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Abstract—Statistical iterative reconstruction methods are cur-
rently under extensive investigation for x-ray computed tomog-
raphy. Among many options, the maximum likelihood solution
is often preferred, particularly because it can be reduced to a
weighted least-square problem. This solution may be sought using
a moderate number of iterations of a specific algorithm such
as Landweber’s method (or an ordered-subset variant of this
algorithm), or may be sought with a penalty term and a number
of iterations large enough to reach convergence. In the first case,
the iteration number serves as a regularization means, whereas
in the second case the penalty term defines the regularization
procedure. It is well-known that the iteration number creates a
(shift-variant) trade-off between resolution and noise, and that
such a trade-off has been found useful in nuclear medicine. In
this work, we show that the noise-resolution trade-off introduced
by the iteration number is not always attractive for CT imaging,
particularly when statistical weights and data redundancies are
involved.

I. INTRODUCTION

Statistical iterative reconstruction methods are currently
under extensive investigation for x-ray computed tomography
(CT), as they may offer significant gains in terms of image
quality at equal dose, and thereby allow reduction in x-ray
dose. There are many ways to formulate a statistical recon-
struction method for x-ray CT. In particular, the maximum
likelihood solution without and with constraints on the image
appear both highly popular, particularly because finding this
solution in CT can be reduced to a weighted least-square
problem. In the first approach, the user formulates an iterative
algorithm that converges towards the maximum likelihood
solution and defines the reconstruction as the application of
a finite number of iteration steps. Using this approach, the
iteration number is essentially seen as a regularization means.
Recall that the CT reconstruction problem is mildly ill-posed,
so that regularization is essential to achieve satisfactory image
quality. In the second approach, the regularization is not
left to the iteration number; it is enforced directly by the
constraint and the user iterates as long as needed to reach to
minimum of the objective function. Popular constraints include
the generalized Gaussian prior and the Huber penalty.

In this paper, we investigate the usefulness of the first
approach for CT imaging, that is we study the effectiveness of
regularization based on a finite number of iterations. Our study
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includes essential aspects of CT imaging, namely non-uniform
statistical weights and data redundancies.

II. EXPERIMENTAL SETTING

A. Data simulation

All simulations were performed in fan-beam geometry (3rd

generation CT curved detector) using the FORBILD head
phantom. Thus, each ray was parameterized by two angles,
λ and γ, where λ is the polar angle specifying the source
position and γ is the angle between the ray and the line that
connects the source to the rotation center.

Full scans and short scans were both considered with
parameters given in table 1. Also, note that a sub-sampling
of each detector was employed to model the blurring that
results from the finite size of the detector elements, and
thereby mitigate high-frequency errors in the reconstruction.
Specifically, each measurement was simulated as the average
of five line integrals equally spaced over the detector width
(non-linearities were neglected).

B. Image representation and forward projection model

We decided to represent the attenuation function by its val-
ues on a Cartesian grid of points. The coordinates associated
with this grid are called x and y. 350 by 350 locations were
considered with a uniform sampling distance of 0.075 cm in
both x and y.

The link between the attenuation function and the mea-
surements was described using the principles of the distance-
driven method [1]. That is, each line integral was evaluated
as a simple sum in x or y together with a linear interpolation
between grid points in y or x, respectively. As suggested by
this method, note that the direction of summation was fixed
for all lines within a fan-beam view, i.e., the position of the x-
ray source defined the summation direction for all rays within
the view. Also, the interpolation kernel accounted for both the
sampling distance in γ and the sampling distance in x (or y
depending on the interpolation direction).

C. Reconstruction technique

Let c be the vector of unknown image coefficients, let g be
the vector grouping the CT measurements, and let A be the
matrix that links c to the CT measurements, as defined by the
distance-driven method. Each reconstruction was performed
using a moderate number, m, of iterations given by the
following equation:

c(n+1) = c(n) + η ·ATC−1
(
g −Ac(n)

)
(1)



where C is a constant diagonal matrix and η is a factor
controlling convergence speed. The value for η was chosen
as 0.90 times 2/σmax where σmax is the maximum singular
value of the matrix C−1/2A, estimated using three iterations
of the Power method [2]. The initial image vector, c(0) was
always chosen as the zero vector.

