is sufficiently

accurate. Zeng presented an FBP-type algorithm, which has

similar characteristics to those of an iterative MAP (maximum

a posteriori) algorithm [4].

In general, analytic reconstruction methods face a challenge

if they have to reconstruct data from an incomplete trajectory

[5], [6]. A fan beam trajectory is complete, if 180◦ + 2δmax

are acquired, where δmax is the half fan angle. This is often
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referred to as a short scan in the literature. Redundant rays

can be weighted which provides a correct reconstruction [7].

Extensions to this weighting to incorporate larger areas of

redundancy [8] and to optimize the signal-to-noise-ratio [9]

exist. If less than a short scan is acquired, analytic reconstruc-

tion is still possible, but the field-of-view (FOV) that allows

correct reconstruction is reduced [10]. In contrast, iterative

methods using regularization based on total variation (TV)

minimization allow the correct reconstruction of the complete

FOV, if the object of interest is piece-wise constant [1].

In this paper, we investigate this mismatch. We further

propose to use a compensation weight that is a heuristic

extension of the commonly used redundancy weights to im-

prove the analytical reconstruction. In order to obtain the final

reconstruction, we then apply an image-based regularization

using a bilateral filter that enforces piece-wise constancy.

Results indicate that this analytical reconstruction delivers re-

constructions that are very close to the iterative reconstruction

method. Computation time, however, is an order of magnitude

lower compared to the iterative procedure.

II. METHODS

In the following section, we will shortly describe the

used reconstruction methods, beginning with the iterative TV-

regularized reconstruction. Next, the analytic reconstruction

methods and the different redundancy weights are detailed. At

the end of this section, we describe the error metrics that are

used in the results section.

A. Iterative Reconstruction

As a reference reconstruction system, we used an iterative

reconstruction with an augmented objective function

min
x

‖x‖TV subject to ‖Ax− b‖22
where x denotes the reconstruction volume, A the system

matrix that projects x on the detector where the line integrals

b are measured. Details on the implementation are given in

[11].

B. Analytic Reconstruction

In the following, we describe the analytical reconstruction

algorithm using a 2D formulation. Note that any of the pre-

sented concepts can easily be extended to a 3D reconstruction

using a Feldkamp-like approximation. The image f(x, y) is

reconstructed using a filtered back-projection

f(x, y) =

∫
1

U2

∫
D√

D2 + s2
w(s, λ)g(s, λ)hR(s

′ − s)dsdλ

where D is the distance from the source to the center of

rotation, U the depth of the reconstruction point (x, y) and
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Fig. 1. Redundancy in the sinogram in a short scan (left) and a shorter scan:
While the short scan addresses only double rays in the light blue areas, the
shorter scan is also missing angles for the complete VOI in the dark red areas.

s′ its projection onto the detector g(s, λ) at gantry rotation

λ. s denotes the detector element and w(s, λ) a redundancy

weight that deals with inconsistent rays. For convenience, we

have virtually placed the detector into the center of rotation.

1) Redundancy Weights: To eliminate artifacts in the recon-

struction that are caused by rays which were acquired twice,

we use a redundancy weight as described in [8]. Let

η(λ, δ) = sin2
(
π
2
π + δx − λ
δx − 2δ

)
and (1)

ζ(λ, δ) = sin2
(
π
2

λ
δx + 2δ

)
(2)

denote the redundancy weights at the beginning and the end of

the scan, respectively. The weights wr(s, λ) are then computed

as

wr(s, λ) =

⎧⎨⎩ η(λ, δ) if π + 2δ ≤ λ ≤ π + δx
ζ(λ, δ) if 0 ≤ λ ≤ 2δ + δx
1 otherwise

In this formulation, δ denotes the angle associated with detec-

tor element s and δx is the scan range in which the redundancy

occurs. If δx = 2δmax Parker’s original formulation is obtained

[7]. Note that this formulation is also correct for δx < 2δmax.

