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ABSTRACT
The fusion of inertial sensor data is heavily used for the clas-
sification of daily life activities. The knowledge about the
performed daily life activities is mandatory to give physi-
cally inactive people feedback about their individual quality
of life.
In this paper, four inertial sensors were placed on wrist,
chest, hip and ankle of 19 subjects, which had to perform
seven daily life activities. Each sensor node separately per-
formed preprocessing, feature extraction and classification.
In the final step, the classifier decisions of the sensor nodes
were fused and a single activity was predicted by majority
voting.
The proposed classification system obtained an overall mean
classification rate of 93.9 % and was robust against defect
sensors. The system allows an easy integration of new sen-
sors without retraining of the complete system, which is
an advantage over commonly used feature level fusion ap-
proaches.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Applications

General Terms
Algorithms, Experiments

Keywords
Data Mining, Daily Life Activities, Decision Level Fusion,
Inertial Sensors

1. INTRODUCTION
The World Health Organization states that the 4th leading
risk factor for mortality is insufficient physical activity [13].
Approximately 3.2 million people of the world population
die each year because of insufficient physical activity [13].

Several studies showed that physically active people have
higher levels of health-related fitness and lower rates of var-
ious chronic diseases compared to physically inactive people
[7]. It is assumed that the participation in 150 minutes of
moderate physical activity per week reduces the risk of dia-
betes by 27 %, and the risk of breast and colon cancer by
21 % to 25 % [13].
Methods for assessing the individual daily life physical ac-
tivity are of major interest in order to monitor the health
status and to provide feedback about the individual quality
of life. An overview of methods for the assessment of daily
life activities is given for example in [12]. Here, self-reports
provide the assessment of physical activity. However, self-
reports induce problems with reliability, validity and sensi-
tivity [8]. In recent years, small and light-weight wearable
sensors like inertial measurement units were used to provide
a reliable and objective measurement of physical activity.
They are heavily applied in the field of classification of daily
life activities, which is shown below.
In [1], five biaxial accelerometers were placed near the hip,
wrist, arm, ankle and thigh. A decision tree classifier was
applied to classify activities like walking, sitting or climbing
stairs. An overall mean classification rate of 84 % was ob-
tained. In [6], accelerometers were placed on the chest and
wrist. An automatically generated decision tree was applied
to classify activities like lying, rowing or Nordic walking.
An overall mean classification rate of 86 % was obtained. In
[5], two triaxial accelerometers were placed at the hip and
wrist. A SVM-based system was applied to classify activi-
ties like vacuuming, treadmill running or cycling. An overall
mean classification rate of 85.8 % was obtained. In [11], two
inertial sensors consisting of a triaxial accelerometer and a
triaxial gyroscope were placed on the right arm wrist and
right foot. A SVM-based system was applied to classify ac-
tivities like walking, standing or jogging. An overall mean
classification rate of 91 % was obtained.
It was shown in [1, 6, 5, 11] that sensors on different body
positions were needed to cover a wide range of activities that
should be classified. Furthermore, feature level fusion was
performed [4]. Here, features from different sensor signals
are extracted and fused. The final decision of the classifier
is based on the fused features. The problem of feature level
fusion is described in the following section.
Networks of miniature body-worn sensors may suffer from
interconnection failures, jitter in the sensor placement or de-
fect sensors. Especially in the latter case, missing features