Conceptually, our iterative procedure can be interpreted as
the application of Landweber’s method to find the minimum-
norm minimizer of

J(c) = ||C−1/2(Ac− g)|| . (2)

However, this minimizer was never reached since reconstruc-
tion was based on a moderate number of iterations. Recall
that singular value decomposition analysis reveals that using a
finite number of Landweber’s iterations amounts to performing
minimization with regularization. Given that the CT recon-
struction problem is mildly ill-posed, regularization is actually
essential. That is, the minimum-norm minimizer of J(c) is not
attractive.

It is well-known that the iteration number generates a trade-
off between resolution and noise. In PET imaging, this trade-
off is often used to select the number of iterations. In this work,
we will show that the resolution-noise trade-off induced by the
number of iterations is unfortunately not often attractive for
CT imaging, because it does not account for reconstruction
errors other than resolution effects.

III. RECONSTRUCTION WITH STATISTICAL WEIGHTS

In this section, matrix C is interpreted as the covariance
matrix for the CT measurements. Because these measurements
are assumed to be statistically independed, C is a diagonal
matrix, with each element on the diagonal representing the
variance of one measurement. This variance is equal to the
inverse of the number of photons reaching the detector, which
itself is influenced by the incoming number of photons, the
shape of the bowtie filter and the attenuation property of the
interrogated object.

A. Bowtie filter model
On x-ray CT scanners, the bowtie filter is a shaped piece

of material (usually metal) which is placed between the x-ray
source and the patient. It is designed to equalize the intensities
of the rays hitting the detector for a given attenuating object.
The primary purpose of the bowtie filter is to decrease the
patient radiation dose near the edges of the scanning field-of-
view (FOV) [3].

The effect of the bowtie filter is to make the number of
photons going into the scanned object, Nin, vary with γ. In
presence of a bowtie filter, we model the number of photons
entering the interrogated object as

Nin(γ) = N0 · e−η(γ) , (3)

where N0 is the number of photons leaving the source and
η(γ) is a function which models the effect of the bowtie filter.

Let µBF be the linear attenuation coefficient for the bowtie
filter and let dBF be its thickness at γ = 0. Then η is defined
as

η(γ) = gob(0)− gob(γ) + dBF · µBF , (4)

Fanbeam scanning parameters:
Source trajectory radius R 57 cm
Source to detector distance (D) 104 cm
Number of detector elements 340
Angular detector width (∆γ) 0.1368 radians

full scan:
Number of projections per turn 2320

short scan:
Number of projections per turn 870
short-scan start angle λs 0 radians
short-scan stop angle λe 3π/4 radians
angular interval d 0, 5, 30

Bowtie filter:
Bowtie filter radius (rBF ) 8.0 cm
Bowtie filter attenuation (µBF ) 0.54 cm−1

Bowtie filter thickness parameter (dBF ) 0.50 cm

TABLE I
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Fig. 1. Some expamples for the shape of a bowtie filter.

where gob is the line integral through the object along the line
L(λ, γ) for some fixed λ. Note that if the object is centered at
the origin, η(γ) is circularly symmetric, and any fixed value
of λ will suffice for the definition of gob.

B. Experiment details

A full scan acquisition with a bowtie filter is used. We
consider two phantoms: the FORBILD head phantom and a
simpler phantom that consists only of the outer two ellipses of
the FORBILD head phantom. Figure 1 show two bowtie filters.
Here, we used a bowtie filter shaped as bowtie filter 1 and 2,
respectively. The value of each statistical matrix element is
defined by C−1

ij = Nin · exp(−µW · gmij
), where Nin are the

remaining photons after the bowtie filter (Eqn. 3) to go through
the phantom, µW is the attenuation factor of water and gmij

is an element of the fan-beam data set. Bias was evaluated as
the mean reconstruction error over pixels located within the
dark ring in Fig. 5. The error for any given pixel was defined
as the absolute difference between the reconstructed value and
the true attenuation value of the hatched area, which is 50 HU.

