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Abstract—For decades, photographs have been used to docu-
ment space-time events and they have often served as evidence
in courts. Although photographers are able to create composites
of analog pictures, this process is very time consuming and re-
quires expert knowledge. Today, however, powerful digital image
editing software makes image modifications straightforward. This
undermines our trust in photographs and, in particular, questions
pictures as evidence for real-world events. In this paper, we ana-
lyze one of the most common forms of photographic manipulation,
known as image composition or splicing. We propose a forgery
detection method that exploits subtle inconsistencies in the color
of the illumination of images. Our approach is machine-learning-
based and requires minimal user interaction. The technique is ap-
plicable to images containing two or more people and requires no
expert interaction for the tampering decision. To achieve this, we
incorporate information from physics- and statistical-based illumi-
nant estimators on image regions of similar material. From these
illuminant estimates, we extract texture- and edge-based features
which are then provided to a machine-learning approach for au-
tomatic decision-making. The classification performance using an
SVM meta-fusion classifier is promising. It yields detection rates
of 86% on a new benchmark dataset consisting of 200 images, and
83% on 50 images that were collected from the Internet.

Index Terms—Color constancy, illuminant color, image foren-
sics, machine learning, spliced image detection, texture and edge
descriptors.

I. INTRODUCTION

E VERY day, millions of digital documents are produced by
a variety of devices and distributed by newspapers, maga-

zines, websites and television. In all these information channels,
images are a powerful tool for communication. Unfortunately,
it is not difficult to use computer graphics and image processing
techniques to manipulate images. Quoting Russell Frank, a Pro-
fessor of Journalism Ethics at Penn State University, in 2003
after a Los Angeles Times incident involving a doctored photo-
graph from the Iraqi front: “Whoever said the camera never lies
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Fig. 1. How can one assure the authenticity of a photograph? Example of a
spliced image involving people.

was a liar”. How we deal with photographic manipulation raises
a host of legal and ethical questions that must be addressed [1].
However, before thinking of taking appropriate actions upon a
questionable image, one must be able to detect that an image
has been altered.
Image composition (or splicing) is one of the most common

image manipulation operations. One such example is shown in
Fig. 1, in which the girl on the right is inserted. Although this
image shows a harmless manipulation case, several more con-
troversial cases have been reported, e.g., the 2011 Benetton Un-
Hate advertising campaign1 or the diplomatically delicate case
in which an Egyptian state-run newspaper published a manipu-
lated photograph of Egypt’s former president, Hosni Mubarak,
at the front, rather than the back, of a group of leaders meeting
for peace talks2.
When assessing the authenticity of an image, forensic inves-

tigators use all available sources of tampering evidence. Among
other telltale signs, illumination inconsistencies are potentially
effective for splicing detection: from the viewpoint of a manip-
ulator, proper adjustment of the illumination conditions is hard
to achieve when creating a composite image [1].
In this spirit, Riess and Angelopoulou [2] proposed to analyze

illuminant color estimates from local image regions. Unfortu-
nately, the interpretation of their resulting so-called illuminant
maps is left to human experts. As it turns out, this decision is,
in practice, often challenging. Moreover, relying on visual as-
sessment can be misleading, as the human visual system is quite
inept at judging illumination environments in pictures [3], [4].
Thus, it is preferable to transfer the tampering decision to an ob-
jective algorithm.

1http://press.benettongroup.com/
2http://thelede.blogs.nytimes.com/2010/09/16/doctored-photo-flatters-egyp-

tian-president/
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In this work, we make an important step towards minimizing
user interaction for an illuminant-based tampering deci-
sion-making. We propose a new semiautomatic method that is
also significantly more reliable than earlier approaches. Quan-
titative evaluation shows that the proposed method achieves a
detection rate of 86%, while existing illumination-based work
is slightly better than guessing. We exploit the fact that local
illuminant estimates are most discriminative when comparing
objects of the same (or similar) material. Thus, we focus on
the automated comparison of human skin, and more specifi-
cally faces, to classify the illumination on a pair of faces as
either consistent or inconsistent. User interaction is limited to
marking bounding boxes around the faces in an image under
investigation. In the simplest case, this reduces to specifying
two corners (upper left and lower right) of a bounding box.
In summary, the main contributions of this work are:
• Interpretation of the illumination distribution as object tex-
ture for feature computation.

• A novel edge-based characterization method for illuminant
maps which explores edge attributes related to the illumi-
nation process.

• The creation of a benchmark dataset comprised of 100
skillfully created forgeries and 100 original photographs3

In Section II, we briefly review related work in color con-
stancy and illumination-based detection of image splicing. In
Section III, we present examples of illuminant maps and high-
light the challenges in their exploitation. An overview of the
proposed methodology, followed by a detailed explanation of
all the algorithmic steps is given in Section IV. In Section V,
we introduce the proposed benchmark database and present ex-
perimental results. Conclusions and potential future work are
outlined in Section VI.