The only problem that occurs is that some of the projections

(λ = 0 and λ = π+ δx) would get assigned a weight that is 1

for the non-redundant part and 0 for the redundant part. The

resulting step function would cause artifacts in the subsequent

reconstruction. In order to omit artifacts, we applied a low-

pass filter on the weights in these projections.

2) Compensation Weights: Figure 1 shows the difference

between a short scan and a scan configuration with δx < 2δmax.

While the short scan only has to solve the redundancy in the

triangles described by π + 2δ ≤ λ ≤ π + δx and 0 ≤ λ ≤
2δ + δx that are shown in light blue in the figure, the shorter

scan is missing information in the triangle π + δx ≤ λ ≤
π+2δ that is shown in dark red. The missing data will cause

artifacts in the resulting reconstruction. Most of the artifacts

are caused by the missing mass during the back-projection.

The signal reduction is proportional to the amount of missing

angles. The rays in the triangles π + 2δx − 2δ ≤ λ ≤ π + δx
and 0 ≤ λ ≤ −δx−2δ that are shown in light red pass through

Fig. 2. Surface plot of an instance of compensation weights.

the area where the mass in the reconstruction is missing. In

order to create a reconstruction with equal mass distribution,

we now increase the weight of these rays with the following

compensation weight wc(s, λ):

wc(s, λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η(λ, δ) if π + 2δ ≤ λ ≤ π + δx
2− η(λ, δ) if π + 2δx − 2δ ≤ λ ≤ π + δx
ζ(λ, δ) if 0 ≤ λ ≤ 2δ + δx
2− ζ(λ, δ) if 0 ≤ λ ≤ −δx − 2δ
1 otherwise

Note that for the projections at λ = 0 and λ = π + δx the

weight takes the form of a step function as in the case of

the redundancy weights. We alleviated the problem by the

same low-pass filter as in the case of the redundancy weights.

Figure 2 demonstrates the shape of the compensation weights.

3) Bilateral Filtering: The bilateral filter, originally pro-

posed by Tomasi and Manduchi [12], is a smoothing operator

that protects sharp edges. The idea is that the spatial support

for a Gaussian operator is weighted. More specifically, let

f(x, y) and f∗(x, y) denote an intensity in the image at

position (x, y) and its bilaterally filtered output, respectively.

Here, f∗(x, y) is computed by

f∗(x, y) =
∑

(x′,y′)∈N
g(‖(x′, y′)T − (x, y)T‖2, σg,1)

· g(|f(x, y)− f(x′, y′)|, σg,2)

(3)

where g(μ, σ) denotes the Gaussian function with mean μ and

standard deviation σ, and N denotes the set of all pixels within

a spatially close distance to (x, y).

C. Metrics
For quantitative comparison of the results, we compute three

distance metrics, namely the mean square error (MSE), the

relative root mean square error (rRMSE) and the structural

similarity index (SSID).
The mean square error denotes the pixelwise squared differ-

ence between the reconstructed volume and our ground truth,

the Shepp-Logan phantom. The relative root mean square error

(rRMSE) is similar to the MSE, but normalized with respect

to the variations in the image. Thus, it is defined as

εrRMSE =
‖x− x̃‖2

‖x̃‖ , (4)
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where x and x̃ denote the reconstructed intensities and the

ground truth phantom, respectively.

The structural similarity index is a widespread metric that

is based on the standard deviation of the reconstructed signal.

It is defined as

4 · cov(x, x̃) · μμ̃
(μ2 + μ̃2) · (σ2 + σ̃2)

, (5)

where σ and σ̃ denote the standard deviations of the re-

constructed image x and the ground truth x̃, respectively.

cov(x, x̃) denotes the covariance between the images. μ and

μ̃ are the mean values of x and x̃, respectively.

III. RESULTS

In our experiments, we demonstrate that we achieve a

similar image quality using compensation weights and bilateral

filtering compared to a state-of-the-art TV-regularized iterative

reconstruction [11].