C. Results

Figure 2 shows the reconstructed images for the two phan-
toms with bowtie filter 1 and bowtie filter 2, respectively. The
number of the photons after bowtie filter 1 and bowtie filter 2
is shown in figure 3. Figure 4 shows the bias as a function of
the iteration number for bowtie filter 1 and bowtie filter 2.
Using bowtie filter 1 in our reconstruction algorithm (Eqn. 2)
cause a ring artifact in the reconstructed images. This ring
artifact can be traced back to the fact that the function Nin(γ)
is not smooth since the radius of that ring has the same
radius as the one of bowtie filter, rBF . By iterating a very
long time the thickness of the ring decrease. Finally, the
ring disappears completely first after 1640 iterations. When
we use a more complex phantom, we see similar artifacts
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Fig. 2. Iterative reconstruction obtained from (first row) 250 iterations
and (second row) 1640 iterations of the Landweber algorithm using bowtie
filter 1, (third row) iterative reconstruction obtained from 250 iterations of the
Landweber algorithm using bowtie filter 2. Grayscale: [1 1.1].
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Fig. 3. Number of photons after
the bowtie filter shown in Fig. 1 for
different radius.
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Fig. 4. Bias as a function of the iter-
ation number by varying the number
of iterations by steps of 5 beginning
with 25 iterations.

appearing due to lack of smoothness in the statistical weights,
but now replacement of the statistical weight with a smoother
expression becomes a challenging question.

IV. DATA REDUNDANCIES

It is often the case that a CT scan involves redundant data.
For example, each line integral is measured twice when a full
scan is performed. However, not all line integrals are always
measured the same number of times. In particular, when
performing a short scan, some line integrals are measured
twice whereas others are only measured once. In analytical
reconstruction, non-uniform redundancies such as those en-
countered with the short scan need to be carefully addressed
to avoid artifacts. A common approach is the utilization of a
Parker-like weight. In iterative reconstruction, there is a priori
no need to use such a weight, but, if desired this weight can
be introduced as part of the definition of C. In this section,
we assume that all measurements have the same variance, and

we study the impact of using a Parker-like weight for the
definition of C versus using the identity matrix.

A. Data redundancy handling

To handle redundancies in the fan-beam data for the case
of a short scan, we use a smooth weighting function

m(λ, γ) =
c(λ)

c(λ) + c(λ+ π − 2γ)
, (5)

where

c(λ) =


cos2

(
π(λ−λs−d)

2d

)
if λs ≤ λ < λs + d

1 if λs + d ≤ λ < λe − d
cos2

(
π(λ−λe+d)

2d

)
if λe − d ≤ λ < λe

(6)
with d being the angular interval over which c(λ) smoothly
drops from 1 to 0 [4]. If d is small, then the weighting function
is similar to that of [5]. On the other hand, if d is large, then
the weighting function is similar to Parker weighting [6].

B. Experiment details

In this second experiment, we investigate the influence of
handling data redundancy in the Landweber algorithm. For
this investigation, we created both full scan and short scan
fan-beam data sets of the FORBILD head phantom. The data
redundancy can be handled by setting the statistical matrix
elements, C−1

ij , equal to the result of Eqn. 5. We choose the
angular interval d = 0, 5, 30 in the function c(λ) in Eqn. 6,
where d = 0 means using no weights since m(λ, γ) = 1. For
that experiment, we created additionally 10 noisy realizations
of each fan-beam data set.

1) Image quality: Image quality was assessed in terms of
resolution, bias and noise properties. Our noise measurements
include the square root of the pixel variance, σ. All bias and
noise metrics were computed for the reconstructions obtained
every fifth iteration.

