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Abstract

In a raw photographic image, the observed colors are a mixture of material
reflectance and colored illumination. For further processing, the color influence of
the light source is often considered a disturbance. In such cases, it is desireable
to neutralize the color of the light source, often referred to as white balancing.
Successful white balancing often requires an estimate of the color of the light
source. Most existing illuminant color estimators assume homogeneous, globally
uniform illumination. However, this assumption is often violated in real-world
images.

In this work, we make an attempt towards estimating the colors and spatial
distributions of multiple light sources in a scene. We estimate the color of the
illumination locally, and define an objective function to select two or three repre-
sentative illuminants from all local estimates. Although the objective function is
relatively simple, qualitative results look promising.

1 Introduction

When capturing a scene with a camera, the observed colors are always a mixture of the
material reflection and the illuminant spectrum. For several vision tasks like color-based
object recognition, non-white illumination can be a serious source of error.

The goal of research in color constancy is to obtain a color-normalized version of
the image. A common simplifying assumption is that an observed pixel color pc is the
product of material color mc and illumination color ic, i. e.

pc = (mc · ic)γ (c ∈ {R,G,B}) , (1)

where γ denotes non-linear scaling by the camera, and c denotes one of the color
channels red (R), green (G)and blue (B). Typically, one assumes that the effect of γ
can be reversed by raising the observed pixel to the power of 1/γ. Then, the ic is
straightforward to neutralize (i. e., “change to white”) multiplying the equation with
1/ic.

If only a single image is available, the recovery of ic is an ill-posed problem. As each
observed color consists of two unknowns, the material color and the light color. Hence,
color constancy algorithms require additional constraints or assumptions to obtain a
solution.



Figure 1: Example scenes under non-uniform illumination.

To make the problem better tractable, most of the previous work assumed homoge-
neous, globally uniform illumination. With this assumption, all pixels and color channels
in the image can be used to estimate a single three-component vector of the illuminant
color. This estimate is either based on image statistics, physics-based reasoning, or
perceptual assumptions, see e. g., [BCF02, BMCF02, GGvdW11, TNI04, REA09].

Unfortunately, in real-world scenes, the assumption of a homogeneous uniform illu-
mination is often greatly violated. Typical scenes often contain multiple light sources,
like indoor and outdoor illumination, flash light and environmental lights. Figure 1
shows two such examples, where two light sources mix across the scene. Hence, the
color and spatial distribution of each illuminant must be estimated, which makes the
color constancy problem considerably harder.

So far, only few algorithms have been proposed to approach this non-uniform illumi-
nation. The earliest work is by Gijsenij et al. [GLG12] and Bleier et al. [BRB+11], which
is a statistics-driven approach that has been demonstrated to operate well on synthetic
and laboratory images. Other work showed good qualitative results on real images, but
lacks a clear optimization criterion when estimating the spatial distribution of the light
sources [REA11].

In this work, we extend [REA11] by investigating a physics-based multi-illuminant
estimator. We obtain illuminant estimates for spatially limited, small locations in the
image. Then, we filter these estimates to end up with two or three representative
illuminant colors using a simple combinatorial objective function.

2 Illuminant Colors and their Spatial Distribution

The algorithm can be subdivided into three steps. First, the image is subdivided into
smaller regions of approximately equal size. Then, the illuminant color is estimated
locally on each region. In a third step, we seek a cover of some of these illuminant



estimates across the scene that is optimal with respect to a given objective function.
Image sizes are normalized to a height of 480 pixels. Similar to [REA11], we first

segment the image into similar colors using the algorithm by Felzenszwalb and Hutten-
locher [FH04]. As some of these segments can still be quite large, we intersect this
segmentation with a regular grid of 32 × 32 pixels. On each of these segments, we
apply a physics-based illuminant-color estimator [REA11] to obtain a per-segment illu-
minant color estimate s ∈ S. The working principle of this estimator is to project the
color values of the pixels into inverse-intensity chromaticity (IIC) space [TNI04]. Let
p = (pRpGpB)

T an image pixel. The mapping to IIC space is for each pixel of the region
of interest and each color channel c ∈ {R,G,B}

pc →
(

1

pR + pG + pB
,

pc
pR + pG + pB

)
. (2)

This projection is performed for each color channel c.
In IIC space, the color of the illuminant is obtained from analyzing pixel distributions

after the projection according to Eqn. 2 that stem from the same underlying material, but
expose different degrees of specularity. In real-world images, it is difficult to determine
changes of material or specularness in pixels in an automated manner. To accomodate
for that, it is reasonable to impose further constraints on the pixel distributions in IIC
space. In prior work [REA11], it has been shown that heuristic shape constraints on the
pixel distributions in IIC space can be used. Partially specular single-material pixels form
a wedge shape in IIC space. The tip of the wedge points towards the y axis. Estimating
the point of intersection of the wedge tip with the y axis yields an illuminant color
estimate [TNI04, REA11]. We performe this estimation on the subdivided image, i. e.
on image segments s, such that we eventually have several illuminant color estimates
from different positions in the image.

The performance of the illuminant color estimator depends on the fact that at least
some specular reflectance is present in the pixel distribution. To address this point,
we compute for each segment s a simple confidence measure cs. We estimated the
degree of specular reflection per segment using an algorithm by Tan and Ikeuchi [TI05].
One of the assumptions of the specularity estimation is white illumination, which leads
to a chicken-and-egg problem. However, we found the estimated specularity maps to
be sufficiently good for this work. The confidence cs corresponds to the sum of the
per-pixel specularity weights, normalized over the image between 0 and 1.

