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Abstract. There is a critical need to reconstruct clinically usable images
at a low dose. One way of achieving this is to reconstruct with as few pro-
jections as possible. Due to the undersampling, streak artifacts degrade
image quality for traditional CT reconstruction. Compressed sensing
(CS) [1] theory uses sparsity as a prior and improves the reconstruc-
tion quality considerably using only few projections. CS formulates the
reconstruction problem to an optimization problem. The objective func-
tion consists of one data fidelity term and one regularization term which
enforce the sparsity under a certain sparsifying transform. Curvelet is
an effective sparse representation for objects [2]. In this work, we in-
troduce to use curvelet as the sparsifying transform in the CS based re-
construction framework. The algorithm was evaluated with one physical
phantom dataset and one in vitro dataset and was compared against and
two state-of-art approach, namely, wavelet-based regularization (WR) [3]
and total variation based regularization methods (TVR) [4]. The results
show that the reconstruction quality of our approach is superior to the
reconstruction quality of WR and TVR.

1 Introduction

Computed tomography is used as a common examination tool in diagnosis and
interventional procedures. However, increasing concerns about radiation expo-
sure have been raised in recent years [5]. Recently, compressed sensing (CS)
theory has been introduced [1]. CS asserts that the signal sampling rate which
guarantees accurate reconstruction is proportional to the complexity of signal
rather than its dimensionality. Most natural signals are well described by only
a few significant coefficients in some domain, where the number of significant
coefficients is much smaller than the signal size on an equally spaced grid. As
such, the signals that are sparse or compressible can be recovered from very
few measurements. Several CS based CT reconstruction algorithms have been
proposed [3, 4, 6]. It has been found in these papers that the number of x-ray
projections can be significantly reduced with little sacrifice in CT image quality.
Thus, CS based reconstruction algorithm can reduce the radiation dose under
the assumption that the dose is proportional to the number of x-ray projections.
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A proper sparsifying transform is critical for CS based reconstruction meth-
ods. Recently, Candes, who proposed the CS theory, designed a efficient spar-
sifying transform which is called curvelet [2, 7]. The curvelet transform is a
multi scale pyramid with many directions and positions at each length scale,
and needle-shaped elements at fine scales. One feature of curvelet makes it very
suitable for CS based reconstruction method. Let fm be the m-term curvelet
approximation to the object f , in other words, to represent object f using m
largest curvelet coefficients. Then the approximation error is optimal for curvelet
and no other sparsifying transform can yield a smaller error with the same num-
ber of terms. Therefore, curvelet transform is optimally sparse representation of
objects with edges.

In this paper, we take curvelet transform as the sparsifying transform and
compare it against two state-of-art sparsifying transforms, namely wavelet trans-
form and total variation. One physical phantom and one in vitro dataset were
used for evaluation.

2 Materials and methods

A discrete version of the CT scanning process can be described as

Ax = b (1)

Here A = (aij) is the system matrix representing the projection operator, x

= (x1,..., xn) represents the object and b = (b1, ..., bm) is the corresponding
projection data. So to reconstruct the object x is to solve the linear system.
In our case, the linear system is underdetermined due to the undersampling.
There exist infinite solutions. As mentioned above, CS takes sparsity as prior
knowledge, which formulates the reconstruction problem as

min
x

||Φx||L1 s.t. ||Ax− b||22 < α (2)

Here, α stands for the variance of the noise. Φ is the sparsifying transform.
In our work, Φ is curvelet transform. WR and TVR use wavelet and total
variation as the sparsifying transforms. The inequality constraint enforces the
data fidelity and the L1 norm term promotes the sparsity. It is well known
that the constrained optimization problem (2) can be transformed to an easier
unconstrained optimization problem [3]

min
x

||Φx||L1 + β||Ax− b||22 (3)

The dimension of (3) is very high. Therefore, we employed the forward-backward
splitting method [3] to split (3)) to two sub-optimization problems which are easy
to solve.

– Step 1: One step of gradient descent method to minimize ||Ax− b||22
– Step 2: Solve the optimization problem x� = min ||x− v||22 + β||Φx||L1 (v is

calculated from step 1 which is the volume estimation from step 1).
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– Step 3: Repeat step 1 to step 2 until until L2 norm of the difference of
the two neighboring estimate is less than a certain value or the maximum
iteration number is reached.

To further speed up the optimization process, the SART reconstruction can be
applied at Step 1. When the sparsifying transform Φ is invertible, a simple soft
thresholding operator can be used to solve the objective function in step 2 [8].
The optimal solution of the objective function in Step 2 is:

a) Apply the sparsifying transform Φ on v, xa = Φv.
b) Apply the soft thresholding operator

xb
i = S(xa

i ,β) =





xa
i − β xa

i > β

0 |xa
i | < β

xa
i + β xa

i < β

(4)

where S(xa
i ,β) is the soft thresholding operator. xb

i is the i-th element of xb

and xa
i is the i-th element of xa. The soft thresholding operator is applied

element wisely on xa to achieve the optimal solution of the objective function
in step 2 [3].

c) Apply the inverse sparsifying transform on the results of step b.

