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Abstract. 3-D reconstruction of cardiac vasculature from angiographic C-arm
CT (rotational angiography) data is a major challenge. Motion artefacts corrupt
image quality, reducing usability for diagnosis and guidance. Many state-of-the-
art approaches depend on retrospective ECG-gating of projection data for image
reconstruction. A trade-off has to be made regarding the size of the ECG-gating
window. A large temporal window is desirable to avoid undersampling. However,
residual motion will occur in a large window, causing motion artefacts.

We present an algorithm to correct for residual motion. Our approach is based
on a deformable 2-D–2-D registration between the forward projection of an initial,
ECG-gated reconstruction, and the original projection data. The approach is
fully automatic and does not require any complex segmentation of vasculature,
or landmarks. The estimated motion is compensated for during the backprojection
step of a subsequent reconstruction. We evaluated the method using the publicly
available cavarev platform and on six human clinical datasets. We found a better
visibility of structure, reduced motion artefacts, and increased sharpness of the
vessels in the compensated reconstructions compared to the initial reconstructions.
At the time of writing, our algorithm outperforms the leading result of the cavarev
ranking list. For the clinical datasets, we found an average reduction of motion
artefacts by 13±6%. Vessel sharpness was improved by 25±12% on average.
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1. Introduction

In complex interventional cardiac procedures, three-dimensional information can
provide easier assessment and better guidance (Hetterich et al. 2010, Gutleben
et al. 2011). In current clinical practice, this 3-D imaging is performed by moving
the patient to a CT scanner or acquiring a CT prior to the intervention. Ideally, 3-D
imaging should be performed in the interventional suite using C-arm CT. Imaging
during the intervention would make up-to-date information available. In the cardiac
environment, such an approach is currently limited by the temporal resolution of
available C-arm systems. Due to the slow rotation speed, resulting in acquisition
times of several seconds, heart motion corrupts a straightforward 3-D reconstruction.
Streak artefacts, motion blur, and reduced sharpness and visibility of structure are
typical problems associated with such an approach.

If an ECG signal is recorded simultaneously with the acquisition, a retrospective
gating of X-ray projection data can be performed: Only images from a specific heart
phase contribute to the reconstruction (Desjardins & Kazerooni 2004). However,
ECG data does not necessarily correspond to the exact motion state of the heart
(Desjardins & Kazerooni 2004). In addition, ECG-gating sparsifies data and
therefore reconstruction becomes a strongly ill-posed problem, limiting the quality
and usability of the resulting 3-D data. To compensate for this, not a strict gating,
but a temporal window with a certain width around the selected motion state is used
(Rohkohl et al. 2008). A wider gating window is desirable to get a high signal-to-
noise ratio and little undersampling artefacts, but then the residual motion in the
gated projection data corrupts image quality. Therefore, gating is a trade-off between
undersampling artefacts (narrow gating window) and motion artefacts (wide gating
window).

In the literature, several approaches have been proposed to account for
residual motion due to non-ideal ECG-gating. A general distinction can be made
between those that do a full 3-D motion estimation and compensation (Blondel
et al. 2006, Schomberg 2007, Keil et al. 2009, Prümmer et al. 2009, Tang et al. 2012),
and those that perform a 2-D estimation (Taguchi et al. 2007, Hansis, Schäfer, Dössel
& Grass 2008, Schwemmer et al. 2012). 3-D motion compensation corrects motion in
image space, while a 2-D method works in projection space. Due to possible overlay
of structures along the X-ray beam direction, a 2-D method is only an approximation.
All structures along the beam are affected by the same transformation during motion
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compensation. On the other hand, a full 3-D estimation is a strongly ill-posed
problem with high computational demands. Motion periodicity assumptions and/or
regularisation are therefore often used (Zeng et al. 2005, Hansis et al. 2009). However,
the object of interest here, i.e. contrasted vasculature, is very sparse compared to the
image volume. In addition, due to the ECG-gating, the residual motion within the
gating window can be assumed to be reasonably small. Therefore an approximate
2-D estimation in projection space might be sufficient.

In the literature, a couple of projection-based methods can be found, which are
discussed shortly. If landmarks are available in the acquired data (e.g. vascular stents
or catheter-based markers), these can be tracked and a landmark-based registration
can be performed (Perrenot et al. 2007). However, the availability of such landmarks
cannot be assumed for all data. Recently, a model-based learning approach was
proposed as another method. A previously learnt model is registered to the actual
data (Lebois et al. 2011). This means that an extensive training phase is needed
in advance. A method based on registration in projection space was proposed in
(Hansis, Schäfer, Dössel & Grass 2008). It requires a segmentation of vasculature
centrelines in the acquired projection data, which is difficult (Jandt et al. 2009).

In this paper, a projection-based method for compensation of residual motion in
ECG-gated data is presented. We estimate residual motion by a deformable, multi-
resolution, 2-D–2-D registration in projection space without requiring complex pre-
processing steps like vessel centreline segmentation. The method is fully automatic,
no user interaction is required.

