Unobtrusive, Mobile ECG Monitoring and Arrhythmia Detection using Mobile Phones

Heike Leutheuser, Patrick Kugler, Stefan Gradl, Dominik Schuldhaus, Stephan Achenbach, Bjoern Eskofier
05.12.2013
Pattern Recognition Lab (CS 5)
World Health Organization

Cardiovascular diseases:
Number one cause of death globally
Electrocardiogram (ECG)

= electric activity of the human heart
Use of ECG

Cardiac Conditions

Need for long-term analysis

Detection Monitoring Prevention
Measuring of ECG

● Problems:
 ● Specific hardware
 ● Interpretation limited to medical personnel

● Need for:
 ● Automatic, low-cost solution
 ● Portable solution (for home environment)

→ Mobile devices
Our Idea

ECG lead II

shimmer-research.com

Bluetooth

ECG beat classification

<<Abnormal beats detected>>

<<ECG normal>>
Overview – Beat classification

ECG data → QRS detection → Feature extraction → Beat classification
ECG Data

- Platform PhysioNet
 - Free access
 - Large collection of physiological signals
- MIT-BIH Arrhythmia database
 - 48 datasets of half-hour ECG recordings
- MIT-BIH Supraventricular database
 - 78 datasets of half-hour ECG recordings
Overview – Beat classification

ECG data → QRS detection → Feature extraction → Beat classification
QRS Detection

Raw ECG signal (lead II) → Filter operations (Pan & Tompkins) → Threshold-based method
Overview – Beat classification

1. ECG data
2. QRS detection
3. Feature extraction
4. Beat classification
Classification – Decision Tree Classifier

QRSwidth

R-R

Time [s]

Abnormal Classes

Normal Classes
Classification – Decision Tree Classifier

[Diagram showing the process of classification with features like MaxCorr, ArDiff, R-R, and QRSwidth leading to thresholds, resulting in Abnormal Classes and Normal Classes.]
Implementation

- Java
- Android SDK

http://tinyurl.com/lmehearty

(Gradl et al., 2012)
Statistics

- True Positive (TP): correctly classified as normal
- True Negative (TN): correctly classified as abnormal
- False Positive (FP): incorrectly classified as normal
- False Negative (FN): incorrectly classified as abnormal

- Sensitivity = TP / (TP + FN)
- Specificity = TN / (TN + FP)
Results – Decision Tree Classifier

<table>
<thead>
<tr>
<th>MIT-BIH Arrhythmia</th>
<th>MIT-BIH Supraventricular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detected Beats</td>
<td>99.59%</td>
</tr>
<tr>
<td>True Positive</td>
<td>11224</td>
</tr>
<tr>
<td>True Negative</td>
<td>65855</td>
</tr>
<tr>
<td>False Positive</td>
<td>10987</td>
</tr>
<tr>
<td>False Negative</td>
<td>1680</td>
</tr>
</tbody>
</table>

- Sensitivity: 89.5%
- Specificity: 80.6%

(Gradl et al., 2012)
Summary

- Need for mobile, long-term ECG analysis
- Implementation of ECG analysis
- QRS detection in real-time
- Arrhythmia classification
 - Decision Tree Classifier
Outlook – Beat classification

- Best classifier
- Best features

ECST (Embedded Classification Software Toolbox)

ECG data

QRS detection

Calculation of additional features

Feature extraction

Beat classification
Outlook - ECST
Thank you for your attention!