cause problems in the feature level fusion and affect the over-
all classification of daily life activities. Thus, the monitor-
ing of the health status is affected. Another disadvantage
of feature level fusion is the retraining of the complete clas-
sification system, when a new sensor is added, removed or
placed at a different position. Since new and better sensors
are frequently available on the market, the system should
integrate them without much effort. In order to deal with
defect sensors and a flexible adding of new sensors without
retraining the complete system, decision level fusion can be
performed [4].
Here, each sensor independently classifies the activity. The
decisions of the sensors are fused and combined to get a fi-
nal decision. Subsequently, two examples for decision level
fusion approaches are described.
In [14], a meta-classifier was applied that fused the informa-
tion of simple classifiers operating on 19 body-worn triaxial
accelerometers. The sensor nodes were placed at regular in-
tervals along the left and right arm. Each accelerometer axis
was processed separately. For each activity class, one Hid-
den Markov Model (HMM) was defined and trained. The
different HMMs were compared and the one, modeling best
the features, indicated the class label. The decisions of all
accelerometer axes were combined by a Bayes fusion algo-
rithm. The approach was evaluated by recognizing a set of
ten activities carried out by workers in the quality assurance
checkpoint of a car assembly line. An average classification
rate of 98 % was achieved.
In [15], data from two wearable inertial sensors attached
on the foot and waist were used to classify activities like
sitting, sitting-to-standing or walking upstairs. Each sensor
consisted of a triaxial accelerometer and a triaxial gyroscope.
Features were separately computed for foot and waist data
and fed into two neural networks, each for one sensor. The
decisions of the classifiers were combined by sensor fusion
rules.
In [14] and [15], the applicability of decision level fusion of
inertial sensor data for the classification of daily life activi-
ties was shown. However, only the sensor positions arm [14]
and foot/waist [15] were considered.
Since for the discrimination of complex daily life activities
more than two sensor positions have to be used [1], there
is a major need for a system based on decision level fusion
with a similar sensor setup as in [1].
Thus, the purpose of this paper was to perform decision
level fusion for the classification of daily life activities us-
ing four sensor positions (wrist, chest, hip and ankle). Each
sensor node consisted of a triaxial accelerometer and a tri-
axial gyroscope. For each sensor node, features were sep-
arately extracted. Each sensor node separately performed
the classification of seven daily life activities. The decisions
of the sensor nodes were fused by majority voting, in order
to obtain a final decision. The system needs no complete
retraining after adding new sensors and can deal with defect
sensors.

2. METHODS
2.1 Data Acquisition
Four SHIMMER sensor nodes were used for the acquisition
of inertial data [2]. Each sensor node consisted of a triaxial
accelerometer and a triaxial gyroscope.
They were placed on the wrist, chest, hip and ankle (Fig.
1). These four positions were chosen due to previously pub-
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Figure 1: Sensor placement: A (wrist), B (chest), C (hip)
and D (ankle).

Table 1: List of performed activities and abbreviations.

Activity Abbreviation

Sitting SI
Lying LY
Standing ST
Vacuuming VC
Walking WK
Ascending stairs AS
Descending stairs DS

lished results [1, 6, 5, 11] and are motivated in the following
section.
Sensors closely attached to the body’s center of gravity like
chest or hip are preferred [10]. In order to cover lower and
upper extremities, one sensor node was placed on the wrist
and on the ankle.
The range of the accelerometers was ± 6 g. The range of
the gyroscopes was ± 500 ◦/s for the sensor nodes on the
wrist, chest and hip and ± 2000 ◦/s for the sensor node on
the ankle, since higher angular velocities were expected in
the lower extremities. The sampling rate for all sensors was
204.8 Hz and the inertial data was stored on a SD-card.
A study with 19 healthy subjects (eight female and 11

male, age 26 ± 8 years, height 177 ± 11 cm, weight 75.2 ±

14.2 kg) was performed. All subjects gave written informed
consent about their participation.
Before the data acquisition of the activities, the sensor nodes
were put on a plate and an up-down movement was per-
formed. This procedure allowed an offline synchronization
of the four sensor nodes. The sensor nodes were then placed
on the dedicated measurement positions and the data acqui-
sition of the activities started.
Each subject had to perform three static activities (sitting,
lying, standing) and one household activity (vacuuming) for
one minute in a building of the university. Then, the subject
had to walk 250 m to another building of the university. In
this building, ascending stairs (until the third floor) and de-
scending stairs were recorded. At the end, the subject had
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(a) Lying
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(b) Standing
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(c) Vacuuming
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(d) Walking
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(e) Ascending stairs
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(f) Descending stairs

Figure 2: Linear acceleration in vertical direction of the hip sensor for the activities lying, standing, vacuuming, walking,
ascending stairs and descending stairs.
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Figure 3: Proposed classification system.

to walk back to the first building. The duration of the ac-
tivities walking, ascending stairs and descending stairs var-
ied between the subjects due to different self-imposed speed
levels. The list of performed activities and the used abbre-
viations are summarized in Table 1.
A researcher accompanied the subject during the whole data
acquisition and labeled the start and end of each activity by
an Android based labeling app.
As an example, Fig. 2 shows the linear acceleration in verti-
cal direction of the hip sensor for the activities lying, stand-
ing, vacuuming, walking, ascending stairs and descending
stairs.