In the next two sections, our method, the experimental setup, and the evaluation
process are discussed in detail. In Section 4, the results are presented, followed by a
discussion in Section 5. Section 6 concludes this paper.

2. Methods

In this section, the individual steps of our algorithm are discussed in detail. The
outline is given by Figure 1. In step 1, an initial ECG-gated reconstruction is
performed. In step 2, a thresholding operation removes non-vascular structures from
the volume. This sparse volume is then forward-projected using the acquisition
geometry. In these forward projection images (FwP), the region of interest, i.e.
the region containing the contrasted vascular structure, is determined automatically.
In step 3, the original projection images are pre-processed using a morphological
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Figure 1: Illustration of the proposed algorithm.

top-hat filter and a thresholding operation to reduce background structures. In
step 4, the FwP are registered to the pre-processed original projection images using
deformable 2-D–2-D registration in a multi-resolution scheme. Finally, in step 5,
the estimated 2-D motion field per projection is compensated for in a subsequent
ECG-gated reconstruction. In step 6, the procedure may be repeated for additional
refinement.

2.1. Initial Reconstruction

We perform an initial ECG-gated reconstruction by inserting a weighting function λ
into a standard FDK-type algorithm (Schäfer et al. 2006, Rohkohl et al. 2008). Let
hr ∈ [0, 1] be the reference heart phase, at which reconstruction shall be carried out.
Heart phase is the relative distance between two consecutive R-peaks in the ECG.
The ECG-gated FDK reconstruction fhr : R3 7→ R at a voxel x ∈ R3 is given by

fhr (x) =
N∑
i=1

λ (i, hr) · w (i,x) · pF (i,A(i,x)) , (1)

where N is the number of projection images, w : N × R3 7→ R is the FDK
distance weight and pF (i,u) : N × R2 7→ R is the filtered, redundancy- and
cosine-weighted projection data of the i-th image at pixel position u. The pixel
position for backprojection to the voxel x is determined by the perspective projection
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A : N × R3 7→ R2, (i,x) 7→ A(i,x) = u. The perspective projection A can be
calculated using pre-calibrated projection matrices (Wiesent et al. 2000). The ECG-
gating weighting function λ used here is a cosine-window defined by

λ (i, hr) =

cosa
(

d(h(i),hr)
ω

π
)

if d (h (i) , hr) ≤ ω
2

0 otherwise
, (2)

where h (i) is the heart phase of the i-th projection image according to the ECG,
ω ∈ [0, 1] controls the width and a ≥ 0 controls the shape of the gating window. The
distance measure d is defined as d (h1, h2) = minj∈{0,1,−1} |h1 − h2 + j|.

Since the resulting reconstruction suffers from undersampling artefacts, we also
perform a streak reduction. A formal derivation of this post-processing step was
presented in (Rohkohl et al. 2008). In practice, streak reduction is integrated into
the reconstruction as follows:

f̂hr (x) =

N−Nign∑
i=1+Nign

λ (ji, hr) · w (ji,x) · pF (ji,A(ji,x)) , (3)

with an enforced ordering of λ (j1, hr) ·w (j1,x) · pF (j1,A(j1,x)) ≤ · · · ≤ λ (jN , hr) ·
w (jN ,x) · pF (jN ,A(jN ,x)) and ji ∈ {1, . . . , N}, Nign ∈ N0. This means the Nign

smallest and largest contributions to each voxel are ignored during reconstruction.

2.2. Forward Projection Generation

2.2.1. Thresholding. Only contrasted vascular structure is of interest for the
registration algorithm, which means only high-contrast structure needs to be
retained. Since a selective contrasting is performed during the acquisition, vascular
structure is the predominant high-contrast structure in the image. Therefore, a
simple thresholding operation can be employed to remove background structures:
Only the tr ∈ [0, 1] percentile of the largest voxel values is retained, while the other
voxels are set to 0. We denote the thresholded initial reconstruction with f̂ ′hr

(x).

2.2.2. Forward Projection. After the thresholding of the initial reconstruction,
maximum intensity forward projection images pfwp (i,u) : N×R2 7→ R are generated
using the original acquisition geometry. Only those projections with a gating weight
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(a) Forward projection. (b) Dilated forward projection.

(c) Binarisation. (d) Three largest connected com-
ponents.

Figure 2: Automatic ROI determination.

λ (i, hr) > 0 need to be generated, since others will not be used by the final
reconstruction. We use a ray-casting approach as in (Galigekere et al. 2003):

pfwp (i,u) = max
x∈Li,u

f̂ ′hr
(x) , (4)

where Li,u = {x ∈ R3 |A(i,x) = u} is the set of voxels representing the virtual X-
ray beam from the i-th source position to pixel position u on the detector. FwP are
generated in parallel on graphics hardware (Weinlich et al. 2008).

