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Abstract—Filtered back-projection algorithms are widely used
for the reconstruction of volumetric data from cone-beam pro-
jections in interventional C-arm computed tomography. Fur-
thermore, general-purpose GPUs have become a popular tool
for accelerating the reconstruction during time-critical clinical
procedures. In this work, we focus on the systematic performance
optimization of cone-beam back-projection on the latest archi-
tecture of CUDA-enabled GPUs. Our optimization approach is
based on the identification of the major performance bottleneck
through the analysis of specifically modified kernels.

Our main contribution is a smart restructuring of the back-
projection algorithm that facilitates the simultaneous processing
of a large number of projections and improves the hit rate of the
texture cache at the same time. We use the well-known RabbitCT
benchmark to demonstrate the outstanding performance of our
implementation on a single Kepler-based GeForce GTX 680 GPU.
Our implementation performs the back-projection of 496 input
projections onto a cubic 5123 volume in less than one second,
which is three times as fast as the best competing implementation.
Our back-projection implementation is also able to reconstruct
a cubic 10243 volume in about six seconds, which is six times as
fast as the best competing implementation known to us.

Index Terms—computed tomography, CUDA, FDK, GPGPU

I. INTRODUCTION

There are cone-beam back-projection implementations for a
wide range of hardware platforms, including the Cell broad-
band engine [1], [2], multi-core CPUs [3], [4], and general-
purpose GPUs [5]–[7]. Performance comparisons of several
implementations have been provided in [1]–[3]. However, the
use of varying data sets and diverse reconstruction parameters
precludes a meaningful comparison of the existing implemen-
tations. This problem has been tackled with the creation of the
RabbitCT platform [8], which provides a standardized frame-
work for comparing both the accuracy and the performance of
cone-beam back-projection algorithms.

According to [9], filtered back-projection was the first non-
graphics compute application to be successfully accelerated
on a dedicated GPU. In the meantime, GPUs have evolved
into programmable many-core processors, and development
platforms like the CUDA framework [10] have simplified the
implementation of GPU-accelerated algorithms considerably.
Okitsu et al. present a comprehensive overview of techniques
for the efficient implementation of cone-beam back-projection
on CUDA-enabled GPUs in [6]. Their most important con-
tribution is the substantial reduction of memory accesses by
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processing several projections at a time. Papenhausen et al.
describe a back-projection implementation that is optimized
for Fermi-based GPUs with CUDA support in [7].

As we use the RabbitCT benchmark to evaluate our work,
we shortly describe the corresponding data set in Section II.
We then discuss several important aspects of GPU computing
in Section III. Our approach for systematic performance op-
timization, as well as the resulting optimized implementation,
are presented in Sections IV and V. We analyze the perfor-
mance of our cone-beam back-projection implementation in
Section VI. Finally, Section VII concludes this work.

II. PROBLEM DESCRIPTION

The input data set of the RabbitCT benchmark consists of
N = 496 projections with a width of Su = 1248 pixels and a
height of Sv = 960 pixels. For every projection n, the data set
also contains a projection matrix P n ∈ R3×4, which describes
the transformation from the world coordinate system to the
detector coordinate system. An illustration of the acquisition
geometry can be found in [4]. Basically, the detector rotates on
a circular short-scan trajectory around the z-axis of the world
coordinate system, which is also the z-axis of the reconstructed
volume. This axis is roughly perpendicular to the u-axis of all
projections, as well as roughly parallel to their v-axis.

The task of a back-projection algorithm in the RabbitCT
benchmark is the reconstruction of a cubic volume with a side
length of 256 mm. The benchmark defines three problem sizes,
which correspond to volumes with a side length of 256, 512,
or 1024 voxels, respectively. During the kernel optimization in
Section IV, we focus on the 5123 volume. As every projection
has to be back-projected onto every voxel, the reconstruction
of the 5123 volume requires approximately 66.6 × 109 voxel
updates. This value is important for computing a common
alternative performance measure, the giga-(voxel)-updates per
second (GUPS). Please take note that we strictly differentiate
between decimal prefixes (1 gigabyte = 1 GB = 109 bytes) and
binary prefixes (1 gibibyte = 1 GiB = 230 bytes) to prevent
unnecessary ambiguities in this work.

