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Abstract—In computed tomography (CT), the nonlinear at-
tenuation characteristics of polychromatic X-rays cause beam
hardening artifacts in the reconstructed images. State-of-the-
art methods to correct the beam hardening effect are mostly
single material precorrections (e.g. water-precorrection), which
are far less efficient when more than one material is present in
the field of measurement. The use of those techniques is limited
by specific restrictions to the objects, computational loads, and
inaccurate segmentations. In this paper, we present a practical
multi-material beam hardening correction(MMBHC) approach
that employs material decomposition technique maintaining CT
values from dual-energy CT. This separates single energy CT
images into spatial density images and images containing material
information. The segmentation maintains the original X-ray
attenuation coefficients, such that the original CT attenuation
image can be exactly recovered. Therefore, segmentation errors,
which result in invalid material properties to the voxel, only
have minor effects on the beam hardening correction and do
not cause an atypical image impression or introduce additional
artifacts. A multi-material beam hardening correction procedure
is formulated to iteratively correct the artifacts but shows
satisfactory image quality after the first iteration. Based on
experiments with simulated CT data, it is shown that the
proposed method can efficiently reduce beam hardening artifacts.
In addition to the performance benefits, our approach can be
flexibly applied to imaging geometries and achieve efficient, fully
3D reconstructions.

Index Terms—CT reconstruction, beam hardening, artifact
reduction, segmentation, spatial resolution, image quality

I. INTRODUCTION

In computed tomography (CT), standard reconstruction
techniques are generally based on the assumption that the X-
ray beams are monochromatic and the measured projection
images contain line integrals through the objects. However,
in practice, the X-rays are polychromatic and lower energy
photons are more easily absorbed than the higher energy
photons, resulting in nonlinear characteristics of the X-rays,
the so-called beam hardening phenomenon. The polychro-
matic characteristic of X-rays leads to the attenuation of a
homogeneous object not being proportional to the thickness of
the object along the ray. Consequently, severe artifacts such
as cupping and streak artifacts appear in the reconstruction,
which compromise the reconstruction quality and diagnostic
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Fig. 1: Flowchart of our proposed algorithm

accuracy. Therefore, an effective beam hardening correction
approach is important in both medical and industrial CT
applications to improve image quality.

To mitigate beam hardening, common methods are
hardware-based approaches to reduce the polychromaticity of
the incident X-rays. State-of-the-art beam hardening correction
(BHC) algorithms used in clinical CT are mainly based on
single material (e.g. water) calibration and can efficiently
correct objects consisting of materials that are spectrally alike
[1]. In dual energy CT, the aim is oftentimes to reconstruct
images of material densities and as a side-effect, the beam
hardening artifacts can be exactly corrected [2]–[5].

In this work, we focus on the single energy CT of objects
that consist of multiple materials (with different spectral prop-
erties). Prior research on this topic requires a segmentation of
the attenuation image from a single energy CT scan into differ-
ent materials [6]–[14]. A major limitation of these techniques
is the computational complexity. Moreover, require previous
knowledge, the objects’ characteristics such as number of
materials, material’s inhomogeneity and the shape of different
materials also render those techniques unsuitable for practical
usage. The high computational load of these methods is often



caused by missegmentation of materials in early iterations,
which slows down convergence and may result in atypical
image impression and additional artifacts.

We present an application of the dual-energy reconstruction
technique presented in reference [5] with a sophisticated
segmentation method which makes it applicable to single
energy CT. Both methods calculate polychromatic raw data
from material density images of base materials. While the
calculation of base material density images is the aim of
dual energy CT, we use maintained CT attenuation values for
segmentation in single energy CT to generate material density
images. Thereby, the CT attenuation value conservation leads
to a situation where the consequences of missegmentation in
the beam hardening correction are minor. We do not make any
assumptions on the scanned object, but we assume to know
the major materials’ spectral properties, of which the object
is composed. This knowledge may be obtained from a single
calibration scan [4].

Section II outlines the theoretical aspects of the proposed
algorithm. The method has been evaluated for simulated X-ray
CT data, which is presented in section IV. Finally, we discuss
relevant issues to conclude the paper in section V.