2) Resolution: The modulation transfer function (MTF)
was used to evaluate resolution. This function was obtained
using a phantom that consists only of the central low contrast
ellipse within the FORBILD head phantom (see Fig. 6, area 2).
For any reconstruction of this phantom, an edge profile that
gives the reconstructed value as a function of the distance
from the ellipse is computed. Then, the MTF is obtained as
the Fourier transform of the differentiated edge profile. Due
to our linear reconstruction method, this approach is suitable
to evaluate the resolution achieved within area 2 in Fig. 6.

Since the resolution varies from one image representation
to the other and also changes at a different pace for each
representation, we present all our figures of merit as a function
of the mean MTF value. To obtain the mean MTF value, we
computed the area under the MTF curve over the range defined
by the Nyquist frequency for the data. This was done for every
fifth iteration up to 1000 iterations.



Fig. 5. The dark ring area was
used for the calculation of the bias
for the bowtie filter experiment.
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Fig. 6. The hatched area 1 was
used for the calculation of the bias
since this area is not affected by
edge artifacts. Area 2 was used for
the MTF calculation.

3) Bias: Bias was evaluated as the mean reconstruction
error over pixels located within the hatched white area 1 in
Fig. 6 since this area is not affected by edge artifacts. The
error for any given pixel was defined as the absolute difference
between the reconstructed value and the true attenuation value
of the hatched area, which is 50 HU.

4) Noise metrics: The image noise was analyzed over a
region of interest (ROI) that corresponds to the hatched area 1
in Fig. 6. The noise magnitude, σ, was evaluated from pixel
variance computations. Using our 10 noise realizations, we
first subtract the bias image from the noisy image. Then, the
pixel variance was estimated for each pixel location in the
ROI. Afterwards, the results were averaged over all pixels in
the ROI. The square root of this mean was defined as σ.

C. Results

Figure 7 shows the reconstructed images for the short scan
case with an angular interval of d = 0, 5, 30 and for the full
scan case without and with noise. The bias metric and the
mean standard deviation as a function of the mean MTF value
is shown in Fig. 8 and in Fig. 9.

Taking data redandancy into account helps to reduce image
artifacts in reconstructed short scan images. However, this has
some strong side effects (Tab. II). On the one hand, the bias in
the image can be reduced by some HU so that less iterations
are required to obtain good looking images but on the other
hand, the noise level is negatively influenced by that.

iteration number
scan to reach the mean absolute error mean std value
modus MTF value 0.70 [HU] σ

full 240 1.07 50.63
short, d = 0 265 6.21 52.95
short, d = 5 385 3.37 61.18
short, d = 30 360 1.98 60.89

TABLE II

V. CONCLUSIONS

We have shown in this work that utilizing the iteration
number is rarely an effective means to regularize the re-
construction in x-ray CT imaging. As we have seen, both
statistical weights and redundancies in the data set can easily
introduce significant errors that differ from resolution errors
and only dissapear after a large number of iterations. Whereas
the resolution reached after say 250 iterations may be deemed
satisfactory, the user will generally observe that the image

Fig. 7. Iterative reconstruction obtained from 250 iterations of the Landweber
algorithm: (first row, left) in short scan geometry with d = 0, (first row, right)
with d = 5, (second row, left) with d = 30, (second row, right) in full scan
geometry. Grayscale: [1, 1.1].
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Fig. 8. Bias as a function of the
mean MTF value obtained by vary-
ing the number of iterations by steps
of 5 beginning with 50 iterations.
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Fig. 9. Mean standard derivation as
a function of the mean MTF value
obtained by varying the number of
iterations by steps of 5 beginning
with 50 iterations.

quality is not. Hence, it is needed to iterate far beyond the
desired resolution to first remove bias, and then post-smooth
the result to attain the desired resolution. Under such circum-
stances, the penalized maximum-likelihood solution might be
perceived as a more attractive reconstruction procedure. An
alternative approach might be to initialize the reconstruction
process with a filtered-backprojection procedure. However, in
this case, it is important to understand what component of this
first image remains when the reconstruction is completed.
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