2.2 Proposed classification system
The proposed classification system is depicted in Fig. 3.
Each of the four sensor nodes separately performed prepro-
cessing, feature extraction and classification. In the final
step, the classifier decisions of the sensor nodes were fused
and a single activity was predicted. In the following section,
the details are described.

2.2.1 Preprocessing
The inertial data of the four sensor nodes were synchro-
nized. Therefore, the previously mentioned up-down move-
ment was considered, which caused a peak in the vertical
acceleration signal of all four sensor nodes. The correspond-
ing point in time constituted the common start point of
all sensor nodes. Furthermore, the sensor data was labeled
regarding the associated activity. Further processing of the
acquired inertial data was performed in sliding windows with
50 % overlap, which was also proposed in [1]. The width of
the window was set to five seconds.

2.2.2 Feature extraction
Six features were computed for each sliding window in each
of the three accelerometer and gyroscope axes. In order
to extract information about the range of the signal ampli-
tudes, the minimum and maximum of the amplitudes were
computed. In order to extract information about the statis-
tics of the signal amplitudes, the mean, variance, skewness
and kurtosis of the amplitudes were computed. The six fea-
tures are listed in Table 2. In total, this resulted in 36
features per sensor node.

2.2.3 Classification
Since there is no single classifier that is suitable for all classi-
fication tasks [3], the following classifiers were compared: de-

Table 2: List of features computed for each axis.

Name Description

MIN minimum of amplitudes
MAX maximum of amplitudes
MEA mean of amplitudes
VAR variance of amplitudes
SKW skewness of amplitudes
KUR kurtosis of amplitudes



Table 3: Overall mean classification rates (in percent) of all classifiers regarding sensor nodes wrist, chest, hip and ankle (best
classifiers in bold).

C45 kNN NaiveBayes RandomForest SVM

WR 74.5 76.1 65.0 80.7 80.5
CH 84.7 84.8 81.5 88.3 89.6

HP 85.7 85.4 73.4 91.3 90.9
AK 86.6 89.7 87.9 91.1 89.0

Table 4: Mean class dependent classification rates (in per-
cent) of the best classifier regarding sensor nodes wrist,
chest, hip and ankle (best classification rates in bold).

WR CH HP AK

SI 84.7 77.7 92.1 70.5
LY 84.6 99.8 89.0 99.3
ST 78.4 89.1 94.2 83.5
VC 89.4 93.5 97.2 97.2
WK 95.6 93.8 97.2 98.7

AS 58.9 82.2 84.6 95.2

DS 73.1 91.2 85.1 93.6

Table 5: Mean class dependent classification rates and over-
all mean classification rate of decision level fusion (classifi-
cation rates in percent).

Classification rate

Sitting 95.1
Lying 99.8
Standing 93.7
Vacuuming 98.8
Walking 99.1
Ascending stairs 81.8
Descending stairs 88.8
Mean 93.9

cision tree (C4.5), k-Nearest Neighbor (kNN), Naive Bayes
(NB), Random Forest (RF) and Support Vector Machine
(SVM) with linear kernel [9, 3]. In the case of kNN, k was set
to three. The cost parameter of the SVM classifier was set
to one. For performance assessment, the mean class depen-
dent classification rate and the overall mean classification
rate were computed with a leave-one-subject-out procedure.
For further processing, the best classifier of each sensor node
was considered.