2.2.3. Region of Interest Detection. The registration process can be sped up and
stabilised by defining a region of interest (ROI) for the evaluation of the objective
function. This ROI is automatically determined from the FwP by applying the
following algorithm to every forward projected image (cf. Figure 2):

(i) Dilate the image using morphological operations (Dougherty & Lotufo 2003)
with a circular structuring element.
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(a) (b)

Figure 3: Original (left) and pre-processed (right) projection image.
Images were cropped to the ROI shown in Figure 6b for better visualisation.

(ii) Binarise the image by setting every pixel with an intensity > 0 to 1.
(iii) Detect and label connected components, compute component sizes as the

number of pixels in each component.
(iv) Keep only the largest object and calculate its rectangular bounding box.

The final ROI is the bounding box covering the bounding boxes from all projection
images, with an added safety margin to account for incomplete structure in the initial
reconstruction. Steps 1–4 can be executed in parallel for all FwP, only the final ROI
calculation needs to be done after all individual bounding boxes are found.

2.3. Pre-Processing of Original Projections

Since the contrasted vessels are small objects with a larger scale background,
a background reduction of the original projection images p (i,u) improves vessel
contrast and increases stability of the registration process. We use a morphological
top-hat filter (Hansis, Schäfer, Dössel & Grass 2008) for this step. The filter has a
circular structuring element of radius r. Let Nr (u) be the neighbourhood around
pixel position u defined by the structuring element. Then the top-hat filtered image
is given by

pth (i,u) = p (i,u)− max
u′∈Nr(u)

p̃th (i,u
′) and (5)
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p̃th (i,u) = min
u′′∈Nr(u)

p (i,u′′) . (6)

This means that morphological opening (erosion followed by dilation) is
performed and the result is subtracted from the original image. The effect of
this operation is that all image structures larger than the structuring element are
removed.

After filtering, a thresholding operation retains only the tp ∈ [0, 1] percentile
of the largest pixel values. After both steps, most of the non-vascular background
is removed (cf. Figure 3) and we denote the pre-processed projection images with
pbgr (i,u).

2.4. Image Registration

During image registration, a mapping between the space of the pre-processed
projection images pbgr (i,u) and the FwP pfwp (i,u) is established. After registration,
pbgr (i,u) is similar to pfwp (i,M(i,u)), where M(i,u) = u′ : N × R2 7→ R2 is
the motion vector field for the i-th image. Similarity is defined by the objective
function of the registration algorithm. We employ a multi-resolution scheme with an
affine motion model on all resolution levels, and an additional uniform cubic B-spline
motion model (Unser 1999) on the highest level only:

M(i,u) = Maffine (i,u) + Mspline (i,u) . (7)

This separation of affine and deformable motion as well as the multi-resolution
scheme reduce the susceptibility of the deformable registration to local minima and
also increase convergence speed. The affine motion model has 6 degrees of freedom,
representing anisotropic scaling, shear, rotation and translation. The B-spline motion
model is parameterised by the number of control points c in each dimension, resulting
in 2 · c2 degrees of freedom. The choice of c influences the relation of smoothness
(small c) to flexibility (large c) of the motion model.

The resize factor between the different resolution levels was 2. Downscaling of
the images between resolution levels was performed by bilinear interpolation and
pre-smoothing with a Gaussian kernel (σ = 1).

We used normalised cross-correlation (NCC) as the similarity measure, which is
a common measure for multi-modality registration problems (Russakoff et al. 2003).
Purely intensity-based metrics like sum of squared differences do not work for this
problem, since the grey values of pbgr (i,u) and pfwp (i,u) differ due to the gated
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reconstruction and the maximum intensity forward projection. NCC is insensitive to
these grey value differences, while being less computationally intensive than mutual
information or similar multi-modality metrics. The NCC is only evaluated within the
ROI, which also decreases computation time. NCC for projection image i is defined
as

NCCi (pbgr, pfwp,M) =
1

n− 1

〈
P i,bgr

‖P i,bgr‖
,

P i,fwp

‖P i,fwp‖

〉
, (8)

where n is the number of pixels in the ROI, 〈?, ?〉 is the inner product and ‖?‖
the L2 norm. P i,bgr (u) = pbgr (i,u) − pbgr (i) and P i,fwp (u) = pfwp (i,M(i,u)) −
pfwp (i), where p? (i) is the mean intensity of an image. The transformed images
pfwp (i,M(i,u)) were only computed at those pixels necessary for the evaluation of
the NCC, i.e. within the ROI. Bilinear interpolation was used.

Registration was driven by a gradient descent optimisation method. Since we
perform registration on a per-image basis, all projections can be processed in parallel.

2.5. Motion Compensated Reconstruction

After registration, the motion vector field M(i,u) is known for every projection
image. The estimated motion can be compensated for in the backprojection step

fhr,M (x) =
N∑
i=1

λ (i, hr) · w (i,x) · pF (i,M(i,A(i,x))) . (9)

Backprojection can be implemented very efficiently on graphics hardware
(Hofmann et al. 2011). The same is true for B-spline evaluation (Ruijters et al. 2008).
Therefore, the motion compensated backprojection can be carried out completely
parallelised on the graphics card.

