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Abstract. Patient motion compensation is challenging for dynamic 2-
D/3-D overlay in interventional procedures. A first motion compensation
approach based on depth-layers has been recently proposed, where 3-D
motion can be estimated by tracking feature points on 2-D X-ray images.
However, the sparse depth estimation introduces a systematic error. In
this paper, we present a theoretical analysis on the systematic error and
propose an enhanced motion estimation strategy accordingly. The sim-
ulation experiments show that the proposed approach yields a reduced
3-D correction error that is consistently below 2mm, in comparison to a
mean of 6mm with high variance using the previous approach.

Keywords: interventional 2-D/3-D overlay, error analysis, sparse depth
sampling, 3-D motion estimation.

1 Introduction

In interventional radiology, pre-operative three-dimensional (3-D) images (e.g.
computed tomography (CT) or magnetic resonance angiography (MRA)) can
be fused with interventional two-dimensional (2-D) X-ray images (fluoroscopy),
which is known as 2-D/3-D overlay. This yields several advantages: 1) the pre-
operative planning information in the 3-D images can be displayed on the fluo-
roscopic images; 2) additional information that is not visible in the fluoroscopic
images (e.g. vascular structure and spatial information) can be seen in the over-
laid 3-D images. A good 2-D/3-D overlay can shorten the time of the procedure
and reduce the radiation dose [1]. Accuracy is the most critical factor for the
quality of 2-D/3-D overlay. The proper spatial alignment of a 2-D projection to
a 3-D image (e.g. volume) is typically referred to as 2-D/3-D image registration.

2-D/3-D registration is usually performed before the intervention to ensure
an accurate overlay at the starting point. However, patient motion during the
intervention makes it necessary to correct the registration on the fly. In state-
of-the-art applications, the patient motion is usually detected by clinicians and
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the correction is triggered by user interaction. However, clinicians have limited
time and attention for computer interaction during the treatment [2].

Recently, research work for real-time motion compensation can be found in
literature [3–5]. All the approaches either are application specific or rely on
specific devices or particular motion models.

Recently, we proposed in [6] a depth-layer-based tracking approach for patient
motion compensation. The key innovative contribution of this approach is that
the depth information is transferred from 3-D image to 2-D feature points using
depth layers, which are the images rendered separately from sub-volumes of
different depth intervals. Fig. 1(a) shows how the sub-volumes are generated.
Based on the initial registration, the 2-D feature points can be mapped to certain
depth intervals by matching them to the depth layers. To the knowledge of the
authors, this is the first approach that is capable of estimating real 3-D motion
by only tracking 2-D feature points from single-view X-ray images. Since this
approach does not rely on a particular device or motion model, and no iterative
computation of digitally reconstructed radiographs (DRRs) is involved, it yields
a high potential for real-time motion compensation in dynamic 2-D/3-D overlay.

However, depth sampling (quantization) introduces a systematic error in mo-
tion estimation. Using fine depth sampling can of course reduce the error, but
3-D structures are rather truncated into several small sub-volumes, and this leads
to bad 2-D/3-D matching results; In contrast, the 3-D structures are more likely
to be preserved in sub-volumes using coarse depth intervals, i.e. using sparse
depth sampling. Therefore, we see a requirement to extend the method to be
able to handle the depth error caused by sparse depth sampling.

In this paper, we present a mathematical model of the systematic error in-
troduced by sparse depth sampling. Based on this analysis, we propose a depth
correction strategy for motion estimation, which handles the systematic error
together with random noise. Quantitative simulation experiments are performed
to evaluate the new approach. Qualitative results are shown by an example of
motion compensated 2-D/3-D overlay using our approach.

2 Theoretical Error Analysis of Sparse Depth Sampling

In this part, we analyze the systematic error of sparse depth sampling, and set
it into relation with the random noise coming from other noise sources.