II. RELATED WORK

Illumination-based methods for forgery detection are either
geometry-based or color-based. Geometry-based methods
focus at detecting inconsistencies in light source positions
between specific objects in the scene [5]–[11]. Color-based
methods search for inconsistencies in the interactions between
object color and light color [2], [12], [13].
Two methods have been proposed that use the direction of the

incident light for exposing digital forgeries. Johnson and Farid
[7] proposed a method which computes a low-dimensional de-
scriptor of the lighting environment in the image plane (i.e., in
2-D). It estimates the illumination direction from the intensity
distribution along manually annotated object boundaries of ho-
mogeneous color. Kee and Farid [9] extended this approach to
exploiting known 3-D surface geometry. In the case of faces, a
dense grid of 3-D normals improves the estimate of the illumi-
nation direction. To achieve this, a 3-D face model is registered
with the 2-D image using manually annotated facial landmarks.
Fan et al. [10] propose a method for estimating 3-D illumina-
tion using shape-from-shading. In contrast to [9], no 3-D model

3The dataset will be available in full two-megapixel resolution upon the
acceptance of the paper. For reference, all images in lower resolution can be
viewed at: http://www.ic.unicamp.br/ tjose/files/database-tifs-small-resolu-
tion.zip.

of the object is required. However, this flexibility comes at the
expense of a reduced reliability of the algorithm.
Johnson and Farid [8] also proposed spliced image detection

by exploiting specular highlights in the eyes. In a subsequent
extension, Saboia et al. [14] automatically classified these im-
ages by extracting additional features, such as the viewer posi-
tion. The applicability of both approaches, however, is some-
what limited by the fact that people’s eyes must be visible and
available in high resolution.
Gholap and Bora [12] introduced physics-based illumination

cues to image forensics. The authors examined inconsistencies
in specularities based on the dichromatic reflectance model.
Specularity segmentation on real-world images is challenging
[15]. Therefore, the authors require manual annotation of spec-
ular highlights. Additionally, specularities have to be present on
all regions of interest, which limits the method’s applicability
in real-world scenarios. To avoid this problem, Wu and Fang
[13] assume purely diffuse (i.e., specular-free) reflectance, and
train a mixture of Gaussians to select a proper illuminant color
estimator. The angular distance between illuminant estimates
from selected regions can then be used as an indicator for tam-
pering. Unfortunately, the method requires the manual selection
of a “reference block”, where the color of the illuminant can be
reliably estimated. This is a significant limitation of the method
(as our experiments also show).
Riess and Angelopoulou [2] followed a different approach

by using a physics-based color constancy algorithm that oper-
ates on partially specular pixels. In this approach, the automatic
detection of highly specular regions is avoided. The authors pro-
pose to segment the image to estimate the illuminant color lo-
callyper segment. Recoloring each image region according to
its local illuminant estimate yields a so-called illuminant map .
Implausible illuminant color estimates point towards a manipu-
lated region. Unfortunately, the authors do not provide a numer-
ical decision criterion for tampering detection. Thus, an expert
is left with the difficult task of visually examining an illuminant
map for evidence of tampering. The involved challenges are fur-
ther discussed in Section III.
In the field of color constancy, descriptors for the illuminant

color have been extensively studied. Most research in color con-
stancy focuses on uniformly illuminated scenes containing a
single dominant illuminant. For an overview, see e.g., [16]–[18].
However, in order to use the color of the incident illumination as
a sign of image tampering, we require multiple, spatially-bound
illuminant estimates. So far, limited research has been done in
this direction. The work by Bleier et al. [19] indicates that many
off-the-shelf single-illuminant algorithms do not scale well on
smaller image regions. Thus, problem-specific illuminant esti-
mators are required.
Ebner [20] presented an early approach to multi-illuminant

estimation. Assuming smoothly blending illuminants, the au-
thor proposes a diffusion process to recover the illumination dis-
tribution. Unfortunately, in practice, this approach oversmooths
the illuminant boundaries. Gijsenij et al. [21] proposed a pix-
elwise illuminant estimator. It allows to segment an image into
regions illuminated by distinct illuminants. Differently illumi-
nated regions can have crisp transitions, for instance between
sunlit and shadow areas. While this is an interesting approach,
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Fig. 2. Example illuminant map that directly shows an inconsistency.

a single illuminant estimator can always fail. Thus, for forensic
purposes, we prefer a scheme that combines the results of mul-
tiple illuminant estimators. Earlier, Kawakami et al. [22] pro-
posed a physics-based approach that is custom-tailored for dis-
criminating shadow/sunlit regions. However, for our work, we
consider the restriction to outdoor images overly limiting.
In this paper, we build upon the ideas by [2] and [13]. We

use the relatively rich illumination information provided by both
physics-based and statistics-based color constancy methods as
in [2], [23]. Decisions with respect to the illuminant color esti-
mators are completely taken away from the user, which differ-
entiates this paper from prior work.

III. CHALLENGES IN EXPLOITING ILLUMINANT MAPS

To illustrate the challenges of directly exploiting illuminant
estimates, we briefly examine the illuminant maps generated by
the method of Riess and Angelopoulou [2]. In this approach, an
image is subdivided into regions of similar color (superpixels).
An illuminant color is locally estimated using the pixels within
each superpixel (for details, see [2] and Section IV-A). Recol-
oring each superpixel with its local illuminant color estimate
yields a so-called illuminant map. A human expert can then in-
vestigate the input image and the illuminant map to detect in-
consistencies.
Fig. 2 shows an example image and its illuminant map, in

which an inconsistency can be directly shown: the inserted man-
darin orange in the top right exhibits multiple green spots in the
illuminant map. All other fruits in the scene show a gradual tran-
sition from red to blue. The inserted mandarin orange is the only
one that deviates from this pattern.
In practice, however, such analysis is often challenging, as

shown in Fig. 3. The top left image is original, while the bottom
image is a composite with the right-most girl inserted. Several
illuminant estimates are clear outliers, such as the hair of the girl
on the left in the bottom image, which is estimated as strongly
red illuminated. Thus, from an expert’s viewpoint, it is reason-
able to discard such regions and to focus on more reliable re-
gions, e.g., the faces. In Fig. 3, however, it is difficult to justify
a tampering decision by comparing the color distributions in the
facial regions. It is also challenging to argue, based on these il-
luminant maps, that the right-most girl in the bottom image has
been inserted, while, e.g., the right-most boy in the top image is
original.
Although other methods operate differently, the involved

challenges are similar. For instance, the approach by Gholap
and Bora [12] is severely affected by clipping and camera
white-balancing, which is almost always applied on images