The same streak reduction as in Equation 3 is also used for the motion
compensated reconstruction. For the sake of conciseness, this is not shown in
Equation 9, since the streak reduction is not the focus here.

2.6. Further Iterations

The motion compensation algorithm can be used in an iterative manner: The output
from step 2.5 can be used as input for step 2.2. Registration accuracy may improve
when using input images that contain less artefacts and better contrast than the
initial reconstruction.
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Table 1: Clinical datasets used for the evaluation.

Dataset 3-D Img. Vol. [mm3] Heart Rate [bpm] #Projs. Used

LCA1 1402 × 101 77 ± 0.1 53
LCA2 1522 × 107 58 ± 0.4 53
LCA3 1522 × 114 52 ± 0.7 54
RCA1 1522 × 110 68 ± 1.5 53
RCA2 1312 × 109 71 ± 2.1 53
RCA3 1432 × 119 54 ± 1.9 54

3. Experimental Setup and Evaluation Methods

3.1. Experimental Setup

3.1.1. cavarev. cavarev (Rohkohl et al. 2010) is a publicly available platform for
the evaluation of cardiac vasculature reconstruction algorithms. We used the cardiac
motion-only dataset for this experiment, since we assume a breath-hold protocol.
This dataset consists of 133 simulated projection images created from a software
phantom that shows a thorax and contrasted left and right coronary arteries. Each
projection image has a size of 960×960 pixels and an isotropic pixel size of 0.32mm.
The reconstructed 3-D volumes have an isotropic voxel size of 0.5mm and a size of
983mm3. The gating parameters were selected as ω = 0.4 and a = 4, with hr = 0.90

and Nign = 3.

3.1.2. Human Clinical Datasets. Six human clinical datasets were used for the
evaluation (cf. Table 1): In LCA1, LCA2 and LCA3, a left coronary artery was
imaged. The patient in dataset LCA2 had a total occlusion in the proximal part
of the LAD, which means that no contrast agent reached the LAD beyond this
point. In RCA1, RCA2 and RCA3, a right coronary artery was imaged. All
datasets were acquired using a five second rotational angiography with selective
contrast agent administration (1–2ml/s) on a Siemens zeego C-arm device (Siemens
AG, Healthcare Sector, Forchheim, Germany). The datasets are a representative
cross-section, fulfilling the prerequisites: No patient and breathing motion and good
contrast in the vessels over the whole scan.
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Source-isocentre-distance was ∼80 cm and source-detector-distance ∼120 cm.
Each dataset consists of 133 projection images with a size of 1240 × 960 pixels and
an isotropic pixel size of 0.308mm. The reconstructed 3-D volumes have an isotropic
voxel size of 0.5mm. The gating parameters were selected as ω = 0.4 and a = 4,
with hr = 0.75 and Nign = 3 for all human datasets.

3.1.3. Common Parameters. Thresholding was performed at tr = 0.005 and
tp = 0.2. The size of the morphological kernel for top-hat filtering was r = 3.85mm.
Dilation for ROI detection was performed using a circular structuring element with
a radius of 1.54mm. The size of the safety margin for the final bounding box
was ∼3mm. The number of B-spline control points was set to c = 6 in each
dimension. We employed a multi-resolution registration scheme using 3 levels, with
only the affine transform on the lower two levels and the additional deformable
B-spline transform on the highest level. The maximum number of optimisation
steps was set to 400 for the affine (200 on each level) and 250 for the deformable
registration. Optimisation was stopped if the gradient magnitude of the NCC was
below 3·10−4. Two iterations of the whole algorithm were performed for each dataset.
Registration times were obtained on two Intel® Xeon® E5540 CPUs (2.53 GHz)
with 16 threads in total and 16 GB of memory. The graphics hardware used for
forward and backprojections was an NVIDIA® Quadro® FX 5800 GPU with 4 GB
of graphics memory.

3.2. Evaluation

Qualitative evaluation was carried out visually. Quantitative evaluation of the
cavarev dataset was done using the metric provided by the platform, which is
explained shortly in the following subsection. For a quantitative evaluation of the
human datasets, we employed two metrics: Image artefacts in a sub-volume that
encloses the reconstructed vessels, and vessel sharpness. Since we perform high-
contrast imaging and use a streak-reduced image reconstruction, streak artefacts can
be controlled (and suppressed by the display window) reasonably well. Therefore,
we did not measure the streak artefact level of the reconstructed images.