III. GPU COMPUTING

In our experience, the full performance potential of any
new hardware platform can only be realized by specifically
optimizing the implementation of the deployed algorithms.
The main hardware platform of this work is the Kepler-based
GeForce GTX 680 GPU, which is compared to its predecessors
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TABLE I
RECENT GENERATIONS OF HIGH-END GPUS WITH CUDA SUPPORT

GPU GTX 280 GTX 480 GTX 580 GTX 680
Architecture Tesla Fermi Fermi Kepler

Performance [GFLOPS] 622.1 1345.0 1581.1 3090.4
Texture fillrate [GT/s] 48.2 42.0 49.4 128.8

Bandwidth [GB/s] 141.7 177.4 192.4 192.3

in Table I. Evidently, the arithmetic throughput of these GPUs
has increased with every generation. It is important to note
that the specified peak performance is only achieved for fused
multiply-add operations. For other operations, the performance
is reduced at least by a factor of two. The texture fillrate has
remained almost constant for several generations, but it has
more than doubled for the GeForce GTX 680. In contrast to
this, the memory bandwidth has all but stagnated in the latest
generation. As a consequence, the ratio between the texture
fillrate and the memory bandwidth has also more than doubled.
In order to save memory bandwidth and fully utilize its texture
units, the GeForce GTX 680 buffers texture data in the read-
only caches of its streaming multiprocessors as well as in its
unified L2 cache. For convenience, we refer to the combination
of these caches as texture cache.

We use the CUDA framework for implementing GPU-based
algorithms. An overview of basic concepts of GPU computing
can be found in [9]. For advanced topics, we recommend
the documentation of the CUDA framework itself [10]. One
important aspect of optimization is the identification of the
current performance bottleneck. Typically, the performance of
an algorithm is either limited by the instruction throughput, the
memory bandwidth, or the texture fillrate. In contrast to this,
latencies are usually not a problem, as long as the algorithm
exposes enough thread-level or instruction-level parallelism.

Compared to a sequential CPU algorithm, the execution
order of a highly parallel GPU algorithm is more complicated
and less deterministic. The following overview identifies var-
ious levels of temporal cohesion on a Kepler-based GPU:

• The 32 threads of one warp run in lockstep. They can
communicate via very efficient shuffle instructions.

• One or more warps form a thread block. The threads in
one thread block can communicate via shared memory.
These threads can also be synchronized explicitly.

• One or more threads block are executed on a streaming
multiprocessor. These thread blocks share the L1 cache
and the read-only cache of the multiprocessor. The ratio
between the actual number of threads on a multiprocessor
and the theoretical maximum is called occupancy.

• In general, only a subset of all thread blocks fits onto the
available multiprocessors at the same time. This subset
is called a wave. The thread blocks of a wave share the
unified L2 cache of the GPU.

Iterative loops inside a kernel exhibit less temporal cohesion
than the threads of a warp, and may have less temporal
cohesion than the threads of a thread block, if these threads
are synchronized after every iteration. The execution order of
instructions in different thread blocks is not defined by the
CUDA programming model.

compute position of first voxel
for I input projections do

compute homogeneous detector coordinates q[i] of first voxel
end
for K consecutive voxels along the z-axis do

zero-initialize sum s of weighted back-projected values
for I input projections do

dehomogenize detector coordinates q[i]
compute back-projected value by texture fetching
update sum s of weighted back-projected values
update homogeneous detector coordinates q[i]

end
update volume at current voxel with computed sum s
(optionally) synchronize threads in thread block

end

Fig. 1. Pseudocode for cone-beam back-projection kernel A

IV. KERNEL OPTIMIZATION

The cone-beam back-projection kernel presented in Fig. 1
constitutes the starting point of our performance optimization.
The structure of this kernel is based on the structure of what is
referred to as the fully optimized configuration in [7]. In our
kernel, one thread updates K voxels with the weighted back-
projected values of I projections. Every thread block consists
of Bx × By threads. The voxels updated by a single thread
block constitute a rectangular tile in the respective consecutive
xy-slices of the volume. A volume with Sx×Sy×Sz voxels is
processed by a grid of (Sx/Bx)× (Sy/By)× (Sz/K) thread
blocks. We use layered textures to simplify the texture fetching
for several projections. We also store the projection matrices
in constant memory, which is backed by the read-only cache.
Finally, we specify the number of projections as a template
parameter, which allows the compiler to automatically unroll
the corresponding loops of kernel A.

In this section, we ignore all data transfers involving the
host and focus on the computation times of the kernels for the
5123 volume. In order to identify the performance bottleneck
of a configuration, we measure three additional computation
times. In the first step, we reduce the voxel size from 0.5 mm
to 10-6 mm. As a result, all computed detector coordinates are
virtually identical, and the hit rate of the texture cache rises
to almost one hundred percent. In the second step, we disable
the texture fetching completely. In the third step, we also turn
off the volume update, which removes the memory accesses
and leaves only the arithmetic and control flow instructions.
It is vital that these modifications do not allow the compiler
to eliminate more code than intended. As these modifications
also tend to reduce the register count, we allocate a suitable
amount of shared memory to retain the occupancy of the
original kernel. Using the letters I(nstruction), M(emory), and
T(exture), we label the corresponding additional computation
times as I |M|T, I |M| – , and I | – | – in Table II.

