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Abstract. A novel real-time multi-sensor framework for range imag-
ing (RI) based respiratory motion analysis in image guided interventions
such as fractionated radiation therapy is presented. We constitute our
method based upon real-time constraints in clinical practice and an ana-
lytic analysis of RI based elastic body surface deformation fields. For the
latter, we show that the underlying joint rigid and non-rigid registration
problem is ill-conditioned and identify insufficient body coverage as an
error source. Facing these issues, we propose a novel manifold ray casting
technique enabling the reconstruction of an 180◦ coverage body surface
model composed of ∼ 3 ·105 points from volumetrically fused multi-view
range data in ∼ 25 ms. Exploiting the wide field of view surface model en-
abled by our method, we reduce the error in motion compensated patient
alignment by a factor of 2.7 in the translational and 2.4 in the rotational
component compared to conventional single sensor surface coverage.

1 Introduction

Real-time respiratory motion analysis is a key issue for the success of medi-
cal procedures that require accurate patient positioning and respiratory motion
prediction or compensation. For instance, in fractionated radiation therapy, the
patient must be continuously monitored to account for tumour movement in-
duced by respiratory motion [1]. For these tasks, multi-dimensional respiration
surrogates based on elastic deformations of the patient body surface acquired by
real-time range imaging (RI) sensors have been recently proposed [2–5]. These
methods rely on fundamentally different surrogate generation concepts such as
pure depth information [2], a model based formulation [5], non-rigid sparse to
dense registration [3] or a non-rigid ICP variant [4]. Except for the work of
Schaerer et al. [4] using the multi-sensor capable AlignRT system (Vision RT,
London, UK), these approaches feature a single RI sensor setup. In this context,
a noteworthy development is the recently proposed multi-sensor system by Price
et al. [6] that, in contrast to the AlignRT system, features acquisition rates of
> 20 fps thus allowing for high temporal resolution respiration analysis. How-
ever, existing multi-sensor systems (i) do not provide a unified fusion of data



streams from multiple cameras and (ii) are not capable to feature a fused surface
representation that facilitates the deployment of high-performance algorithms.

In this paper, as the first and major contribution, we propose a novel real-
time multi-sensor framework that enables a wide field of view patient surface
model reconstruction. Our method employs a volumetric range data fusion ap-
proach encoding the patient body surface in an implicit manner. Based upon
this representation we present an explicit surface reconstruction technique that
utilizes a novel manifold ray casting technique tailored to the human anatomy
present in respiration analysis. As a unique characteristic compared to existing
approaches, our method enables both a high surface coverage and an efficient
closest point search by exploiting inherent topological and projective properties.
These features facilitate the usage of algorithms designed to cope with real-
time constraints. Building upon this high coverage surface model, as the second
contribution, we substantiate the necessity of a multi-sensor framework in RI
based respiratory motion analysis. We show that the joint rigid and non-rigid
registration problem that governs respiration analysis is ill-posed and identify
insufficient body coverage as an error source. Consequently, as the third contri-
bution, we demonstrate the efficiency of our framework regarding run-time and
accuracy in the context of real-time respiration analysis using 4-D shape priors.

2 Method

We denote an RI as fR (i) : Ω → R+ where the image domain Ω ⊂ R2 is
sampled with N1×N2 depth measurements di ∈ R+. Without loss of generality,
the RI can be equivalently described as a surface fS (i) : Ω → Ψ where the
codomain Ψ ⊂ R3 holds the 3-D surface points xi ∈ Ψ as xi = o+ di · ri. The
optical center o and the viewing rays ri are given by the pinhole camera model
of the RI sensor. At respiration state k we denote the body surface Sk composed
of N samples as a set of fixed points xFi ∈ R3 from a reference respiration
state (e.g. fully exhale) that are transformed by (1) an elastic deformation field
Uk = {uk

1 , . . . ,u
k
N}, uk

i ∈ R3 encoding the point-wise displacements induced

by respiratory motion and (2) a rigid transformation (Rk ∈ SO3, t
k ∈ R3)

accounting for the patient pose:

Sk = {xk
1 , . . . ,x

k
N} = {Rk

(
xF1 + uk

1

)
+ tk, . . . ,Rk

(
xFN + uk

N

)
+ tk}. (1)

Now, given an instantaneous RI surface SI = {xI1 , . . . ,xIN1·N2
}, xIi ∈ Ψ , the

goal of RI based respiratory motion analysis techniques using elastic surface de-
formations is to recover the respiration state k̂ by jointly estimating the unknown

displacement field U k̂ and the rigid transformation (Rk̂, tk̂) such that SI ≈ S k̂
according to a certain shape distance criterion.