3.2.1. cavarev Metric. Since our goal is the reconstruction of a single image
volume at a specific reference motion state hr, we used the metric introduced as
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Q3D in (Rohkohl et al. 2010). A short overview is given here, full details can be
found in (Rohkohl et al. 2010). For each of the 133 time points (corresponding to
the 133 projection images) of the cavarev dataset, a static binary volume fmorph

i

representing the coronary vasculature at the corresponding motion state exists. A
reconstruction f submitted to cavarev is compared to all 133 ground truth volumes
in the following way:

Qi (f) = max
a∈{0,...,255}

dsc
(
fmorph
i , T (f, a)

)
, (10)

where T (f, a) is a threshold function that binarises f at threshold a:

T (f, a) (x) =

{
1 f (x) ≥ a

0 f (x) < a
(11)

The similarity is evaluated using the Dice similarity coefficient

dsc (f1, f2) = 2

∑
x f1 (x) · f2 (x)∑
x f1 (x) + f2 (x)

, (12)

which ranges from 0 (no overlap) to 1 (perfect spatial overlap) since f1 and f2 are
binary. Qi (f) is called the motion phase-dependent reconstruction quality. Since
cavarev accepts reconstructions with 8 bit quantisation, all possible thresholds are
tried in this way and the best is used for the quality metric at this time point i.
This simulates a manual thresholding operation. The quality measure Q3D is then
computed as

Q3D (f) = max
i∈{1,...,133}

Qi (f) . (13)

3.2.2. Image Artefacts. We estimated image artefacts caused by residual motion
using a noise estimator defined in (Yang & Tai 2010). This approach excludes
image structures from the noise level calculation. We used it to quantify motion
blur (smoothed out structure) and ghosting artefacts (smooth artefacts in areas
without structure). The original approach is a 2-D measure. For the evaluation
of volume data, we performed a slice-wise calculation on HU-scaled reconstructed
images. Slicing was performed along the z-axis.

First, a slice is divided into non-overlapping blocks and over- or under-saturated
blocks are excluded. Artefacts can drive parts of a quantised image into saturation.
Therefore, as in (Yang & Tai 2010), blocks with a mean intensity within 7% of the
boundaries of the data range are disregarded.
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Then, homogeneous blocks are identified with the help of a Sobel edge detector
and an automatic threshold (using the lower 10% percentile, as in (Yang & Tai 2010)).
The Sobel edge detector basically computes the first derivative of the block, its 3×3

and 5×5 convolution kernels are given in (Yang & Tai 2010). After the thresholding
operation, only blocks without strong edges remain.

Finally, a noise estimate for each remaining block is calculated as (Yang &
Tai 2010)

σn =
(π
2

) 1
2 1

6N∗H

∑
B∗H

|I (x, y)⊗LA| , (14)

where B∗H is the set of voxels belonging to all homogeneous, non-saturated blocks,
N∗H is the number of voxels in B∗H, I (x, y) the voxel value and LA a convolution
kernel. Following (Yang & Tai 2010), the kernel is defined to be

LA =

 1 −2 1

−2 4 −2
1 −2 1

 . (15)

We used the same block size of 5 × 5 voxels as in the original publication.
The region where noise was estimated in was a cuboid containing the reconstructed
vascular tree. Its volume was ∼ 1 ·106 mm3 (left coronary arteries) and ∼ 7 ·105 mm3

(right coronary arteries), respectively.
Our implementation of the algorithm is available online at (Schwemmer 2012).

3.2.3. Vessel Sharpness. For the evaluation of the vessel sharpness, we used a
measure introduced in (Li et al. 2001) and extended it to a semi-automatic evaluation
of whole vessel branches (Figure 4 illustrates the process):

Semi-Automatic Placement of Measurement Lines. First, a semi-automatic
centreline segmentation of one vessel branch using a manually placed seed point is
performed for each reconstructed volume (Friman et al. 2008) (cf. Figure 4a). A cubic
B-spline is fit to the detected centreline for a continuous representation. Regularly
spaced evaluation points ei are placed on this spline with a spacing of 1mm. At
each point, 10 radial line segments perpendicular to the spline are distributed with
an angular spacing of 20°. Each line segment has a length of 21mm. We denote the
set of 10 profile lines at ei with Li. Figure 4b shows an example for this.
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(a) Centreline extracted from dataset RCA3.

(c) Profile plot for one line segment. Red circles
denote 20%, 80% and maximum points.

(b) Line segments at 5 evaluation
points along the centreline.

Figure 4: Vessel sharpness measurement process.

Profile Measurement. The following algorithm is applied to each profile line l at
each evaluation point (cf. Figure 4c) (Li et al. 2001). It is important to note that all
intensity measurements are taken from the original, non-windowed volumes.

(i) Find the maximum intensity value along the line. This separates the profile line
into two parts, which are denoted left and right (of the maximum).

(ii) Find the minimum intensity values of the left and right part.

(iii) Find the 20% and 80% points between minimum and maximum for both parts
individually.

(iv) Let dleft and dright be the distances between the respective 20% and 80% points.
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(a) Left coronary artery segments. (b) Right coronary artery segments.

Figure 5: Coronary artery segments used for the sharpness evaluation.

(v) Vessel sharpness for this profile line is then

sl =
2

dleft + dright
. (16)

For the maximum detection, we constrained the search space to 1/8 of the profile
line around its centre.