In our first test, kernel A processes one projection at a time.
Each thread updates one voxel in every xy-slice of the volume.
The specified tile width Bx = 32 ensures that the volume
updates are performed by fully coalesced memory transactions.
Nevertheless, the first row of Table II clearly shows that the
memory transfer takes much longer than the computation of
the arithmetic instructions. In addition to that, the computation
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TABLE II
PERFORMANCE BOTTLENECK ANALYSIS FOR DIFFERENT KERNEL CONFIGURATIONS

Test Kernel Sync I K Bx By Occupancy I | – | – I |M| – I |M|T Time GUPS

1 A no 1 512 32 8 1.000 1091 ms 4710 ms 4707 ms 9141 ms 7.3
2 A no 4 512 32 8 0.750 575 ms 1199 ms 1196 ms 7802 ms 8.5
3 A yes 4 512 32 8 1.000 554 ms 1185 ms 1169 ms 2710 ms 24.6
4 A no 4 8 32 8 0.750 685 ms 980 ms 1085 ms 1990 ms 33.4
5 B — 4 8 32 8 0.875 542 ms 989 ms 1179 ms 1527 ms 43.6
6 B — 8 4 16 16 0.750 528 ms 725 ms 966 ms 1296 ms 51.4
7 B — 16 4 16 32 0.750 506 ms 550 ms 826 ms 1051 ms 63.4
8 B — 32 4 16 32 0.750 489 ms 494 ms 756 ms 969 ms 68.7

compute position of first voxel
for K consecutive voxels along the z-axis do

zero-initialize sum s[k] of weighted back-projected values
end
for I input projections do

compute homogeneous detector coordinates q of first voxel
for K consecutive voxels along the z-axis do

dehomogenize detector coordinates q
compute back-projected value by texture fetching
update sum s[k] of weighted back-projected values
update homogeneous detector coordinates q

end
end
for K consecutive voxels along the z-axis do

update volume at current voxel with computed sum s[k]
end

Fig. 2. Pseudocode for cone-beam back-projection kernel B

time of the kernel is almost doubled by the cache misses
of the texture fetching. When we process four projections in
one kernel, the memory transfer size is reduced considerably.
The compute-only kernel also runs much faster, because the
number of integer-based index computations is minimized as
well. However, the time penalty induced by the cache misses
of the texture fetching remains very high.

In the third test, we activate the optional synchronization
as indicated in Fig. 1. This change prevents the divergence of
the threads in one thread block with respect to the loop over
the voxels along the z-axis. As a result, the texture fetching is
accelerated considerably and the computation time is reduced
by about 65 percent. The configuration of test 3 results in a
total of 16 waves of thread blocks, which iterate through the
volume along the z-axis one after another. In test 4, we relocate
the large scale movement along the z-axis from the loop inside
the kernel to the third dimension of the grid of thread blocks.
On the whole, the 1024 generated waves move through the
volume along the z-axis only once, which improves the hit
rate of the texture cache even more.

In all tests with kernel A, the cache misses of the texture
fetching constitute the major performance bottleneck. As the
innermost loop of this kernel iterates over different projections
for I > 1, the corresponding textures continuously contend
for the limited amount of cache memory. Furthermore, the
memory transfers for the volume update take longer than the
computations. This problem could be solved by increasing the
number of projections I , but this approach only exacerbates the
first problem. We propose to solve both problems by reversing

the order of the two nested loops in kernel A. The result of this
restructuring is illustrated in Fig. 2. In kernel B, we specify
both I and K as template parameters. All iterations of the
innermost loop of this kernel access the same texture. While
kernel A uses 3I registers to store the homogeneous detector
coordinates, kernel B requires K registers for buffering the
computed volume updates. Consequently, our proposed kernel
is able to process a very large number of projections.

In test 5, we replace kernel A with kernel B, but keep all
other parameters identical. We clearly observe an improved
hit rate of the texture cache. In the following three tests,
we increase the number of projections I and tune the other
parameters to obtain minimal computation times. For I = 32
projections, the instruction throughput is not the bottleneck
and the impact of the memory transfer is negligible. The
computation time of the I |M|T modification indicates that
our proposed kernel reaches more than 68% of the theoretical
texture fillrate. The impact of the cache misses of the texture
fetching has also been reduced, resulting in a total computation
time of less than one second for the 5123 volume.