Fig. 3. Example illuminant maps for an original image (top) and a spliced
image (bottom). The illuminant maps are created with the IIC-based illuminant
estimator (see Section IV-A).

from off-the-shelf cameras. Wu and Fang [13] implicitly create
illuminant maps and require comparison to a reference region.
However, different choices of reference regions lead to different
results, and this makes this method error-prone.
Thus, while illuminant maps are an important interme-

diate representation, we emphasize that further, automated
processing is required to avoid biased or debatable human
decisions. Hence, we propose a pattern recognition scheme
operating on illuminant maps. The features are designed to
capture the shape of the superpixels in conjunction with the
color distribution. In this spirit, our goal is to replace the
expert-in-the-loop, by only requiring annotations of faces in
the image.
Note that, the estimation of the illuminant color is error-prone

and affected by the materials in the scene. However, (cf. also
Fig. 2), estimates on objects of similar material exhibit a lower
relative error. Thus, we limit our detector to skin, and in par-
ticular to faces. Pigmentation is the most obvious difference
in skin characteristics between different ethnicities. This pig-
mentation difference depends on many factors as quantity of
melanin, amount of UV exposure, genetics, melanosome con-
tent and type of pigments found in the skin [24]. However, this
intramaterial variation is typically smaller than that of other ma-
terials possibly occurring in a scene.

IV. OVERVIEW AND ALGORITHMIC DETAILS

We classify the illumination for each pair of faces in the image
as either consistent or inconsistent. Throughout the paper, we
abbreviate illuminant estimation as IE, and illuminant maps as
IM. The proposed method consists of five main components:
1) Dense Local Illuminant Estimation (IE): The input image
is segmented into homogeneous regions. Per illuminant es-
timator, a new image is created where each region is col-
ored with the extracted illuminant color. This resulting in-
termediate representation is called illuminant map (IM).

2) Face Extraction: This is the only step that may require
human interaction. An operator sets a bounding box around
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Fig. 4. Overview of the proposed method.

each face (e.g., by clicking on two corners of the bounding
box) in the image that should be investigated. Alterna-
tively, an automated face detector can be employed. We
then crop every bounding box out of each illuminant map,
so that only the illuminant estimates of the face regions
remain.

3) Computation of Illuminant Features: for all face regions,
texture-based and gradient-based features are computed on
the IM values. Each one of them encodes complementary
information for classification.

4) Paired Face Features: Our goal is to assess whether a pair
of faces in an image is consistently illuminated. For an
image with faces, we construct joint feature vec-
tors, consisting of all possible pairs of faces.

5) Classification:We use a machine learning approach to au-
tomatically classify the feature vectors. We consider an
image as a forgery if at least one pair of faces in the image
is classified as inconsistently illuminated.

Fig. 4 summarizes these steps. In the remainder of this sec-
tion, we present the details of these components.

A. Dense Local Illuminant Estimation

To compute a dense set of localized illuminant color esti-
mates, the input image is segmented into superpixels, i.e., re-
gions of approximately constant chromaticity, using the algo-
rithm by Felzenszwalb and Huttenlocher [25]. Per superpixel,
the color of the illuminant is estimated. We use two separate il-
luminant color estimators: the statistical generalized gray world
estimates and the physics-based inverse-intensity chromaticity
space, as we explain in the next subsection. We obtain, in total,
two illuminant maps by recoloring each superpixel with the es-
timated illuminant chromaticities of each one of the estimators.
Both illuminant maps are independently analyzed in the subse-
quent steps.
1) Generalized Gray World Estimates: The classical gray

world assumption by Buchsbaum [26] states that the average
color of a scene is gray. Thus, a deviation of the average of the

image intensities from the expected gray color is due to the il-
luminant. Although this assumption is nowadays considered to
be overly simplified [17], it has inspired the further design of
statistical descriptors for color constancy. We follow an exten-
sion of this idea, the generalized gray world approach by van de
Weijer et al. [23].
Let denote the observed

RGB color of a pixel at location . Van de Weijer et al. s[23] as-
sume purely diffuse reflection and linear camera response. Then,

is formed by

(1)

where denotes the spectrum of visible light, denotes the
wavelength of the light, denotes the spectrum of the il-
luminant, the surface reflectance of an object, and
the color sensitivities of the camera (i.e., one function per color
channel). Van de Weijer et al. [23] extended the original gray
world hypothesis through the incorporation of three parameters:
• Derivative order : the assumption that the average of the
illuminants is achromatic can be extended to the absolute
value of the sum of the derivatives of the image.