Vessel Sharpness. We define vessel sharpness at an evaluation point ei as

sei =
1

10

∑
Li

sl . (17)

Using the individual sharpness values sei , we characterised the sharpness of a
reconstruction in two ways: The overall mean sharpness is the mean value of all sei of
that reconstruction. In addition, we calculated mean sharpness values for segments
along the vessel branch that follow the 15-segment coronary artery classification
system (Austen et al. 1975). Left coronary arteries were evaluated at segments 6–
8 for the LAD, segments 11, 13 and 14 for the LCX, and segment 5 for the main
branch. Right coronary arteries were evaluated at segments 1–4. Figure 5 shows an
overview of the segments used.
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(a) LCA1 (b) RCA3

Figure 6: Automatically determined ROIs drawn over the pre-processed original
projection data.

4. Results

4.1. Region of Interest Detection

The bounding box was always calculated successfully for the complete coronary
tree. All vessels that were visible in the initial reconstruction and thus in the
FwP were included in the bounding boxes. Figure 6 shows two typical examples
of the final regions of interest, drawn over the pre-processed original projection data.
We observed that in the presence of strong motion, small distal vessel parts can
extend beyond the calculated ROI (cf. arrow in Figure 6b). This is due to the
incomplete nature of the initial reconstruction. A larger safety margin could possibly
include these parts, but a compromise between a tight ROI and including all distal
vessel needs to be made. On the other hand, the ROI only defines the area for the
calculation of the similarity measure. The motion vector field is defined over the
whole image.

The average size of the ROIs over all datasets was 36±7% of the full projection
image size. This resulted in an average reduction of computation time by 41% for
left coronary arteries and 24% for right coronary arteries compared to registration
without an ROI.
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Table 2: Registration time and number of optimisation steps per projection for left
(LCA) and right (RCA) coronary arteries. The number of steps shown correspond
to two affine registrations and the deformable registration, respectively.

1st Iter. 2nd Iter.
Time [s] Number of Steps Time [s] Number of Steps

Affine Deformable Affine Deformable

LCA 8 ± 2 104 ± 55 31 ± 27 11 ± 3 111 ± 61 40 ± 35
RCA 29 ± 7 120 ± 67 99 ± 80 28 ± 9 122 ± 69 109 ± 74

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Heart Phase

A
vg

. N
C

C

 

 

LCA
RCA

Figure 7: Average initial NCC value by heart phase of projection image. The NCC
values of each dataset were normalised to [0, 1] before averaging.

4.2. Registration

Table 2 lists the average registration time and number of optimisation steps per
projection by type of dataset for the human clinical data. The number of steps until
convergence for the affine registration was similar for both types of datasets and
in the first and second iteration. The number of steps needed for the deformable
registration was 2.5–3 times as much for the RCA datasets as for the LCA datasets,
with a very high standard deviation. This increase is also almost identically reflected
by the registration times, meaning the deformable registration dominates the total
time. An analysis of the time spent in the affine and deformable iterations showed
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(a) (b)

(c) (d)

Figure 8: Checkerboard visualisation of pbgr (i,u) and pfwp (i,u) before (left) and
after (right) registration. Top row: LCA1. Bottom row: RCA3. Arrows indicate
locations with large displacement before registration.
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that the deformable iterations are responsible for 96% of the total registration time
over all datasets.

Between datasets, we observe that the initial reconstructions of the left coronary
artery datasets had better image quality than the right coronary artery datasets. We
expect less residual motion in the LCA cases to be the cause of this. This results
in an easier and faster registration. Within each dataset, a similar observation can
be made. Images in the middle of the gating window, i.e. with a heart phase very
close or identical to hr, only contain little or no residual motion (hr = 0.75 is within
a resting phase of the heart cycle). Images close to the ends of the window contain
more, increasing the effort for registration. This effect can be seen in Figure 7,
where the average NCC value before registration is shown with respect to the heart
phase. It can also be seen that for the RCA datasets, the initial NCC value for
h (i) > hr decreased faster than for the LCA datasets, which is also an indication for
an increased registration effort. The second iteration took longer than the first for
all datasets. We attribute this to a better resolution of fine details in the forward
projection, which increases the effort for registration.

Figure 8 shows an overlay of pbgr (i,u) and pfwp (i,u) in a checkerboard pattern
before and after two iterations of our algorithm. It can be seen that the displacement
of vessel sections between pbgr (i,u) and pfwp (i,u) is drastically reduced after
registration. Also, the large displacement in Figure 8c (indicated by arrows) is
completely compensated, as seen in Figure 8d.

4.3. Qualitative Image Evaluation

4.3.1. cavarev. Figure 9 shows the resulting reconstructions before and after one
iteration of our algorithm. No visual difference between one and two iterations
could be found for the cavarev dataset. A good reduction of motion-related, low-
frequency artefacts can be observed after motion compensation. In addition, both
homogeneity and sharpness of the vascular structures are increased.