2.1 The Systematic Error Introduced by Depth Sampling

The principle of 2-D/3-D overlay is to virtually place the 3-D volume at the cor-
responding position of the patient, so that the volume is rendered as imaged from
the X-ray source and fused with the live fluoroscopic image [1]. The projection
geometry of a C-arm system is described by a pinhole camera model, as shown
in Fig. 1(a). The projection procedure is described by the projection matrix

P ∈ R
3×4, which can be represented as P = K[R|t], where K =

⎡
⎣
a u
a v
1

⎤
⎦ ∈ R

3×3
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contains the intrinsic parameters, rotation R ∈ R
3×3 and translation t ∈ R

3 are
known as extrinsic parameters [7]. All the parameters are known during the 2-D
acquisition from a calibrated C-arm system.

To simplify the problem, the motion estimation is done in the camera coordi-
nate system, where the origin is located at the camera center c and the z-axis is
aligned with the principal ray direction (L0 in Fig.1(a)). So that the z compo-
nent of a 3-D point represents its depth, and the projection matrix in the camera
coordinate system is simplified as Pc = K [I|0].

To analyze the systematic error by depth sampling, we start with a 3-D point
x = (x, y, z, 1)T (homogeneous coordinates) and its projection p = (up, vp, 1)

T

on the detector plane D (Fig. 1(b)). Given the projection matrix Pc, the 2-
D projection point p can be back-projected to a ray in 3-D [7], denoted as

r(p) = vr(p) + λc, where vr(p) = P+
c p =

(
up−u

a ,
vp−v

a , 1, 0
)T

and λ is a scalar

related to the depth of the 3-D point on the ray [7] [6]. In the camera coordinate
system, where c = (0, 0, 0, 1), r(p) can be further simplified as

r(p) =
(
(vxyz

r (p))T, λ
)T

, with vxyz
r =

(
up − u

a
,
vp − v

a
, 1

)T

(1)

Since the 3-D point x with depth d and the point xE with sparsely estimated
depth dE are both on r(p), it yields λ(x) = 1/z = 1/d and λ(xE) = 1/dE. The
points can be then reformulated as

x
.
=
(
(vxyz

r (p))T, 1/d
)T

and xE
.
=
(
(vxyz

r (p))T, 1/dE
)T

. (2)

Since vxyz
r is determined by the 2D projection, the representations in Eq. 2 show

the geometric relationship between x and xE (as in Fig. 1(b)): they share the
same projection but with a shift of Δd = dE − d in depth.

After a rigid motion (rotation R0 and translation t0), the new projections of
x and xE are p′ and p′

E , respectively, as shown in Fig. 1(b). In this scenario,
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Fig. 1. Illustration of depth sampling and the systematic error
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the points p and p′ are observations of x on the 2-D image before and after
the motion. Since the estimated 3-D point xE and p′ (instead of p′

E) are used
in motion estimation [6], the systematic error of one point is introduced by the
difference vector between p′ and p′

E , as follows:

p′xy − p′xy
E = a · d− dE

(d · r3vxyz
r + tz0)(dE · r3vxyz

r + tz0)

[
tz0 −tx0

tz0 −ty0

]
R0v

xyz
r , (3)

where r3 ∈ R
1×3 is the third row of R0 and t0 = (tx0 , t

y
0 , t

z
0)

T. The above 2-D
vector corresponds to a line segment lε connecting p′ and p′

E , which is exactly
a segment of the epipolar line of p under the motion of [R0|t0] [7]. As Eq. 3
shows, the direction of the vector is only determined by the motion [R0|t0] and
the 2-D projection p. The depth error Δd together with the off-plane motion (r3
and tz0) affects the length of lε. Therefore, the systematic error by sparse depth
sampling is not only influenced by the estimation error Δd in depth.

2.2 The Systematic Error in Relation to the Random Noise

In the last section, the mathematical representation of the systematic error is
derived. However, all the measurements in the real world are subject not only
to systematic error but also to random noise [8]. Therefore, we model the noise
from other steps in the whole procedure in [6] (e.g. tracking error) as random
noise, which is defined by a uniform distribution. In this section, we analyze the
systematic error in Eq. 3 together with random noise, in order to treat them
differently to achieve a better motion estimation.