II. METHODS

Assume a dataset consists of M materials with attenuation
coefficients µm(E), m = 1, ...,M , which depend on the X-
ray photon energy E. Specifying a reference density of each
material, ρm, the mass attenuation coefficient for material m is
κm(E) = µm(E)/ρm. Denote ~r as spatial location on recon-
struction grid. Knowing the spatial density distributions ρm(~r)
and effective energy E0, the monochromatic CT attenuation
image can be calculated:

f(~r) =

M∑
m=1

ρm(~r)κm(E0). (1)

pm(L) =
∫
L
dlρ(~r) is the line integral over projection ray L

through a material density image ρ(~r). When a monochromatic
X-ray beam traverses a homogeneous object, according to
Lambert-Beer’s law, the total attenuation coefficient is linearly
related to the thickness of the object along the ray. The
monochromatic intensity for a given E0 can be expressed as

Imono(L) = I0(E0) · e
−

M∑
m=1

pm(L)κm(E0)
. (2)

However, in real CT, the emitted X-ray photons have varying
energies E ∈ [0, Emax]. Therefore, the measured intensity
of a polychromatic beam can be written as the sum of the
monochromatic contributions for each energy E:

Ipoly(L) =

∫
dEI0(E)e

−
M∑

m=1
pm(L)κm(E)

, (3)

where I0(E) is referred as normalized source-detector energy
spectrum (

∫
dEI0(E) = 1). The measured initial polychro-

matic attenuation qinitial(L) along a ray path L is defined by

qinitial(L) = − ln Ipoly(L). (4)

A. Single-material precorrection
Generally, when datasets consist of only one material, a

precorrection can be carried out to reduce cupping artifacts
caused by beam hardening. In clinical CT, water precorrection
is widely used to reduce cupping artifacts. In industrial CT
we usually precorrect for the most dominant material (i.e. the
material which covers the most volume). The single material
precorrection linearizes the projections at the first place in
order to deliver improved and quantitative reconstruction for
a better initial segmentation. In any case, the single material
precorrection is a nonlinear preprocessing step of the initial
rawdata:

qprecorr
initial (L) = qprecorr

initial (qinitial(L)). (5)

B. Multi-material correction approach
A flowchart of the proposed algorithm is illustrated in Fig. 1.

From the precorrected rawdata, we perform a preliminary
filtered backprojection

ginitial(~r) = R−1{qprecorr
initial (L)}, (6)

where R−1 denotes a filtered backprojection (FBP) recon-
struction. The initial reconstruction is then segmented into
M materials. We thereby require to know the number M of
significant materials and the mass attenuation coefficient of
these materials. The spectral properties can either be calibrated
[4] or obtained as tabulated data from reference [15]. As
quantitative CT values in the image are unreliable due to beam
hardening, we use automatic centroids selection for k-means
clustering [16], [17]. After segmenting ginitial(~r) into M masks
wm(~r), we maintain the original CT value by storing density
volumes

ρ̂m(~r) =
wm(~r) · ginitial(~r)

κm(E0)
, (7)

rather than the mask volumes wm(~r). From the selected
centroids at k-means clustering, effective energy E0 can be
obtained by choosing corresponding monochromatic energy at
the centroid attenuation coefficients for each material. From
the segmentation result, the CT attenuation image ginitial(~r)
could be calculated according to Eq. (1). For each material,
line integrals

p̂m(L) = R{ρ̂m(~r)} =
∫
L

dlρ̂m(~r) (8)

are calculated, where R denotes the calculation of line inte-
grals through the volume along the originally measured lines
L (forward projection). The line integrals are combined to a
polychromatic rawdata set

q̂(L) = − ln

∫
dEI0(E)e

−
M∑

m=1
p̂m(L)κm(E)

, (9)

which incorporates the spectral properties of each material
κm(E), as mentioned above. The polychromatic rawdata are
then reconstructed again (including the single material precor-
rection) to obtain a recalculated image

gcalc(~r) = R−1{q̂precorr(L)}. (10)

During segmentation and forward projection steps, errors
which arise from beam hardening are additionally introduced.



The difference between the initially reconstructed volume and
the recalculated volume can be used to estimate the beam
hardening error:

gBH(~r) = gcalc(~r)− ginitial(~r). (11)

It has to be noted that spatial resolution mismatch occurs
between ginitial(~r) and gcalc(~r). Therefore, a spatial resolution
matching technique should be applied before the subtraction to
maintain the spatial resolution of the final image. In general,
resolution can be modulated by using boosting or smoothing
kernels. In this paper, an optimized Gaussian smoothing kernel
is applied to ginitial(~r) before the subtraction, such that

ĝBH(~r) = gcalc(~r)− Gauss(0, σ) ∗ ginitial(~r), (12)

with argminσ ||ĝBH(~r)||2. We finally use the spatially
resolution-matched beam hardening image ĝBH(~r) to subtract
the beam hardening from the initial reconstruction.

gcorrected(~r) = ginitial(~r)− ĝBH(~r). (13)

As the corrected image could be used to obtain a better
segmentation in the first place, the method can be repeated
iteratively. Using the superset i ≥ 0 to denote the iteration
number and initializing with g0corrected(~r) = ginitial(~r), we can
formulate a fixed-point equation

gi+1
corrected(~r) = ginitial(~r)− ĝBH(g

i
corrected(~r)). (14)