• Minkowski norm : instead of simply adding intensities
or derivatives, respectively, greater robustness can be
achieved by computing the -th Minkowski norm of these
values.

• Gaussian smoothing : to reduce image noise, one can
smooth the image prior to processing with a Gaussian
kernel of standard deviation .

Putting these three aspects together, van de Weijer et al. pro-
posed to estimate the color of the illuminant as

(2)

Here, the integral is computed over all pixels in the image,
where denotes a particular position (pixel coordinate). Fur-
thermore, denotes a scaling factor, the absolute value,
the differential operator, and the observed intensities
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Fig. 5. Illustration of the inverse intensity-chromaticity space (blue color
channel). Left: synthetic image (violet and green balls). Right: specular pixels
converge towards the blue portion of the illuminant color (recovered at the
-axis intercept). Highly specular pixels are shown in red.

at position , smoothed with a Gaussian kernel . Note that
can be computed separately for each color channel. Compared
to the original gray world algorithm, the derivative operator in-
creases the robustness against homogeneously colored regions
of varying sizes. Additionally, the Minkowski norm empha-
sizes strong derivatives over weaker derivatives, so that spec-
ular edges are better exploited [27].
2) Inverse Intensity-Chromaticity Estimates: The second

illuminant estimator we consider in this paper is the so-called
inverse intensity-chromaticity (IIC) space. It was originally pro-
posed by Tan et al. [28]. In contrast to the previous approach, the
observed image intensities are assumed to exhibit a mixture of
diffuse and specular reflectance. Pure specularities are assumed
to consist of only the color of the illuminant. Let (as above)

be a column vector of the
observedRGBcolors of a pixel. Then, using the same notation as
for the generalized grayworldmodel, is modelled as

(3)

Let be the intensity and be the chromaticity (i.e.,
normalized RGB-value) of a color channel at
position , respectively. In addition, let be the chromaticity
of the illuminant in channel . Then, after a somewhat laborious
calculation, Tan et al. [28] derived a linear relationship between

, and by showing that

(4)

Here, mainly captures geometric influences, i.e., light po-
sition, surface orientation and camera position. Although
can not be analytically computed, an approximate solution is
feasible. More importantly, the only aspect of interest in illumi-
nant color estimation is the -intercept . This can be directly
estimated by analyzing the distribution of pixels in IIC space.
The IIC space is a per-channel 2-D space, where the horizontal
axis is the inverse of the sum of the chromaticities per pixel,

, and the vertical axis is the pixel chromaticity for
that particular channel. Per color channel , the pixels within
a superpixel are projected onto inverse intensity-chromaticity
(IIC) space.
Fig. 5 depicts an exemplary IIC diagram for the blue channel.

A synthetic image is rendered (left) and projected onto IIC space
(right). Pixels from the green and purple balls form two clusters.
The clusters have spikes that point towards the same location
at the -axis. Considering only such spikes from each cluster,

Fig. 6. Original image and its gray world map. Highlighted regions in the gray
world map show a similar appearance. (a) Original. (b) Gray world with high-
lighted similar parts.

the illuminant chromaticity is estimated from the joint -axis
intercept of all spikes in IIC space [28].
In natural images, noise dominates the IIC diagrams. Riess

and Angelopoulou [2] proposed to compute these estimates over
a large number of small image patches. The final illuminant es-
timate is computed by a majority vote of these estimates. Prior
to the voting, two constraints are imposed on a patch to improve
noise resilience. If a patch does not satisfy these constraints, it
is excluded from voting.
In practice, these constraints are straightforward to compute.

The pixel colors of a patch are projected onto IIC space. Prin-
cipal component analysis on the distribution of the patch-pixels
in IIC space yields two eigenvalues , and their associated
eigenvectors and . Let be the larger eigenvalue. Then,
is the principal axis of the pixel distribution in IIC space.

In the two-dimensional IIC-space, the principal axis can be in-
terpreted as a line whose slope can be directly computed from
. Additionally, and can be used to compute the eccen-

tricity as a metric for the shape of the distri-
bution. Both constraints are associated with this eigenanalysis4.
The first constraint is that the slope must exceed a minimum of
0.003. The second constraint is that the eccentricity has to ex-
ceed a minimum of 0.2.

B. Face Extraction

We require bounding boxes around all faces in an image that
should be part of the investigation. For obtaining the bounding
boxes, we could in principle use an automated algorithm, e.g.,
the one by Schwartz et al. [30]. However, we prefer a human op-
erator for this task for two main reasons: a) this minimizes false
detections or missed faces; b) scene context is important when
judging the lighting situation. For instance, consider an image
where all persons of interest are illuminated by flashlight. The
illuminants are expected to agree with one another. Conversely,
assume that a person in the foreground is illuminated by flash-
light, and a person in the background is illuminated by ambient
light. Then, a difference in the color of the illuminants is ex-
pected. Such differences are hard to distinguish in a fully-auto-
mated manner, but can be easily excluded in manual annotation.
We illustrate this setup in Fig. 6. The faces in Fig. 6(a) can

be assumed to be exposed to the same illuminant. As Fig. 6(b)
shows, the corresponding gray world illuminant map for these
two faces also has similar values.