Let us note that the reference surface composed of fixed points xFi may be
captured by RI sensors or computed from tomographic data (CT/MR) using
isosurface extraction techniques. Thus, in general, RI based respiratory motion
analysis is a multi-modal registration problem with N 6= N1 ·N2.



2.1 Volumetric Multi-View Range Data Fusion

For fusing multi-view RI data we use the concept of projective truncated signed
distance functions (TSDF) [7, 8]. A TSDF T (p) : R3 → [−1,+1] is based on an
implicit surface representation given by the zero level set of an approximated
conventional signed distance function of that surface. For a point p ∈ R3 in
world space, T (p) encodes the distance to the closest point on the RI surface S
w.r.t. the associated inherent projective camera geometry and the sensor pose:

T (p) = η (‖fS (P (p′))‖2 − ‖p
′‖2) . (2)

Here, p′ = Rp+ t with (R ∈ SO3, t ∈ R3) is the transformation of p from world
space into local camera space. P (p′) : R3 → Ω denotes the camera’s projection
operator and η performs mapping and truncation of distances to [−1,+1]. For a
multi-view system with J sensors we extend Eq. (2) as:

T (p) =
1

ω (p)
·

J∑
j=1

fCj
(
Pj

(
p′j
))
· η
(∥∥fSj (Pj

(
p′j
))∥∥

2
−
∥∥p′j∥∥2) , (3)

where ω (p) =
∑J

j=1 fCj
(
Pj

(
p′j
))

. The confidence map fCj (i) : Ωj → R+ asso-
ciated with the j-th camera encodes the reliability of a surface measure xi ∈ Ψj .
Given (1) the associated surface normal ni and viewing ray ri, and (2) the
gradient magnitude of the depth data gi =

∥∥∇fRj
(i)
∥∥
2
, we propose:

fCj (i) = 〈ni, ri〉 · (1 + gi)
−1. (4)

This results in high scores for smooth surface regions that are perpendicular to
the viewing direction. Finally, the temporal integration of TSDFs is given as:

T (p)
(k+1)

=
(1− α) · ω (p)

(k−1) · T (p)
(k−1)

+ α · ω (p)
(k) · T (p)

(k)

ω (p)
(k+1)

, (5)

where ω (p)
(k+1)

= (1−α) ·ω (p)
(k−1)

+α ·ω (p)
(k)

and the parameter α controls
the averaging of successive frames.

2.2 Surface Reconstruction Using Manifold Ray Casting

A TSDF T encodes the fused body surface in an implicit manner, however,
the majority of surface processing techniques rely on an explicit representation,
i.e. vertices and edges. For this task, surface reconstruction techniques based on
ray casting the TSDF have proven to be real-time capable [8]. The basic idea is
to define a virtual RI sensor and, starting at the optical center o, to traverse T
along the viewing rays ri toward the zero level set of T , i.e. T (o+ di · ri) = 0.
However, this conventional pinhole camera model does not allow for a wide field
of view body coverage as depicted in Fig. 1(left). In contrast, by using a virtual
camera model with viewing rays emerging from a 2-manifoldM, a high coverage



Fig. 1. Explicit surface generation by ray casting a TSDF T . Pinhole camera model
(left) and manifold ray casting based on a cylindrically shaped sensor plane (right).

body surface model can be reconstructed from the TSDF representation as illus-
trated in Fig. 1(right). The virtual RI domain ΩM ⊂ R2 is given by a suitable
2-D parametrization of M which allows to define an RI as fRM (i) : ΩM → R+

and the corresponding surface as fSM (i) : ΩM → ΨM. For an index i ∈ ΩM
that, using the 2-D parametrization, defines a point on the manifold mi ∈ M
and the associated normal ni, a surface point xi ∈ ΨM is given as:

xi = mi + di · ni, (6)

where the depth measurement di = fRM (i) is obtained by scanning along the
normal ni for the zero level set of T , i.e. T (mi + di · ni) = 0. A unique
characteristic of this ray casting technique is a surface model with high body
coverage that allows to employ an efficient projective data association technique
for closest point search. Given a point p ∈ R3 we denote its projection onto M
as p̃ = PM (p), where PM : R3 → ΩM is the projection operator associated
with the manifold M. Consequently, we define the closest point of p on SM as:

CP (p,SM) = argmin
x∈ωp̃

‖p− x‖2 , (7)

where ωp̃ ⊂ ΨM denotes the local neighborhood of fSM (p̃) w.r.t. the surface
topology defined by ΩM. For the neighborhood search, we exploit this topology,
thus superseding the need for any complex acceleration structures. Though our
method is generic in the sense that arbitrary manifolds are supported, we found
a manifold M based on a half cylinder as the most suitable representation in
the context of real-time respiratory motion analysis. First, a half cylinder is a
suitable approximation of the human thorax and, second, the projection of a
point p ∈ R3 onto the cylinder manifold M is given by a closed form solution.

2.3 Condition of RI based Joint Rigid and Non-Rigid Registration

Without loss of generality, we formulate Eq. (1) in terms of concatenated vectors:

Sk ≡ s = R
k
(xF + uk + (R

k
)−1t

k
) = R

k (
xF + uk + vk

)
. (8)

Here, xF =
[
xF0,x,x

F
0,y,x

F
0,z, . . . ,x

F
N,x,x

F
N,y,x

F
N,z

]> ∈ R3N concatenates the in-

dividual 3-D components (x, y, z) of the surface points xFi in a single vector (sim-

ilar t
t
,ut) andR

t ∈ R3N×3N has the corresponding block structure. From Eq. (8)



it follows that the problem of RI based respiration analysis is ill-conditioned as,
in general, uk and vk are not orthogonal or even linearly dependent. Hence, it
is not always possible to separate rigid shifts from non-rigid respiratory motion.
For example, for one single point xFi and its corresponding point xk

i ∈ Sk at

respiration state k, the displacement dki = xk
i − xFi can not be traced back to

rigid positioning (dki ∈ vk) or non-rigid respiratory motion (dki ∈ uk) as v and
uk are linearly dependent. In contrast, by using a higher body coverage, the in-

dividual displacement vectors d
k ≡ {dk0 , . . . ,d

k
M} with M ≤ N are spread across

the whole body surface and feature different orientations and magnitudes. This
facilitates linear independence of v and uk and potentially allows for a better

separation of d
k

into a rigid and a non-rigid component. We therefore intro-
duce the condition metric K quantifying the orthogonality (K = 0) or linear
dependence (K = 1) of a deformation field Uk ≡ uk and rigid shifts as:

K
(
uk
)

=
1

3

3∑
i=1

∣∣〈uk, ei
〉∣∣∥∥uk

∥∥
2
‖ei‖2

∈ [0, 1]. (9)

Here, e1 = [1, 0, 0, . . . , 1, 0, 0] ∈ R3N denotes the vector corresponding to trans-
lations in x direction (and similar to e2 and e3). As we will show in the ex-
periments, an increased body surface coverage using the proposed multi-sensor
framework allows to decrease the condition metric K and results in a more reli-
able registration for patient alignment. Note that regions obtained by a higher
body coverage may also include surface parts that do not move with respiration
such as the arms and the head. However, such body parts can not be taken for
granted if the reference surface was extracted from tomographic data (CT/MR)
and we will focus on the more generic case of using a wide coverage thorax model.

2.4 Real-time Respiration Analysis Using 4-D Shape Priors

The basic concept of respiratory motion analysis using 4-D shape priors is a res-
piration model X (b) = φ+Φb. The model mean φ and the modes of variation Φ
are derived from a principal component analysis (PCA) of non-rigidly registered
RI surfaces Sk acquired at different respiration states k [5]. The parameter vector
b controls the model. The general work flow is an iterative model adaption based
on point correspondences between an instantaneous surface SI and the i-th esti-
mate for the deformable surface model X (bi) that is rigidly transformed by the
i-th estimate of a rotation Ri and a translation ti. Respiration analysis using
4-D shape priors can benefit from a wide field field of view body coverage. This
is because the iterative scheme explicitly relies on the joint rigid and non-rigid
registration paradigm from Sect. 2.3 that is quantified by K in Eq. (9). Another
issue concerns performance. The original work used an acceleration structure for
efficient closest point search. However, as shown in later work [9], construction
and query times are only acceptable for a small scale data size, in particular
if a large number of iterations is required. In contrast, our framework does not
require a complex acceleration structure but performs the closest point search
by exploiting the projective data association technique described in Eq. (7).