V. DATA TRANSFER OPTIMIZATION

For a useful comparison of our GPU-based implementation
with other hardware platforms, the data transfers between the
host and the GPU have to be taken into consideration. The
practically relevant data transfers consist of the upload of the
input projections and the download of the reconstructed vol-
ume. The reconstruction of the 5123 volume of the RabbitCT
benchmark results in the transfer of 2779 MiB of data, which
takes about half a second on our system. In order to hide the
additional time required for the described data transfers, we
use the ability of our GPU to overlap kernel execution and data
transfer. To this end, the CUDA API allows asynchronous ker-
nel launches and provides asynchronous memcopy functions.
However, there are no asynchronous API functions for binding
textures, which complicates both the memory management and
the texture handling in our implementation.

The timeline in Fig. 3 illustrates the data transfers and kernel
executions during the reconstruction of the 5123 volume. As
the first data transfer cannot be overlapped with any kernel
launch, we start with I = 8 projections to keep the size
of this data transfer small. We add eight more projections
in every subsequent data transfer until we reach the optimal
value of I = 32 projections. As a second optimization, we
divide the reconstructed volume into two parts, which consist
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Fig. 3. This figure displays the timeline of the reconstruction of the 5123 volume. The first line represents the data transfers, which comprise the upload of
the projections and the download of the volume. The other two lines illustrate the reconstruction of the first and the second part of the volume, respectively.
Please note that the total computation time in this timeline is larger than one second due to profiling overhead.

TABLE III
COMPARISON OF SELECTED CONE-BEAM BACK-PROJECTION
IMPLEMENTATIONS LISTED ON THE RABBITCT HOMEPAGE

Volume Implementation Type RMSE Time GUPS

fastrabbitEX [4] CPU — 7.45 s 8.94
5123 RapidRabbit [7] GPU — 2.98 s 22.3

Thumper [this work] GPU 0.021 HU 0.99 s 67.7
fastrabbitEX [4] CPU — 43.8 s 12.2

10243 CERA [-] GPU — 36.1 s 14.7
Thumper [this work] GPU 0.021 HU 6.04 s 88.2

of 384 and 128 xy-slices, respectively. In combination with
the buffering of a certain number of projections on the GPU,
this optimization makes it possible to overlap the download
of the first part of the volume with the reconstruction of the
second part of the volume.

Our implementation also works with the 10243 volume of
the RabbitCT benchmark. However, this volume has a size of
4096 MiB, which is twice as large as the device memory of
our GPU. As there are no data dependencies between different
voxels or between different projections, we are free to adapt
the high-level data flow of our implementation accordingly.
We have chosen to upload the first half of the projections
onto the GPU and stream the 10243 volume using two buffers
with a size of 256 MiB each. We repeat this process for the
second half of the projections. Performance measurements for
this volume size are provided in the next section.

VI. EXPERIMENTAL RESULTS

Our presented cone-beam back-projection implementation
was evaluated on a GeForce GTX 680 GPU with 2048 MiB
RAM using version 4.2 of the CUDA framework. In Table III,
we compare the obtained results to the best competing im-
plementations listed on the RabbitCT homepage [11]. Our
implementation, alias Thumper, has a total computation time
of less than one second for the 5123 volume. This is three times
as fast as the best competing implementation RapidRabbit. As
both implementations were tested on the same GPU model, the
performance difference can be fully attributed to our proposed
optimizations. Furthermore, our implementation has a total
computation time of about six seconds for the 10243 volume.
This is six times as fast as the best competing implementation,
which uses a slower Fermi-based Tesla C2070 GPU.

The fastest CPU-based implementation in the RabbitCT
benchmark is called fastrabbitEX. Although a workstation
with 40 CPU cores was used to evaluate fastrabbitEX, our
implementation is more than seven times as fast for both

volume sizes. Due to an error in the reference volume of
the benchmark, we are unable to specify the accuracy of the
competing implementations in Table III. When we use the
corrected reference volume in floating-point format to assess
the accuracy of our implementation, we observe a root mean
square error of only 0.021 HU for both volume sizes.

VII. CONCLUSION

Using a systematic performance optimization approach, we
identify the bottlenecks of a state-of-the-art cone-beam back-
projection kernel. Our main contribution is a restructuring of
the kernel that deals with the two most prominent performance
bottlenecks all at once. Our implementation is three times as
fast as the best competing implementation for the clinically
relevant 5123 volume of the RabbitCT benchmark. Although
we focus on the optimization of a cone-beam back-projection
kernel for GPUs of the Kepler architecture, our optimization
approach is applicable to a wide range of GPU-based algo-
rithms. Furthermore, cursory tests with other CUDA-enabled
GPUs have confirmed the portability of our optimizations.
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