4The parameter values were previously investigated by Riess and An-
gelopoulou [2], [29]. In this paper, we rely on their findings.
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C. Texture Description: SASI Algorithm

We use the Statistical Analysis of Structural Information
(SASI) descriptor by Carkacioglu and Yarman-Vural [31] to
extract texture information from illuminant maps. Recently,
Penatti et al. [32] pointed out that SASI performs remarkably
well. For our application, the most important advantage of
SASI is its capability of capturing small granularities and
discontinuities in texture patterns. Distinct illuminant colors in-
teract differently with the underlying surfaces, thus generating
distinct illumination “texture”. This can be a very fine texture,
whose subtleties are best captured by SASI.
SASI is a generic descriptor that measures the structural

properties of textures. It is based on the autocorrelation of
horizontal, vertical and diagonal pixel lines over an image at
different scales. Instead of computing the autocorrelation for
every possible shift, only a small number of shifts is consid-
ered. One autocorrelation is computed using a specific fixed
orientation, scale, and shift. Computing the mean and standard
deviation of all such pixel values yields two feature dimensions.
Repeating this computation for varying orientations, scales and
shifts yields a 128-dimensional feature vector. As a final step,
this vector is normalized by subtracting its mean value, and
dividing it by its standard deviation. For details, please refer
to [31].

D. Interpretation of Illuminant Edges: Hogedge Algorithm

Differing illuminant estimates in neighboring segments can
lead to discontinuities in the illuminant map. Dissimilar illumi-
nant estimates can occur for a number of reasons: changing ge-
ometry, changing material, noise, retouching or changes in the
incident light. Thus, one can interpret an illuminant estimate as
a low-level descriptor of the underlying image statistics. We ob-
served that the edges, e.g., computed by a Canny edge detector,
detect in several cases a combination of the segment borders
and isophotes (i.e., areas of similar incident light in the image).
When an image is spliced, the statistics of these edges is likely to
differ from original images. To characterize such edge disconti-
nuities, we propose a new feature descriptor calledHOGedge. It
is based on the well-known HOG-descriptor, and computes vi-
sual dictionaries of gradient intensities in edge points. The full
algorithm is described in the remainder of this section. Fig. 7
shows an algorithmic overview of the method. We first extract
approximately equally distributed candidate points on the edges
of illuminant maps. At these points, HOG descriptors are com-
puted. These descriptors are summarized in a visual words dic-
tionary. Each of these steps is presented in greater detail in the
next subsections.

Extraction of Edge Points: Given a face region from an
illuminant map, we first extract edge points using the Canny
edge detector [33]. This yields a large number of spatially close
edge points. To reduce the number of points, we filter the Canny
output using the following rule: starting from a seed point, we
eliminate all other edge pixels in a region of interest (ROI) cen-
tered around the seed point. The edge points that are closest to
the ROI (but outside of it) are chosen as seed points for the next
iteration. By iterating this process over the entire image, we re-
duce the number of points but still ensure that every face has a

Fig. 7. Overview of the proposed H OGedge algorithm.

Fig. 8. (a) Gray world IM for the left face in Fig. 6(a). (b) Result of the Canny
edge detector when applied on this IM. (c) Final edge points after filtering using
a square region. (a) IM derived from gray world. (b) Canny Edges. (c) Filtered
Points.

comparable density of points. Fig. 8 depicts an example of the
resulting points.

Point Description: We compute Histograms of Oriented
Gradients (HOG) [34] to describe the distribution of the selected
edge points. HOG is based on normalized local histograms of
image gradient orientations in a dense grid. The HOG descriptor
is constructed around each of the edge points. The neighbor-
hood of such an edge point is called a cell. Each cell provides
a local 1-D histogram of quantized gradient directions using all
cell pixels. To construct the feature vector, the histograms of
all cells within a spatially larger region are combined and con-
trast-normalized. We use the HOG output as a feature vector for
the subsequent steps.

Visual Vocabulary: The number of extracted HOG vectors
varies depending on the size and structure of the face under
examination. We use visual dictionaries [35] to obtain feature
vectors of fixed length. Visual dictionaries constitute a robust
representation, where each face is treated as a set of region
descriptors. The spatial location of each region is discarded [36].
To construct our visual dictionary, we subdivide the training

data into feature vectors from original and doctored images.
Each group is clustered in clusters using the -means algo-
rithm [37]. Then, a visual dictionary with visual words is
constructed, where each word is represented by a cluster center.
Thus, the visual dictionary summarizes the most representative
feature vectors of the training set. Algorithm 1 shows the pseu-
docode for the dictionary creation.
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Algorithm 1 HOGedge—Visual dictionary creation

Require: (training database examples) (the number of
visual words per class)

Ensure: (visual dictionary containing visual words)
;
;
;

for each face IM do
edge points extracted from ;

for each point do
apply HOG in image at position ;

if is a doctored face then
;

else
;

end if
end for

end for
Cluster using centers;
Cluster using centers;

;
return ;

Quantization Using the Precomputed Visual Dictionary:
For evaluation, theHOG feature vectors aremapped to the visual
dictionary. Each feature vector in an image is represented by the
closest word in the dictionary (with respect to the Euclidean dis-
tance). A histogram of word counts represents the distribution of
HOGfeaturevectors inaface.Algorithm2shows thepseudocode
for the application of the visual dictionary on IMs.