Fig. 2. Left to right: Reconstructed surface using manifold ray casting, estimated res-
piration deformation field U and its condition K (u) for different surface regions ΩMi .

3 Experiments and Results

Evaluation is performed with RI data from four male subjects using two Mi-
crosoft Kinect sensors (30 Hz, Ωj = R640×480). For volumetric range data fusion
we discretized T with 5123 elements. Surface reconstruction using manifold ray
casting to generate shapes Sk was then performed with ΩM = R640×480. Thus,∣∣Sk∣∣ ∼ 3 · 105. To account for sensor noise, we performed temporal averaging of
the raw depth images fRj , set the weighting of successive frames for temporal
TSDF integration from Eq. (5) to α = 0.4 and performed edge preserving filter-
ing on fRM as a final step. Fig. 2 depicts a surface that has been reconstructed
using the proposed technique. Similar to [5], for each subject, we then extracted
training shapes Sk covering one abdominal and one thoracic breathing cycle. The
shapes were then non-rigidly registered using the coherent point drift algorithm
[10]. PCA was applied to the registered shapes to set up the model X (b), with
the number of modes chosen to cover 99% of the input variance. This resulted in
3 modes for all subjects. We then evaluated the condition K of a deformation field
using Eq. (9) on four different surface regions ΩM4

⊂ ΩM3
⊂ ΩM2

⊂ ΩM1
, see

Fig. 2. This corresponds to different field of views where ΩM4 and ΩM3 simulate
a single sensor setup whereas regions ΩM2 and ΩM1 require multiple sensors.
For regions ΩM4

and ΩM1
the average condition metric K decreased from 0.34

to 0.27, 0.34 to 0.27, 0.38 to 0.29 and 0.39 to 0.32 for the four subjects. To in-
vestigate the sensitivity of respiratory motion analysis w.r.t. body coverage, we
computed the respiration model X (b) for the four surface regions and performed
a motion compensated patient alignment. Evaluation sequences covering one nor-
mal breathing cycle where captured in the same patient coordinate system as the
training sequences. As the subjects did not move, the identity transformation
was used to set up the ground truth. The average translation error ∆tk and rota-
tion error ∆rk for evaluation frame k are then computed from the corresponding
estimates tki and rki as ∆tk = 1

3

∑3
i=1 |tki | and ∆rk = 1

3

∑3
i=1 |rki |, where the su-

perscripts i = 1, 2, 3 denote the x,y and z axis. Fig. 3 depicts the individual
transformation errors computed over all evaluation frames. We note that for
subjects 1 and 4 the alignment error is rather high. This may be due to evalua-
tion frames that are very different to the respiration states seen in the training
phase. Yet, drifts are low compared to alignment without motion compensation
that we evaluated for comparison. Regarding the influence of body coverage, we
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Fig. 3. Translation (top) and rotation (bottom) transformation estimation error for
four male subjects S1-S4 and different surface regions ΩM4 ⊂ ΩM3 ⊂ ΩM2 ⊂ ΩM1 .
Shaded boxes denote that motion compensation was performed.

state that in general the alignment error and its variance increases for smaller
body surface regions. Over all subjects, a reduction of 3.65 mm to 1.38 mm and
0.73◦ to 0.30◦ for subregions ΩM4

and ΩM1
is noticeable. This corresponds to

a factor of 2.7 and 2.4, respectively, underlining the benefit of a multi-camera
system in RI based respiration analysis. We implemented our framework using
CUDA on a PC running an Intel Core i7 3770K and an NVIDIA GTX 680. For
the configuration described above, we compute a surface model SM in ∼ 25 ms.
Thus, our framework is beneficial for multi-camera systems with framerates of
20 fps [6]. For 4-D shape priors based deformation estimation with |X (b)| ∼ 104

model points and 100 iterations we achieve run times of 27 ms. However, in
contrast to [5] our approach does not require a resampling of the surface SI and
the closest point search uses all 3 · 105 surface points.

4 Conclusion

We presented a real-time framework for respiratory motion analysis using fused
multi-view RI. As the major contribution, we proposed a volumetric approach
to fuse RI data in conjunction with a ray casting technique to reconstruct a wide
coverage surface model. Due to the high frame rates, our method is eligible to be
used with clinical real-time multi-view RI systems. Our theoretical investigation
and experiments further underline the benefit of a multi-sensor setup in model
based respiratory motion analysis. This is promising w.r.t. subsequent steps such
as internal/external motion inference that will be part of future research.
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