2.2.4 Decision level fusion
The classifier decisions of the four sensor nodes were fused
and a majority vote was applied, in order to obtain the final
decision. In the case of an equal distribution of the predicted
classes in the majority vote, the activity was chosen which
first appeared in Table 1.
In order to evaluate the sensitivity of the proposed classifica-
tion system regarding defect sensors, the number of sensors
used in the decision level fusion was varied from one to four.
In each case, the classification rate for all combinatorial pos-
sibilities were computed and averaged regarding the number
of combinations, since it was not known before which of the
four sensor nodes were defect.

Table 6: Confusion matrix of the proposed classification sys-
tem. Rows and columns coincide with the true and predicted
activities, respectively. Each entry represents the number
of class-dependent decisions. One decision decision corre-
sponds to one five second sliding window.

SI LY ST VC WK AS DS

SI 410 6 11 1 3 0 0
LY 1 434 0 0 0 0 0
ST 25 0 403 1 1 0 0
VC 0 0 5 427 0 0 0
WK 0 0 1 11 1997 3 3
AS 0 0 0 0 53 239 0
DS 0 0 0 2 25 1 221

Table 7: Overall mean classification rates (in percent) with
varying number of used sensors.

1 2 3 4

Classification rate 88.2 85.4 94.6 93.9

3. RESULTS
Table 3 shows the overall mean classification rates of all clas-
sifiers regarding sensor nodes wrist (WR), chest (CH), hip
(HP) and ankle (AK). The best classifier was the Random
Forest for the sensor nodes wrist, hip and ankle. For the
sensor node chest, the SVM was slightly better than the
Random Forest.
Table 4 shows the mean class dependent classification rates
of the best classifier regarding each sensor node.
Table 5 shows the mean class dependent classification rates
and the overall mean classification rate after the decision
level fusion of all four sensor nodes. The overall mean clas-
sification rate was 93.9 %.
Table 6 shows the confusion matrix of the proposed classifi-
cation system. The rows and columns coincide with the true
and predicted activities, respectively. In the table, each en-
try represents the number of class-dependent decisions. One
decision corresponds to one five second sliding window.
Table 7 shows the overall mean classification rates regarding
the number of sensors used in the decision level fusion.

4. DISCUSSION
The discrimination of complex daily life activities requires
the usage of a multi-sensor based system, which can handle
defect sensors and should be flexible when new sensors are
added to the system. In this paper, a classification system
was developed which performed decision level fusion using
four sensor positions.

In the following section, the overall mean classification rates
of the four sensor nodes are discussed (Table 3). Random



Forest was the best classifier for the sensor nodes on the
wrist, hip and ankle and the second best for the sensor node
on the chest. The reason might be that Random Forests are
ensemble systems, which reduce the variance and increase
the confidence of the classifier decision.
The best classification rate was obtained by the hip sensor
which shows why this sensor placement is preferred in lit-
erature [10]. With a sensor closely attached to the body’s
center of gravity several different kinds of activities can be
distinguished. The worst classification rate was achieved by
the wrist sensor. Thus, with a sensor placed on the upper
extremities only a subset of the activities like vacuuming
might be classified.
All in all, an overall mean classification rate of more than
80.7 % was obtained for each of the four sensor nodes. Thus,
the usage of one single sensor consisting of a triaxial ac-
celerometer and a triaxial gyroscope is suitable for the clas-
sification of daily life activities.

In the following section, the mean class dependent classifica-
tion rates of the best classifier regarding all four sensor nodes
are discussed (Table 4). The wrist sensor had problems to
classify ascending and descending stairs. It is assumed that
the high similarity of both signal patterns from the wrist sen-
sor resulted in classification rates lower than 73.1 %. Thus,
the wrist sensor is not suitable for the distinction between
ascending stairs and descending stairs.
The chest sensor had problems to classify sitting (Table
4). The reason might be that sitting was often misclassi-
fied as standing because of the comparable orientation of
the chest sensor during these two activities. Nevertheless,
the chest sensor obtained the best classification rate for ly-
ing. The reason might be that the movement of the chest
was lower compared to hip, ankle and wrist, since the par-
ticipant sometimes moved the arm or leg during the data
acquisition.
The hip sensor had problems to classify ascending stairs and
descending stairs (Table 4). It is assumed that the features
based on the signal patterns of these activities did not dif-
fer substantially. In Fig. 2e and 2f, the minimum, maxi-
mum and mean of the amplitudes seemed to be in a com-
parable range. In order to further improve the performance
of the proposed classification system, additional features in
the frequency domain might increase the classification rates.
Nevertheless, the hip sensor obtained the best classification
rates for sitting and standing. The reason might be that the
orientation of the hip sensor differed between sitting and
standing, since the participant leaned back during sitting.
The ankle sensor had problems to classify sitting and stand-
ing (Table 4). It is assumed that the comparable orientations
of the ankle sensor during sitting and standing resulted in
classification rates lower than 83.5 %. Nevertheless, the an-
kle sensor reached the best classification rates for walking,
ascending stairs and descending stairs, since these activities
mostly involved lower extremity movements.
All in all, every sensor was able to classify a subset of the
activities with a rather high classification rate, but also had
some limitations regarding several activities.