Algorithm 2 HOGedge—Face characterization

Require: (visual dictionary precomputed with visual
words) (illuminant map from a face)

Ensure: (HOGedge feature vector)
-dimensional vector, initialized to all zeros;

;
edge points extracted from ;

for each point do
apply HOG in image at position ;

;
end for
for each feature vector do

;
;

for each visual word do
Euclidean distance between and ;

if then
;

position of in ;
end if

end for
;

end for
return ;

Fig. 9. Average signatures from original and spliced images. The horizontal
axis corresponds to different feature dimensions, while the vertical axis repre-
sents the average feature value for different combinations of descriptors and
illuminant maps. From top to bottom, left to right: SASI-IIC, HOGedge-IIC,
SASI-Gray-World, HOGedge-Gray-World.

E. Face Pair

To compare two faces, we combine the same descriptors for
each of the two faces. For instance, we can concatenate the
SASI-descriptors that were computed on gray world. The idea
is that a feature concatenation from two faces is different when
one of the faces is an original and one is spliced. For an image
containing faces , the number of face pairs is

.
The SASI and HOGedge descriptors capture two different

properties of the face regions. From a signal processing point
of view, both descriptors are signatures with different behavior.
Fig. 9 shows a very high-level visualization of the distinct infor-
mation that is captured by these two descriptors. For one of the
folds of our experiments (see Section V-C), we computed the
mean value and standard deviation per feature dimension. For a
less cluttered plot, we only visualize the feature dimensions with
the largest difference in the mean values for this fold. This ex-
periment empirically demonstrates two points. Firstly, SASI and
HOGedge, in combination with the IIC-based and gray world
illuminant maps create features that discriminate well between
original and tampered images, in at least some dimensions. Sec-
ondly, the dimensions, where these features have distinct value,
vary between the four combinations of the feature vectors. We
exploit this property during classification by fusing the output
of the classification on both feature sets, as described in the next
section.

F. Classification

We classify the illumination for each pair of faces in an image
as either consistent or inconsistent. Assuming all selected faces
are illuminated by the same light source, we tag an image as
manipulated if one pair is classified as inconsistent. Individual
feature vectors, i.e., SASI or HOGedge features on either gray
world or IIC-based illuminant maps, are classified using a sup-
port vector machine (SVM) classifier with a radial basis func-
tion (RBF) kernel.
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The information provided by the SASI features is com-
plementary to the information from the HOGedge features.
Thus, we use a machine learning-based fusion technique for
improving the detection performance. Inspired by the work
of Ludwig et al. [38], we use a late fusion technique named
SVM-Meta Fusion. We classify each combination of illuminant
map and feature type independently (i.e., SASI-Gray-World,
SASI-IIC, HOGedge-Gray-World and HOGedge-IIC) using a
two-class SVM classifier to obtain the distance between the
image’s feature vectors and the classifier decision boundary.
SVM-Meta Fusion then merges the marginal distances pro-
vided by all individual classifiers to build a new feature
vector. Another SVM classifier (i.e., on meta level) classifies
the combined feature vector.

V. EXPERIMENTS

To validate our approach, we performed six rounds of experi-
ments using two different databases of images involving people.
We show results using classical ROC curves where sensitivity
represents the number of composite images correctly classi-
fied and specificity represents the number of original images
(non-manipulated) correctly classified.

A. Evaluation Data

To quantitatively evaluate the proposed algorithm, and to
compare it to related work, we considered two datasets. One
consists of images that we captured ourselves, while the second
one contains images collected from the internet. Additionally,
we validated the quality of the forgeries using a human study on
the first dataset. Human performance can be seen as a baseline
for our experiments.
1) DSO-1: This is our first dataset and it was created by

ourselves. It is composed of 200 indoor and outdoor images
with an image resolution of . Out of
this set of images, 100 are original, i.e., have no adjustments
whatsoever, and 100 are forged. The forgeries were created
by adding one or more individuals in a source image that
already contained one or more persons. When necessary, we
complemented an image splicing operation with postprocessing
operations (such as color and brightness adjustments) in order
to increase photorealism.
2) DSI-1: This is our second dataset and it is composed of 50

images (25 original and 25 doctored) downloaded from different
websites in the Internet with different resolutions5. Fig. 10 de-
picts some example images from our databases.

B. Human Performance in Spliced Image Detection

To demonstrate the quality of DSO-1 and the difficulty in dis-
criminating original and tampered images, we performed an ex-
periment where we asked humans to mark images as tampered
or original. To accomplish this task, we have used Amazon Me-
chanical Turk6. Note that onMechanical Turk categorization ex-

5Original images were downloaded from Flickr (http://www.flickr.com) and
doctored images were collected from different websites such as Worth 1000
(http://www.worth1000.com/), Benetton Group 2011 (http://press.benetton-
group.com/), Planet Hiltron (http://www.facebook.com/pages/Planet-Hiltron/
150175044998030), etc.
6https://www.mturk.com/mturk/welcome

Fig. 10. Original (left) and spliced images (right) from both databases.
(a) DSO-1 Original image. (b) DSO-1 Spliced image. (c) DSI-1 Original
image. (d) DSI-1 Spliced image.

periments, each batch is evaluated only by experienced users
which generally leads to a higher confidence in the outcome
of the task. In our experiment, we setup five identical catego-
rization experiments, where each one of them is called a batch.
Within a batch, all DSO-1 images have been evaluated. For each
image, two users were asked to tag the image as original or ma-
nipulated. Each image was assessed by ten different users, each
user expended on average 47 seconds to tag an image. The final
accuracy, averaged over all experiments, was 64.6%. However,
for spliced images, the users achieved only an average accuracy
of 38.3%, while human accuracy on the original images was
90.9%. The kappa-value, which measures the degree of agree-
ment between an arbitrary number of raters in deciding the class
of a sample, based on the Fleiss [39] model, is 0.11. Despite
being subjective, this kappa-value, according to the Landis and
Koch [40] scale, suggests a slight degree of agreement between
users, which further supports our conjecture about the difficulty
of forgery detection in DSO-1 images.