Figures 2(a) and 2(b) show local estimation results. Black regions denote areas where
the illuminant color estimator did not provide a reliable estimation result. The estimates
still contain several apparent outliers. With the subsequent processing steps, we aim to
remove the outliers, and to obtain a spatial distribution of 2 to 3 likely illuminants. Let
is the illuminant estimate in segment s. We randomly select 200 instances of is from
the local illuminant estimates. If less than 200 estimates are available, we use all. Let
Q denote all subsets of these illuminant estimates containing 1, 2 or 3 illuminants, and
Q ∈ Q one particular selection of illuminants. Then, we seek an optimal subset Qopt

subject to

Qopt = argmin
Q

∑
s∈S

(
1−

∑
q∈Q

d(is,q)
)2
cs , (3)
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Figure 2: Local illuminant estimates on the images in Fig. 1.

where d(is,q) is a piecewise linear error function, defined on the angular distance
a(is,q) = cos−1(is ◦ q) as

d(is,q) =

{
1− 9 · a(is,q) if a(is,q) ≤ 0.1
0.1− (a(is,q)− 0.1)/9 otherwise

. (4)

Hence, we look for an ’optimal’ set of illuminants, in the sense that most of the scene
patches with high confidence high-confidence cs are close to one of the candidate illu-
minants q.

Once q has been determined, we assign each illuminant color estimate is the color
of the closest illuminant in Sopt. The outcome for the two example images is shown in
Fig. 3. In comparison to Fig. 2(a) and Fig. 2(b), most of the outliers are suppressed,
while still maintaining some scene structure in the illuminant estimates.

3 Results

Quantitative ground truth on multi-illuminant scenes is challenging to obtain, which is
why our study is limited to qualitative results. We show and discuss two more examples
in Fig. 4 and Fig. 5.

In Fig. 4, a slightly reddish spotlight illuminates the central part of the scene, while
the background light is apparently blue. The painting in the background leads to many
outlier illuminant estimates (see Fig. 4 top right). However, these outliers exhibit a
wide variety of colors, and hence do not have much impact on the selection of the final
illuminants. As Fig. 4 (bottom) shows, blue and a slightly yellowish tone are eventually
selected. The spatial distribution of the filtered illuminant estimates is very reasonable,
in the sense that it pretty much resembles the image structure.



(a) (b)

Figure 3: Filtered illuminant estimates after computing Qopt. Outliers are greatly sup-
pressed.

This, however, is not always the case. Figure 5 contains a failure case. The subway
scene is very cluttered, with several man-made illuminants and specular surfaces in the
scene. The local illuminant estimates also mostly consist of outliers, scattered across
the scene (see Fig. 5, top right). In this experiment, we restricted the number of
estimated illuminants to exactly 2 or exactly 3, which is shown in Fig. 5 bottom left
and right, respectively. In both cases, a bluish and very light red are selected. However,
the assignments of illuminant colors to the image segments does not exhibit much of
the underlying image structure. As a consequence, white balancing algorithm that uses
these estimates as seed points might have difficulties to achieve a satisfying result.

4 Discussion

The presented algorithm demonstrates in several examples good qualitative performance.
Initial experiments are encouraging, and suggest that it might be possible to use these
estimates as seed points for a white balancing algorithm.

However, there are also some intrinsic limitations of the presented approach, that
should be addressed in future work. First, the reasoning on the best illuminants is
entirely done on the illuminant colors, i. e. the image content or spatial distribution is
not taken into consideration.

Additionally, the optimization criterion implicitly favors solutions that cover a certain
area in RGB-space. Assume a scenario where the true illuminants are very close to each
other in RGB-space. Assume also that most of the illuminant estimates are distributed
closely around the true illuminants, with some small added noise. In this case, the
algorithm would most likely select illuminants that are further apart, just to cover also
some of the more noisy estimates. In other words, it does not explicitly search for centers



Figure 4: The painting in the background of the scene leads to many outlier illuminant
estimates (top right). However, the relatively strict constraint on 2 or 3 illuminants
discards illuminant estimates that are scattered across RGB space (bottom).

in densities, but blindly optimizes distances to bags of illuminant color estimates.
However, it is a relatively straightforward algorithm, that apparently operates effec-

tively in many situations. In that sense, it has some attractivity in its own right due to
its simplicity.

In future work, we will investigate ways to incorporate the image content for optimiz-
ing the color of the illuminants. We also plan to use such sparse estimates for seeding
a white-balancing algorithm.

5 Conclusions

We presented a selection method for multiple local illuminant estimates. It chooses two
to three reference illuminants in a multi-illuminant scene and recolors the estimates.
The output of the algorithm can be used, e. g., for seeding an advanced white balancing
algorithm. The algorithm itself is straightforward to implement, and given its simplicitly,
apparently performs reasonably well.



Figure 5: The subway station contains a quite complex lighting situation. Besides a
lot of outliers, several details are also picked up by the local illuminant estimates (top
right). The selection of 2 (bottom left) or 3 (bottom right) illuminants favors blue and
white lights, but these illuminants are scattered across the scene, i. e., reveal not much
scene structure.
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