III. EXPERIMENTS

To evaluate the proposed algorithm, polychromatic cone-
beam CT simulations were carried out using a FORBILD
hip prosthesis phantom [18]. The dataset consists of soft
tissue, bone, and the prosthesis (Ti). The projection data were
obtained by using CT simulation software DRASIM (Siemens
AG, Forcheim, Germany), and circular 3D raw data were
reconstructed using a standard FDK reconstruction algorithm
[19]. At a tube voltage of 100 kV we simulated 450 angular
samples on a full circle, with a detector of 512× 512 pixels,
0.5mm in pixel size. All projection images are reconstructed
on a 512× 512× 512 grid with a voxel size of 0.4mm.

For further examination of the algorithm, a real multi-
material dataset containing four cylinders of different materials
was evaluated. A 120 kV tube voltage was applied. Detector
pixels are 1024 × 1024 with size of 0.4mm. All projection
images are reconstructed on a 400 × 400 × 600 grid with a
voxel size of 0.5mm.

IV. RESULTS AND DISCUSSION

A. Beam hardening reduction

Fig. 2 and Fig. 4 illustrate the results from reconstructions
and horizontal line profiles for simulated and real datasets,
respectively. In comparison with original reconstructions (left),
the recalculated polychromatic (middle) images show en-
hanced beam hardening artifacts. This illustrates our assump-
tion in Eq. (12). The right figures show the final result, where
beam hardening artifacts are hardly noticeable and the spatial
resolution is maintained.

Fig. 2: Reconstruction results from hip prosthesis phantom
with corresponding horizontal line profiles (yellow line). From
left to right: original reconstruction, recalculated reconstruc-
tion, result after first iteration. The line profiles and images
show attenuation coefficients (Level 0.10; window 0.22.)

Fig. 3: The beam hardening image ĝBH(~r) according to Eq. 12.

B. Spatial resolution matching

In Fig. 3 the beam hardening image ĝBH(~r) according to
equation 12 is presented. The enhancement of object borders
is visible from this image remains after spatial resolution
matching and is caused by beam hardening.

Running a forward projection with subsequent reconstruc-
tion reduces the spatial resolution of an image. Calculating
the difference between original and recalculated images would
correspond to a high-pass filtering of the original image. As the
initial image is linearly combined with the difference image,
we need measurements to maintain the spatial resolution,
especially when more than one iteration is applied.

Fig. 4: Reconstruction results from 4-cylinder real dataset with
corresponding horizontal line profiles (yellow line). From left
to right: original reconstruction, recalculated reconstruction,
result after first iteration. The line profiles and images show
attenuation coefficients.
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Fig. 5: Horizontal line profile plots from corrected reconstruc-
tions with (a) and without (b) spatial resolution matching.

(a) Original reconstruction (b) Polychromatic Recalculation

(c) Correction without spatial
resolution matching

(d) Correction with spatial
resolution matching

Fig. 6: Examination of spatial resolution matching using a
zoom-in on the hip prosthesis phantom (Grayscale: level 0.04;
window 0.06).

Fig. 5 presents the line profiles from reconstructions with
(Fig. 5a) and without (Fig. 5b) the spatial resolution match-
ing. It can be seen that calculation without consideration of
resolution matching yields errors at object edges (red circle)
and increases the level of aliasing.

A closer evaluation of spatial resolution influences on
reconstructions of the hip prosthesis phantom are illustrated
in Fig. 6. The polychromatic recalculation (Fig. 6b) has a
lower resolution than the original reconstruction (Fig. 6a).
Additionally, the enhanced cupping and streak artifacts can
be noticed. Running the proposed method without spatial
resolution matching, the object edges appear over-enhanced
and the aliasing is increased as shown in Fig. 6c. However, if
spatial resolution matching kernels are applied, beam harden-
ing reduced reconstructions with maintained image impression
can be achieved (Fig. 6d).

V. CONCLUSION

In this paper, an image-based beam hardening reduction
algorithm that combines material density distribution with
a polychromatic model of X-ray propagation is introduced.
The algorithm has been implemented for a 3D cone beam
geometry and was shown to yield excellent results in reducing
cupping and streak artifacts. During iterations, segmentations
with density information is retained to achieve more accurate
results for reproducing a polychromatic model in forward
projecting. In contrast to other iterative BHC approaches,
our method distinctly preserves better original reconstruction
information, which facilitates faster convergence. A spatial
resolution matching technique is applied in order to improve
image quality and overall performance.

Disclaimer: The concepts and information presented in
this paper are based on research and are not commercially
available.
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