C. Performance of Forgery Detection Using Semiautomatic
Face Annotation in DSO-1

We compare five variants of the method proposed in this
paper. Throughout this section, wemanually annotated the faces
using corner clicking (see Section V-D). In the classification
stage, we use a five-fold cross validation protocol, an SVM clas-
sifier with an RBF kernel, and classical grid search for adjusting
parameters in training samples [37]. Due to the different number
of faces per image, the number of feature vectors for the orig-
inal and the spliced images is not exactly equal. To address this
issue during training, we weighted feature vectors from original
and composite images. Let and denote the number of fea-
ture vectors from original and composite images, respectively.
To obtain a proportional class weighting, we set the weight of
features from original images to and the weight
of features from composite images to .
We compared the five variants SASI-IIC, SASI-Gray-World,

HOGedge-IIC, HOGedge-Gray-World and Metafusion. Com-
pound names, such as SASI-IIC, indicate the data source (in this
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Fig. 11. Comparison of different variants of the algorithm using semiautomatic
(corner clicking) annotated faces.

case: IIC-based illuminant maps) and the subsequent feature ex-
traction method (in this case: SASI). The single components are
configured as follows:
• IIC: IIC-based illuminant maps are computed as described
in [2].

• Gray-World: Gray world illuminant maps are computed
by setting , , and in (2).

• SASI: The SASI descriptor is calculated over the
channel from the color space. All remaining
parameters are chosen as presented in [32]7.

• HOGedge: Edge detection is performed on the channel
of the color space, with a Canny low threshold of
0 and a high threshold of 10. The square region for edge
point filtering was set to 32 32 pixels. Furthermore, we
used 8-pixel cells without normalization in HOG. If ap-
plied on IIC-based illuminant maps, we computed 100 vi-
sual words for both the original and the tampered images
(i.e., the dictionary consisted of 200 visual words). On gray
world illuminant maps, the size of the visual word dictio-
nary was set to 75 for each class, leading to a dictionary of
150 visual words.

• Metafusion: We implemented a late fusion as explained
in Section IV-F. As input, it uses SASI-IIC, SASI-Gray-
World, and HOGedge-IIC. We excluded HOGedge-Gray-
World from the input methods, as its weaker performance
leads to a slightly worse combined classification rate (see
below).

Fig. 11 depicts a ROC curve of the performance of each
method using the corner clicking face localization. The area
under the curve (AUC) is computed to obtain a single numerical
measure for each result.
From the evaluated variants, Metafusion performs best, re-

sulting in an AUC of 86.3%. In particular for high specificity
(i.e., few false alarms), the method has a much higher sensi-
tivity compared to the other variants. Thus, when the detection
threshold is set to a high specificity, and a photograph is classi-
fied as composite, Metafusion provides to an expert high confi-
dence that the image is indeed manipulated.

7We gratefully thank the authors for the source code.

Fig. 12. Experiments showing the differences for automatic and semiautomatic
face detection.

Note also that Metafusion clearly outperforms human as-
sessment in the baseline Mechanical Turk experiment (see
Section V-B). Part of this improvement comes from the fact
that Metafusion achieves, on spliced images alone, an average
accuracy of 67%, while human performance was only 38.3%.
The second best variant is SASI-Gray-World, with an AUC

of 84.0%. In particular for a specificity below 80.0%, the sensi-
tivity is comparable to Metafusion. SASI-IIC achieved an AUC
of 79.4%, followed by HOGedge-IIC with an AUC of 69.9%
and HOGedge-Gray-World with an AUC of 64.7%. The weak
performance of HOGedge-Gray-World comes from the fact that
illuminant color estimates from the gray world algorithm vary
more smoothly than IIC-based estimates. Thus, the differences
in the illuminant map gradients (as extracted by the HOGedge
descriptor) are generally smaller.

D. Fully Automated Versus Semiautomatic Face Detection

In order to test the impact of automated face detection, we
reevaluated the best performing variant, Metafusion, on three
versions of automation in face detection and annotation.
• Automatic Detection:we used the PLS-based face
detector [30] to detect faces in the images. In our exper-
iments, the PLS detector successfully located all present
faces in only 65% of our images. We then performed a
3-fold cross validation on this 65% of the images. For
training the classifier, we used the manually annotated
bounding boxes. In the test images, we used the bounding
boxes found by the automated detector.

• Semiautomatic Detection 1 (Eye Clicking): an expert
does not necessarily have to mark a bounding box. In this
variant, theexpert clickson theeyepositions.TheEuclidean
distancebetween theeyes is theused toconstruct abounding
box for the face area. For classifier training and testing we
use the same setup and images as in the automatic detection.

• Semiautomatic Detection 2 (Corner Clicking): in
this variant, we applied the same marking procedure
as in the previous experiment and the same classifier
training/testing procedure as in automatic detection.