Fig. 2(a) illustrates the systematic error together with random noise in our
scenario. After an initial motion estimation using sparse depth sampling as in [6],
we can compute the systematic error vector using Eq. 3, which corresponds to
the line segment lε through p′

E (Fig. 2(a)). The possible maximum length of lε
determined by the depth bounds can be used as an explicit measurement of the
the systematic error, denoted as Si for p′i

E (Fig. 2(b) and 2(c)).
Furthermore, we assume that the random noise can shift a 2-D point towards

an arbitrary direction with maximum distance δmax, where direction and dis-
tance are uniformly distributed. Therefore, the observation of the projection p′

(denoted as p̃′) is positioned within a disk-like region with a radius of δmax
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Fig. 2. (a) Illustration of projection and the errors; (b) the metrics for the “influences”
the errors; (c) a case with more significant random noise
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(Fig. 2(a)), which reflects the accuracy of the tracking method applied in our
procedure. However, p′ and δmax are unknowns in practice, there is no explicit
measurement for the random noise. Therefore, we again make use of Eq. 3 for
the metric of the random noise. Since the in-plane motion can be well estimated
initially [6] and the depth error as well as the off-plane motion affects more on
the length of the systematic error vector in Eq. 3, the true projection p′ appears
near to or on the line lε. Thus, we introduce here the point-to-line distance N i

(the distance between p̃′i and liE in Fig. 2(b)) as the metric for the “influence”
of the random noise.

Fig. 2(b) and 2(c) show two examples of error conditions. In Fig.2(b), N i is
obviously smaller then Si. If it is mostly the case for other points, we can draw
the conclusion that the systematic error is more dominant than the random
noise. Contrarily, if N i is bigger then Si (Fig. 2(c)) for most of the points, the
random noise appears more dominant.

3 The Error-Dependent Motion Estimation Strategy

In order to reduce the depth error, we now consider a depth correction step
after the initial motion estimation (denoted as [R̂0|t̂0]). It can be performed by
solving a least-squares optimization problem as

{
d̂iE

}
= argmin

{d′
E}

(
n∑
i

dist
(
p̃′i,p′

E(d
′i
E)
)
)

, (4)

where n is the number of points, dist(·, ·) is the Euclidean distance of the two

points and p′
E = K[R̂0|t̂0]xE . This least-squares optimization helps to find the

best fitting corrected depth values based on the estimated motion. We then refine
the motion by a follow-up motion estimation using the corrected depths.

However, if the random error is about the same level of or more dominant than
the systematic error (e.g. under a small or specific motions causing small system-
atic error), depth correction can even introduce more error in the motion estima-
tion results (see section 4). The reason is that minimizing

∑n
i dist

(
p̃′,p′

E(d
′i
E)
)

in Eq. 4 does not lead to proper fitting depth values 2(c). In contrast, if the
random error has an acceptable range (i.e. with reasonable δmax), it’s better to
include more points in the motion estimation procedure, so that a globally con-
sistent solution of the motion can be estimated while the effect of the random
error is averaged to a minimum.

An error-based motion estimation strategy is therefore proposed according to
the influence metrics proposed in section 2.2 and a dominance factor f (Tab. 1).
We consider as a strong depth correction criterion if S̄ > f ·N̄ , we perform depth
correction and motion estimation on all points. For the cases not satisfying the

strong criterion, we consider as a weak criterion if still some points
{
xi
E

}weak

contain dominant systematic error (Si > f · N̄ ) and perform depth correction on{
xi
E

}weak
, but still refine the motion using all points. If neither of the criteria are

satisfied, we consider all points as random noise dominant (no further correction).
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Table 1. The error-dependent motion estimation via dynamic depth correction

Inputs 3-D point set with sparse depth estimation
{
xi
E

}
, 2-D projections before mo-

tion
{
pi

}
and the observed projections after motion

{
p̃′i}.

Initialization Initial estimation of the rigid motion [R̂0|t̂0] using
{
xi
E

}
and

{
p̃′i} [6].

Error analysis Based on [R̂0|t̂0], compute the systematic error vectors for all
{
xi
E

}

using Eq. 3, the systematic error influences
{Si

}
and the mean influence S. Com-

pute the random noise influences
{N i

}
and the mean influence N .