A. Experimental Setup

We evaluated our approach on a simulated 3D Shepp-Logan

phantom [13]. For the projection, we used a detector with

640 detector elements of size 0.5 mm and we sampled the

phantom at 180 angles with an angular increment of 1. Source

to Detector distance was chosen to be 500 mm. The detector

was virtually placed into the center of rotation. The phantom

was scaled to fill the FOV without truncation As a result

of this configuration, the redundancy weighted reconstruction

(see next Section) suffers from an undersampled region in the

upper part of the image.

B. Qualitative Assessment

Figure 3 shows the qualitative results for the proposed

method. On the left, the Shepp-Logan phantom and the result

for total variation regularization are shown. In the middle

column, the reconstruction results for the classical redundancy

weights are shown, with and without bilateral filtering. The

right column shows the reconstruction result for the proposed

compensation weights.

As expected, Parker weights are not able to reconstruct the

area with missing angles correctly. This leads to the dark

area in the upper part of the phantom. The TV-regularized

reconstruction yields an excellent result. In particular, the

sparsity constraint of the algorithm almost perfectly restores

the phantom. The reconstruction using compensation weights

results in an image with a large number of high frequency

streak artifacts that result from the remaining missing infor-

mation. However, bilateral filtering almost completely removes

these artifacts, yielding a result that is comparable to the TV

reconstruction result. The same observations can be obtained

by looking at the line profiles shown in Figure 4.

C. Quantitive Assessment

For quantitative evaluation, we selected a region of interest

(ROI) in the upper part of the phantom, i. e. where the

undersampling occurs. Figure 3a shows the region where the

ROI was selected.
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Fig. 4. Intensity profile along a vertical line through the phantom.

rRMSE MSE SSIM

Redundancy 0.1301 0.0286 0.9528

Redundancy BF 0.1271 0.0273 0.9594

Compensation 0.0673 0.0076 0.9594

Compensation BF 0.0569 0.0055 0.9673

TV 0.0566 0.0054 0.9777

TABLE I
QUANTITATIVE MEASUREMENTS.

Table I shows the results of the quantitative measurements.

The result of the qualitative assessment is confirmed by all

reported measures. The quality of the TV-regularized recon-

struction is the best. The reconstruction with compensation

weights is very close to this result.

IV. DISCUSSION

Our observations confirm the findings by Bruder et al.

[3]. We are able to enforce the regularization by applying a

bilateral filter in the reconstruction domain only. This enables

us to recover a reconstruction that is comparable to a TV-

regularized reconstruction. As commented by Bruder et al. the

reconstruction must yield an image quality that is sufficient to

enforce the regularization in the reconstruction domain. This

is usually not the case in limited angle reconstructions as the

missing data leads to a deterministic decrease of reconstruction

values in the area with missing angle. We compensate for this

using a heuristic weighting procedure that increases weights

according to the amount of missing data. Thus we are able to

create a reconstruction that is improved but still suffers from

streak artifacts. The magnitude of these artifacts, however, is

an order of magnitude lower than the artifact resulting from

the missing angle. Subsequent use of a bilateral filter is able

to recover the original signal.

In the present study, we used a simple phantom that

is very popular when exploring reconstructions using TV-

regularization. We expect similar results when using other

piece-wise constant phantoms [14]. Note that the results

presented here required the 8-fold application of the bilateral

filter. Still the processing time was an order of magnitude

lower than the processing time of the iterative reconstruction

with 1000 iterations.
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(a) Phantom (b) Redundancy weights (c) Compensation weights

(d) TV-regularized (e) Redundancy weights+BF (f) Compensation weights+BF

Fig. 3. Qualitative comparison of the reconstructed slices: The compensation weights in combination with a bilateral filter (BF) visually appears almost
identical to a TV-regularized reconstruction. The window for the visualization was chosen as [1.0, 1.4].

In real data, results may be quite different. However, we

still expect that our method is suited to initialize an iterative

reconstruction and will therewith decrease the number of

required iterations.

V. CONCLUSION

We have shown a compensation method that allows recon-

struction of images that are comparable to the reconstructions

created with a TV-regularized iterative reconstruction. The re-

sult of the proposed method can be computed within seconds,

while the iterative procedure has a computation time that is

an order of magnitude higher.
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