4.3.2. Human Clinical Datasets. Figures 10 and 11 show the resulting
reconstructions before, after one and after two iterations of our algorithm. A strong
reduction of image artefacts can be observed for all datasets after the first iteration.
At the same time, depiction and sharpness of vascular structures are increased. This
is also true for the artificial valve in dataset LCA3, although this was not explicitly



Residual Motion Compensation in ECG-Gated Reconstruction 20

(a) Initial reconstruction. (b) Compensated reconstruction.

Figure 9: Reconstruction results of the cavarev dataset. The grey scale window
was 1000 HU.

part of this study. Note that the segments 1 and 5 are corrupted in all reconstructions.
This image degradation is caused by data inconsistency. Parts of the contrast agent
leak into the aortic root and accumulate in this region. The resulting non-static
clouds reduce the achievable reconstruction quality.

A second iteration of the algorithm does not reduce image artefacts noticeably
anymore. Instead, the visibility and sharpness of distal vessels is increased. Arrows
in Figures 10 and 11 indicate where the most improvement after the second iteration
can be seen. For example, the posterolateral branch of LCA1 (top row of Figure
10) is only partially visible in the initial reconstruction, whereas it is almost fully
recovered after two iterations. Another example for the right coronary arteries is the
first right ventricular branch of RCA3 (bottom row of Figure 11). It is almost not
visible in the initial reconstruction, but recovered after two iterations.

4.4. Quantitative Image Evaluation

4.4.1. cavarev. We achieved Q3D = 0.776 for both one and two iterations of our
algorithm. For reference, the published reconstruction quality of standard FDK is
Q3D = 0.431. For streak-reduced, ECG-gated reconstruction at hr = 0.9, which
is equivalent to our initial reconstruction, Q3D = 0.744 (Rohkohl 2012). The latter
algorithm is the best result in the public cavarev ranking at the time of this writing.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10: Reconstruction results of left coronary arteries. Left: Initial
reconstruction. Middle: Compensated (1 iteration). Right: Compensated (2
iterations).
Top row: LCA1 (left posterior oblique view). Middle row: LCA2 (left posterior
oblique view). Bottom row: LCA3 (left anterior oblique view).
The grey scale window was 1000 HU. Arrows indicate locations with major
reconstruction improvements.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11: Reconstruction results of right coronary arteries. Left: Initial
reconstruction. Middle: Compensated (1 iteration). Right: Compensated (2
iterations). Top row: RCA1 (left anterior oblique view). Middle row: RCA2 (left
posterior oblique view). Bottom row: RCA3 (left sagittal view).
The grey scale window was 1000 HU. Arrows indicate locations with major
reconstruction improvements.
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Table 3: Estimated low-frequency artefact level around the reconstructed vasculature
in HU.

LCA1 LCA2 LCA3 RCA1 RCA2 RCA3

Initial 14 20 14 18 13 13
1 Iter. 12 18 12 14 12 12
2 Iter. 12 18 12 14 12 12

Table 4: Average vessel sharpness in 1/mm.

LCA1 LCA2 LCA3 RCA1 RCA2 RCA3
LAD LCX LAD LCX LAD LCX

Initial 0.41 0.368 0.324 0.354 0.453 0.423 0.358 0.375 0.447
1 Iter. 0.482 0.446 0.443 0.479 0.512 0.511 0.5 0.457 0.483
2 Iter. 0.486 0.464 0.451 0.484 0.524 0.516 0.515 0.46 0.484

Therefore, our algorithm achieved an improvement of 80% compared to standard
FDK and 4% compared to the best public result.

Since the cardiac motion of the dataset is strictly periodic, ECG-gating already
performs very well. Due to this, the initial reconstruction is already good enough so
that all data inconsistencies are removed in the first iteration. A second iteration of
our algorithm does not improve the quality anymore.

4.4.2. Human Clinical Datasets. Table 3 lists the estimated low-frequency artefact
level for each dataset and number of iterations. The first iteration yields an average
artefact reduction of about 13%, the second iteration does not result in a noticeable
artefact reduction.

Vessel sharpness values are presented both as mean values for a complete
vessel branch (Table 4) and as mean values for individual segments (Table 5).
Over all datasets, one iteration increases vessel sharpness by 23%, two iterations
by 25%. After motion compensation, the overall vessel sharpness is more similar
between datasets than before (standard deviation between datasets of 0.026 after
compensation vs. 0.045 before). An interesting example is dataset RCA1 (cf. Table



Residual Motion Compensation in ECG-Gated Reconstruction 24

Table 5: Vessel sharpness of individual segments along the vessel tree in 1/mm.

