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Abstract. In the field of image-guided surgery, Time-of-Flight (ToF)
sensors are of interest due to their fast acquisition of 3-D surfaces. How-
ever, the poor signal-to-noise ratio and low spatial resolution of today’s
ToF sensors require preprocessing of the acquired range data. Super-
resolution is a technique for image restoration and resolution enhance-
ment by utilizing information from successive raw frames of an image
sequence. We propose a super-resolution framework using the graphics
processing unit. Our framework enables interactive frame rates, com-
puting an upsampled image from 10 noisy frames of 200×200 px with
an upsampling factor of 2 in 109ms. The root-mean-square error of the
super-resolved surface with respect to ground truth data is improved by
more than 20% relative to a single raw frame.

1 Introduction

Image-guided surgery provides physicians with helpful information and thus
speeds up and improves medical interventions. One pertinent example is en-
hanced surface representations for augmented reality applications [1]. Time-of-
Flight (ToF) sensors hold great potential for acquiring 3-D surfaces during an
intervention due to their fast and dense acquisition technique. However, these
sensors still suffer from low spatial resolution compared to state-of-the-art color
sensors. Furthermore, high temporal and spatial noise in the range data is a
major issue. To compensate for this, various preprocessing and calibration tech-
niques have been proposed [2, 3]. Besides these approaches, super-resolution
techniques present a promising alternative with the capability to improve noisy
range data while increasing their spatial resolution. The goal of multi-frame
super-resolution is to fuse several low-resolution (LR) frames into one high-
resolution (HR) image while preserving edges and suppressing noise [4]. Each
LR frame shows the scene from a slightly different viewpoint. The motion be-
tween successive frames is utilized to obtain a finer sampling compared to a
single image.

As shown by Schuon et al. [5], the quality of range images can be improved sig-
nificantly by super-resolution. However, their approach uses a simplified imaging
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model where the point spread function (PSF) to model sampling of a camera is
not taken into account and only translational motion between successive frames
is assumed. The application of this method to image-guided surgery at inter-
active frame rates is infeasible due to prohibitive computational effort. General
purpose super-resolution in real time has been demonstrated in [6], proposing
an interpolation-based scheme with no appropriate physical model for image
generation and a restriction to translational motion.

In this paper, we present a framework capable of recovering HR images from
a series of preregistered LR images at interactive frame rates for intraopera-
tive image restoration. Our method is based on a generative image model and
formulated as a nonlinear optimization problem. The imaging model used for
super-resolution covers affine motion and a Gaussian PSF. All steps of the al-
gorithm are accelerated using the graphics processing unit (GPU) with Nvidia’s
CUDA platform to enable image-guided surgery at interactive frame rates.

2 Materials and methods

The super-resolution framework presented in this paper is based on a maximum
a posteriori (MAP) estimate of the desired HR image. We use a limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimizer for minimization of the
MAP cost function (Fig. 1).

2.1 Maximum a posteriori super-resolution

Our method is based on a forward model that describes the generation of LR
frames from the ideal HR image that should be recovered. Let x ∈ R

N be an
HR image where the pixels are arranged in linear order. The kth LR frame
y(k) ∈ R

M , M < N , out of a sequence of K frames y(1), . . . ,y(K) is related to
x according to

y(k) = W (k)x+ ε(k) (1)

where W (k) denotes the system matrix which models warping, blur and decima-
tion of the HR image and ε(k) is zero-mean Gaussian noise corrupting the kth LR








































Fig. 1. System overview of our super-resolution framework.
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image. Each LR frame y(k) for k ≥ 2 is related to y(1) by an affine homography
H(k) ∈ R

3×3 such that u′ = H(k)u, where u and u′ are homogeneous pixel
coordinates in y(k) and y(1) respectively. Modeling blur caused by the camera
with a Gaussian PSF, the elements of the system matrix are given by

Wmn = exp

(
− (vn − u′

m)
T ∇H(∇H)T (vn − u′

m)

2σ2

)
(2)

where σ specifies the width of the PSF, ∇H denotes the Jacobian of the affine
transform Hu with respect to u = (u1, u2, 1), vn is the position of the nth

HR pixel and u′
m is the position of the mth LR pixel transformed into the HR

coordinate system [4]. The rows of the system matrix are normalized to unity.
The super-resolved image x∗ is the minimum of the objective function

x∗ = argminx
(
‖Wx− y‖22 + λ · ‖hδ (Dx)‖1

)
(3)

where y and W are the stacked LR images and system matrices respectively.
For regularization, we use the pseudo-Huber loss function hδ(·) applied element-
wise as hδ(a) = δ2(

√
1 + (a/δ)2 − 1) on the Laplacian Dx of the HR image x,

with λ controlling the strength of the prior. This imposes smoothness on the
super-resolved image and prevents our estimation from converging to undesirable
solutions where noise is amplified. The minimum of the objective function is a
MAP estimate for the desired HR image [4]. Minimization is performed by the
Quasi-Newton optimizer described in section 2.2.