When the sparsifying transform Φ is not invertible (e.g. total variation), simply
soft thresholding operator could not solve the optimization problem in step 2.
Several gradient descent steps are applied to solve the optimization problem in
step 2. To sum up, the optimization algorithm for the method using invertible
sparsifying transforms as the regularizer is:

– Step 1: One step of SART to minimize ||Ax− b||22
– Step 2: Apply the soft thresholding operator:

• Step 2.1: Apply the sparsifying transform on the result of step 1.
• Step 2.2: Apply the soft thresholding operator using (4).
• Step 2.3: Apply the inverse sparsifying transform on the result of Step
2.2.

– Step 3: Repeat step 1 to step 2 until L2 norm of the difference of the two
neighboring estimate is less than a certain value or the maximum iteration
number is reached.

The optimization algorithm for the method using non-invertible sparsifying
transforms as the regularizer is:

– Step 1: One step of SART to minimize ||Ax− b||22.
– Step 2: Apply k steps of sub-gradient descent method to solve min ||x −

v||22 + β||Φ1x||1 (v is calculated from step 1 which is the volume estimation
from step 1).

– Step 3: Repeat step 1 to step 2 until L2 norm of the difference of the two
neighboring estimate is less than a certain value or the maximum iteration
number is reached.

k in Step 2 is usually a fixed number which can guarantee that the solution of
Step 2 is accurately enough. We set k = 3 as in [4].
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3 Results

We evaluate our algorithm on one physical phantom dataset (Siemens Cone-
beam Phantom, QRM, Möhrendorf, Germany) and one in vitro dataset. Totally
496 projections within 200 degrees were acquired using a C-arm system (Artis
Zeego C-arm systems, Siemens, Forchheim, Germany) for both physical phan-
tom and in vitro dataset. Only 50 and 100 equally spaced projections were used
to perform the reconstruction for the physical phantom and for in vitro dataset
respectively. The resolution of the projection image is 1248 × 960 pixels with a
pixel size of 0.31 × 0.31 mm2. In the experiment, we reconstructed the center
slice with the size of 512 × 512 pixels. The pixel size is 0.49 × 0.49 mm2. For
further evaluation, we also reconstructed the image using WR and TVR. The
parameter setting of all methods were chosen according to that the final recon-
structions contain the same level of noise. The noise level was denoted by the

(a) Gold standard (b) TVR

(c) WR (d) Curvelet

Fig. 1. Reconstruction results of the physical phantom.
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standard derivation of a homogeneous area which is marked with black rectangle
in Fig. 1 and Fig. 2. We set parameters in this way because that the datasets
used for all methods are the same. Therefore the noise level of the reconstruc-
tions should be same. The reconstruction results of the physical phantom are in
Fig. 1 and the reconstruction results of in vitro dataset are in Fig. 2. However,
TVR introduce the carton-like artifacts. The reconstruction results of WR con-
tains the blocky artifacts (red rectangle in Fig. 2) The reconstruction results of
our method do not contain carton-like artifacts.

For qualitative evaluation, we calculated the correlation coefficients of the
reconstructions for each method

r =

�
n(xi − x̄)(xtrue

i − x̄true)��
n(xi − x̄)2(xtrue

i − x̄true)2
(5)

(a) Gold standard (b) TVR

(c) WR (d) Curvelet

Fig. 2. Reconstruction results of in vitro dataset.
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Table 1. Reconstruction error.

TVR WR Curvelet

Correlation coefficient of physical phantom reconstruction 96.68% 96.59% 96.78%

Correlation coefficient of in vitro dataset reconstruction 94.21% 93.99% 94.34%

xtrue is the gold standard which is the image reconstructed by FDK using all
projections in our experiments. The results can be found in Tab. 1. The similar
conclusion can be drawn. The reconstruction results of our approach is superior
to the other methods.

4 Discussion

CS uses sparsity as a prior. Therefore, a proper sparse transform is crucial in
CS based reconstruction algorithms. Curvelet transform employing directional
filter bank is very efficient in encoding images with edges. Often, medical images
contain many edges. Therefore, it is quite suitable for CS based reconstruction
algorithms. In this work, we introduced the curvelet transform to the CS based
reconstruction framework. The experiments show that our approach shows su-
perior image quality compared to the other methods. In addition, since curvelet
transform is invertible, the optimization algorithm for our method is simpler
than TVR which is the state-of-art CS based reconstruction method.
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