Optimization determination criteria
1. Strong criterion: if S > f ·N , perform depth correction and motion refinement

on all points
{
xi
}
;

2. Weak criterion: else if max(Si) > f ·N , perform depth correction on
{
xi
}weak

and motion refinement on all points
{
xi
}
;

3. Otherwise: no further correction.

4 Experiments and Discussion

In this section, we quantitatively evaluate our new approach using point-based
simulation experiments. Furthermore, we show the qualitative motion estimation
results using a real clinical CT volume with simulated X-ray images.

4.1 Point-Based Simulation Experiments

Point-based simulation is a convenient and established way of evaluating the
theoretical-analysis-based algorithms (as in [6]). It allows to neglect the external
influences and gives better insights how things behave in the scope of interest.
Our point-based simulation set-up is similar as in [6]. The projection parameters
of a real C-arm system are applied. 3-D point sets are randomly generated within
a bounding box (20 cm×20 cm×30 cm). Random 3-D motions of different scales
are generated, which cause 2-D projection errors from about 1mm to 13mm on
the detector plane. Random, uniformly distributed noise with δmax = 4 pixels
(see Sec. 2.2) is added to the 2-D correspondences.

In Fig. 3, results of the test cases using 5- and 10-interval depth sampling
are shown. The plots show how the errors caused by a motion, which represent
the scale of the 3-D motion, are corrected in 2-D and 3-D. In each plot, the
horizontal and vertical axes show respectively the error before and after motion
correction. We discuss three important properties of the proposed algorithm.

1. Error reduction in 2-D and 3-D – In clinical practice, an error of 2mm can
be considered acceptable [3]. As shown in Fig. 3, the baseline algorithm [6] often
fails to achieve this requirement in 3-D error correction. Conversely, with our
proposed depth correction scheme, we consistently yield a 3-D correction error
below 2mm. This shows the fact that the 3D motion (and even the off-plane
motion part) can be well estimated using the our proposed approach.

2. Effects of depth quantization – Since both examples show sparse depth
sampling, where the systematic error causes a significant quantization effect.
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(a) Results of using 5-interval depth sampling;
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(b) Results of using 10-interval depth sampling

Fig. 3. Plots of the results of point-based experiments

The quantization effect leads to an uncertainty of the motion estimation. As we
can see by comparing the results in Fig. 3(a) and 3(b), 10-interval depth sampling
even yields worse results then 5-interval sampling. The results are much more
stable (consistently under 2/ts mm) by using our proposed depth correction.

3. Performance gained by the point selection criteria – In Fig. 3(b), the esti-
mation results using all points for depth correction, where none of the criteria
in Tab. 1 are considered, are shown together with the results using our motion
estimation strategy (dominance factor f = 3). Obviously, more computation is
involved if all points are considered for depth correction. Nevertheless, we can
observe better results by using points selection criteria for depth correction.

4.2 Image-Based Experiments

Similar as in [6], a sequence of DRRs is generated from a clinical CT volume
under a sequence of rigid motion, where 2-D/3-D overlay is initially registered.
10-layer depth sampling is used for motion compensation. Normalized cross cor-
relation (NCC) based similarity map between the 2-D projection (gradient mag-
nitude) and the 3-D volume (gradient-based rendering [6]), as shown respectively
in green, blue and red in Fig. 4 together with the overlays. Fig. 4(a) and 4(b)
show the 2-D/3-D overlay without and with our motion estimation approach
at frame 19. Due to the patient motion in 2-D projection, the overlay loses 2-
D/3-D similarity (green) along the frames. However, our motion compensation
approach maintains the high 2-D/3-D similarity. The results clearly show that
the 2-D/3-D overlay accuracy is strongly improved using our proposed approach.
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(a) Without motion compensation (b) With motion compensation

Fig. 4. Motion compensation using sparse depth estimation

5 Conclusion and Future Work

In this paper, a theoretical analysis of the systematic error introduced by sparse
depth sampling for motion estimation is presented. An improved motion esti-
mation strategy which handles the depth error is proposed. The experimental
results show the improved estimation of 3-D motion in cases of very sparse depth
sampling, the 3-D errors are below 2mm after motion correction.

As an outlook, we will evaluate different tracking methods using the presented
error analysis. The theoretical analysis can further help to adapt the tracking
methods to X-ray images for our motion compensation framework.
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