We note that all system matrix elements can be computed independently
according to (2). For better load-balancing, one GPU thread per matrix row is
used. To reduce the memory footprint, Wmn is set to zero beyond 3 standard
deviations of the point spread function, enabling us to store W efficiently in a
sparse matrix format. Furthermore, the Laplacian filtered image and the pseudo-
Huber prior are calculated pixel-wise in parallel.

2.2 L-BFGS optimizer

As the gradient of the objective function given in (3) is nonlinear in the pixels
of the HR image, we use an iterative L-BFGS optimizer [7] for nonlinear mini-
mization. This algorithm is one of the most popular members of the family of
Quasi-Newton methods and does not store a dense approximation of the Hessian,
making it well-suited for a GPU implementation with limited memory. Despite
relying on a low-rank representation, it is known to converge very quickly, which
we could also confirm in our experiments. Since the overall objective function
is convex, the minimum obtained by L-BFGS is an optimal solution. As ini-
tial guess for minimization, we choose an “average image”of the registered LR
images, computed as W̃ Ty where W̃ is W with normalized columns [4].
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2.3 Experiments

The proposed framework was implemented based on Nvidia’s CUDA platform
and is available on our website1. All vectorial computations are performed on the
GPU, obviating the need to frequently transfer large amounts of data between
host and device memory. The cuBLAS library is used for standard operations
like dot products, vector scaling and scaled multiply-add. The system matrix W

is stored in both compressed row storage (CRS) and compressed column storage
(CCS) formats as it is necessary to compute matrix-vector products for both W

and its transpose efficiently. Sparse matrix multiplication and the CRS/CCS
management are handled by the cuSPARSE library.

In our ex-vivo experiments, we measured a porcine liver with a PMD Cam-
Cube 3.0 and a high-precision light-section sensor [8] simultaneously. The data
acquired by the latter served as ground truth.

For quantitative evaluation, absolute distance statistics and the root-mean-
square error (RMSE) between the super-resolution output and the ground truth
data were calculated. For this purpose, we registered both using optical markers.
To obtain robust results, 240 ToF frames were split into 15 even sets. For
each set, super-resolution was performed with different upsampling factors and
sequence lengths. Both runtimes and error measurements were then averaged
over all sets. All calculations were performed on an Nvidia GTX 580. The
required image registration was performed offline using a 2D affine registration
framework [9].

3 Results

In Fig. 2, we compare nearest-neighbor upsampling of an LR frame to a pre-
processed [2] and our super-resolved image. Note that our framework has the
desirable property of preserving edges as compared to the state-of-the-art pre-
processing system, which becomes even more evident with larger motion. Fig. 3
shows a 3D mesh reconstruction of both the raw data and our result.

1 http://www5.cs.fau.de/research/software/

Fig. 2. Nearest neighbor (left) and preprocessed (middle) upsampling of one low-
resolution range image, the range image obtained by super-resolution using 10 frames
and upsampling factor of 2 (right).
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Raw SR

RMSE 8.11mm 6.29mm

Median 4.92mm 3.16mm

Std.dev. ±0.34mm ±0.16mm

Table 1. Root-mean-square error (RMSE) and
median as well as standard deviation of absolute
distances to the ground truth mesh, averaged
over 15 sets. Parameters for SR: 10 input frames
and 2× upsampling factor.

Quantitative results regarding the errors are given in Tab. 1. All measured
statistical properties were improved by our super-resolution framework. Further
evaluation is performed on runtimes for different sequence lengths and upsam-
pling factors (Fig. 5).

4 Discussion

In this paper, we presented a framework for super-resolution of preregistered ToF
range images at interactive frame rates, running on off-the-shelf GPUs. Experi-
ments on porcine liver data acquired with a PMD CamCube showed promising
results regarding both accuracy and performance. We were able to decrease the
RMSE by more than 20% on average from a single raw frame by upsampling 10

Fig. 3. The porcine liver measured for all experiments (left) and reconstructed meshes
from raw data (middle) and after super-resolution of 10 frames with 2× zoom factor
(right).
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Fig. 4. Runtime analysis of our framework dependent on the number of input frames
for an upsampling factor of 2 (left) and on the upsampling factor with 10 frames (right).
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frames of 200×200 px. We computed the super-resolved image with an upsam-
pling factor of 2 in 109ms. Interactive frame rates were achieved for all evaluated
sequence lengths given an upsampling factor of 2.

Future work will have to focus on integrating robust affine registration for
a complete GPU accelerated system. Prior work by Ansorge et al. [10], using
affine registration as an initialization for B-Spline registration in CUDA, strongly
suggests that this is attainable. More sophisticated models that combine the reg-
istration step with the super-resolution optimization process have been proposed
and may also be considered for use within our system.
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