(a) LCA1

Segment 5 6 7 8 11 13 14

Initial 0.296 0.300 0.358 0.467 0.318 0.368 0.343
1 Iter. 0.323 0.385 0.430 0.558 0.372 0.442 0.447
2 Iter. 0.319 0.381 0.433 0.569 0.373 0.445 0.488

(b) LCA2

Segment 5 6 7 8 11 13 14

Initial 0.319 0.260 N/A N/A 0.236 0.368 0.375
1 Iter. 0.344 0.303 N/A N/A 0.250 0.515 0.438
2 Iter. 0.337 0.306 N/A N/A 0.245 0.521 0.443

(c) LCA3

Segment 5 6 7 8 11 13 14

Initial 0.238 0.355 0.464 0.484 0.402 0.415 0.493
1 Iter. 0.266 0.352 0.522 0.548 0.454 0.538 0.573
2 Iter. 0.276 0.352 0.514 0.569 0.461 0.534 0.584

(d) RCA1

Segment 1 2 3 4

Initial 0.219 0.387 0.348 0.330
1 Iter. 0.330 0.499 0.486 0.519
2 Iter. 0.379 0.501 0.519 0.541

(e) RCA2

Segment 1 2 3 4

Initial 0.325 0.354 0.429 0.391
1 Iter. 0.374 0.469 0.494 0.449
2 Iter. 0.382 0.465 0.495 0.453

(f) RCA3

Segment 1 2 3 4

Initial 0.295 0.448 0.445 0.449
1 Iter. 0.345 0.500 0.490 0.450
2 Iter. 0.338 0.497 0.495 0.452
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5d and Figure 11a–11c). Segments 1 and 4 are heavily affected by motion artefacts.
After two iterations, their sharpness is improved by 73% and 64%. Although
the initial sharpness of segment 4 is inferior to segments 2 and 3, after motion
compensation the sharpness of segment 4 is actually the highest.

Overall, our observation from the qualitative evaluation, that a second iteration
especially improves distal vessels, is confirmed here.

5. Discussion

The parameters of our algorithm were chosen heuristically. They achieve high
reconstruction quality while limiting the registration time. By visual inspection,
we observed no trapping in local minima during registration with the presented
settings. At the same time, an increase in the number of resolution levels did not
decrease computation time substantially, because the coarse alignment is carried out
very quickly in contrast to the deformable registration on the finest level. Also, the
use of the deformable motion model on coarser resolution levels did not improve
convergence speed noticeably. We assume that the main computational cost of the
deformable motion estimation is within the highest level for the data and parameters
presented. Since the parameter set performed equally well for all datasets, we do not
expect it needs to be adjusted for new datasets as long as the type of data (i.e.
contrasted coronary arteries) and acquisition protocol stay the same.

Using the smallest possible ROI for each projection instead of the union of all
individual ROIs could further increase efficiency. On the other hand, this has an
influence on the stability of the registration: The ROI detection partly worked so
well, because the union of all individual ROIs eliminates possible misdetections in
single projection images.

The benefit of the approach in Equation 9 is that the application of the motion
model is a simple coordinate transform. The only interpolation of pixel values is
during the evaluation of pF (i,u), which is necessary in any case.

We found that the achievable quality after motion compensation is relatively
robust against the quality of the initial reconstruction. That means that cases with
strong residual motion artefacts benefit the most. Of course, the lower bound for
this compensation is that the initial reconstruction needs to contain any structure at
all. If, for example, strong breathing motion is present, data will have such a high
inconsistency that the initial reconstruction does not contain any structure that can
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be registered at all.
Our presented method and evaluation are tailored to the properties and needs of

interventional imaging of coronary vasculature. This allows the use of preprocessing
methods like top-hat filtering and thresholding that utilise the thin, sparse and high-
contrast nature of the object of interest. Different cardiac structures, like heart
chambers, would need other imaging protocols and motion estimation algorithms
(Müller et al. 2012).

6. Conclusion

We presented an algorithm to correct for residual motion in ECG-gated coronary
vasculature reconstruction. This residual motion is caused by an imperfect gating,
which leads to the usage of data from different motion states. A smaller gating
window is not desirable to avoid an increase of undersampling artefacts. Motion
compensation can help regarding the trade-off between undersampling and motion
artefacts. Our method does a projection-based 2-D motion estimation using image
registration. The forward projection of an initial, ECG-gated reconstruction is
registered to the pre-processed original projection data in a multi-resolution scheme
without requiring any complex segmentation or user interaction. The region of
interest for the image registration is determined automatically for each dataset. The
resulting motion vector field is then used for a subsequent, motion-compensated
reconstruction.

We evaluated the algorithm using the publicly available cavarev platform and
on six clinical datasets, both qualitatively and quantitatively. After the first iteration,
the artefact level is reduced and the sharpness and visibility of vascular structures is
enhanced. A second iteration does not noticeably change the artefact level anymore,
but increases sharpness and visibility of distal vessels in the clinical datasets. For the
cavarev dataset, a Q3D of 0.776 could be achieved, which is better than the leading
result of the public ranking list at the time of this writing. For the clinical datasets
and compared to the initial reconstruction, motion artefacts could be reduced by
13±6% on average. Vessel sharpness could be improved by 25±12% on average.

Further work may include the optimisation of the registration implementation
to further reduce the computation time needed for this step. To this end, an
implementation of the similarity measure and motion model on a GPU are expected
to yield the highest gain.
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