In the following section, the decision level fusion is discussed.
As can be seen in Table 3 and Table 5, the fusion of the
information of different sensors improved the classification
rates from 80.7 %, 89.6 %, 91.1 % and 91.3 % , using only

one sensor node, to 93.9 %, using all four sensor nodes. All
of the mean class dependent classification rates were above
93 % (Table 5), except for ascending stairs and descending
stairs. It is assumed that most of the correct decisions of
the ankle sensor were outvoted by the wrist, chest and hip
sensors.

In the following section, the confusion matrix of the pro-
posed classification system is discussed (Table 6). Several
instances of ascending stairs and descending stairs were mis-
classified as walking (Table 6). This coincides with the ob-
servations in [15], in which inertial sensors (accelerometer
and gyroscope) were placed on the foot and waist.

In the following section, the sensitivity of the proposed clas-
sification system regarding defect sensors is discussed (Table
7). The overall mean classification rate increased by 0.7 %
using three of the four sensor nodes compared to using the
whole set of sensor nodes. The reason of an increasing clas-
sification rate might be the majority vote approach in the
decision level fusion. Majority voting suffers from higher
degradation in noisy environment because all the sensors
are weighted identically for all the classes, without previous
statistic. For this case, an alternative decision level fusion
approach like the Bayes fusion algorithm should be explored.
An example was given in [14]. The fusion was done in the
conditional probability of a certain sequence of classifier de-
cisions given a certain class. The class was chosen which
achieved the maximum conditional probability.
The overall mean classification rate decreased by 9.2 % us-
ing two sensor nodes compared to using three sensor nodes.
Although the classification rate decreased, using only two
sensor nodes also allowed acceptable results.
The overall mean classification rate increased by 2.8 % using
one sensor node compared to using two sensor nodes. The
reason might be again that all the sensor nodes are weighted
identically for all the classes in the majority vote approach.

In sum, the overall mean classification rate of 93.9 % (Table
5) showed the general applicability of the proposed classifica-
tion system in the field of activity recognition. It was shown
that defect sensors only slightly decreased the classification
rate and that new sensor nodes can easily be integrated into
the majority voting scheme.
This offers a successful way to monitor the health status and
to provide feedback about the individual quality of life.

5. CONCLUSION
The fusion of inertial sensor data is heavily used for the
classification of daily life activities. In this paper, a clas-
sification system was developed, which performed decision
level fusion. Four inertial sensors consisting of a triaxial
accelerometer and a triaxial gyroscope were placed on the
wrist, chest, hip and ankle. For each sensor node, six time
features were computed for each axis. The features were
classified, the decisions of the sensor nodes were fused and
the final decision was obtained by majority voting. The pro-
posed system reached an overall mean classification rate of
93.9 % by using Random Forests for the wrist, hip and ankle
sensor and the SVM for the chest sensor.



In the future, it is planned to add new sensors to the system.
Electrocardiogram (ECG) or electromyography (EMG) sen-
sors will give more information about the physiological state
of a person.
The proposed classification system can be used to monitor
the health status and to provide feedback about the indi-
vidual quality of life. The feedback can motivate physically
inactive people to be more active. This leads to lower rates
of various chronic diseases, which should be one major goal
for the future.
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