Fig. 12 shows the results of this experiment. The semiau-
tomatic detection using corner clicking resulted in an AUC
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Fig. 13. Different types of face location. Automatic and semiautomatic locations select a considerable part of the background, whereas manual location is restricted
to face regions. (a) Automatic. (b) Semiautomatic (eye clicking). (c) Semiautomatic (corner clicking).

of 78.0%, while the semiautomatic using eye clicking and
the fully-automatic approaches yielded an AUC of 63.5%
and AUC of 63.0%, respectively. Thus, as it can also be seen
in Figs. 13(a)–13(c), proper face location is important for
improved performance.
Although automatic face detection algorithms have improved

over the years, we find user-selected faces more reliable for a
forensic setup mainly because automatic face detection algo-
rithms are not accurate in bounding box detection (location and
size). In our experiments, automatic and eye clicking detection
have generated an average bounding box size which was 38.4%
and 24.7% larger than corner clicking detection, respectively.
Thus, such bounding boxes include part of the background in
a region that should contain just face information. The preci-
sion of bounding box location in automatic detection and eye
clicking has also been worse than semiautomatic using corner
clicking. Note, however, that the selection of faces under sim-
ilar illumination conditions is a minor interaction that requires
no particular knowledge in image processing or image forensics.

E. Comparison With State-of-the-art Methods

For experimental comparison, we implemented the methods
by Gholap and Bora [12] and Wu and Fang [13]. Note that nei-
ther of these works includes a quantitative performance anal-
ysis. Thus, to our knowledge, this is the first direct comparison
of illuminant color-based forensic algorithms.
For the algorithm by Gholap and Bora [12], three partially

specular regions per image were manually annotated. For ma-
nipulated images, it is guaranteed that at least one of the re-
gions belongs to the tampered part of the image, and one re-
gion to the original part. Fully saturated pixels were excluded
from the computation, as they have presumably been clipped
by the camera. Camera gamma was approximately inverted by
assuming a value of 2.2. The maximum distance of the dichro-
matic lines per image were computed. The threshold for dis-
criminating original and tampered images was set via five-fold
cross-validation, yielding a detection rate of 55.5% on DSO-1.
In the implementation of the method by Wu and Fang, the

Weibull distribution is computed in order to perform image
classification prior to illuminant estimation. The training of the
image classifier was performed on the ground truth dataset by
Ciurea and Funt [41] as proposed in the work [13]. As the reso-
lution of this dataset is relatively low, we performed the training

Fig. 14. Comparative results between our method and state-of-the-art ap-
proaches performed using DSO-1.

on a central part of the images containing 180 240 pixels
(excluding the ground-truth area). To provide images of the
same resolution for illuminant classification, we manually
annotated the face regions in DSO-1 with bounding boxes
of fixed size ratio. Setting this ratio to 3:4, each face was
then rescaled to a size of . As the selection
of suitable reference regions is not well-defined (and also
highly image-dependent), we directly compare the illuminant
estimates of the faces in the scene. Here, the best result was
obtained with three-fold cross-validation, yielding a detection
rate of 57%. We performed five-fold cross-validation, as in
the previous experiments. The results drop to 53% detection
rate, which suggests that this algorithm is not very stable with
respect to the selection of the data.
To reduce any bias that could be introduced from training on

the dataset by Ciurea and Funt, we repeated the image classifier
training on the reprocessed ground truth dataset by Gehler [42].
During training, care was taken to exclude the ground truth in-
formation from the data. Repeating the remaining classification
yielded a best result of 54.5% on two-fold cross-validation, or
53.5% for five-fold cross-validation.
Fig. 14 shows the ROC curves for both methods. The results

of our method clearly outperform the state-of-the-art. However,
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these results also underline the challenge in exploiting illumi-
nant color as a forensic cue on real-world images. Thus, we hope
our database will have a significant impact in the development
of new illuminant-based forgery detection algorithms.

F. Detection After Additional Image Processing

We also evaluated the robustness of our method against
different processing operations. The results are computed
on DSO-1. Apart from the additional preprocessing steps,
the evaluation protocol was identical to the one described in
Section V-C. In a first experiment, we examined the impact
of JPEG compression. Using , the images were re-
compressed at the JPEG quality levels 70, 80 and 90. The
detection rates were 63.5%, 64% and 69%, respectively. Using

, we conducted a second experiment adding per
image a random amount of Gaussian noise, with an attenuated
value varying between 1% and 5%. On average, we obtained
an accuracy of 59%. Finally, again using , we
randomly varied the brightness and/or contrast of the image by
either or . These brightness/contrast manipulations
resulted in an accuracy of 61.5%.
These results are expected. For instance, the performance de-

terioration after strong JPEG compression introduces blocking
artifacts in the segmentation of the illuminant maps. One could
consider compensating for the JPEG artifacts with a deblocking
algorithm. Still, JPEG compression is known to be a challenging
scenario in several classes of forensic algorithms [43]–[45]
One could also consider optimizing themachine-learning part

of the algorithm. However, here, we did not fine-tune the algo-
rithm for such operations, as postprocessing can be addressed
by specialized detectors, such as the work by Bayram et al. for
brightness and contrast changes [46], combined with one of the
recent JPEG-specific algorithms (e.g., [47]).

G. Performance of Forgery Detection Using a Cross-Database
Approach

To evaluate the generalization of the algorithm with respect
to the training data, we followed an experimental design sim-
ilar to the one proposed by Rocha et al. [48]. We performed a
cross-database experiment, using DSO-1 as training set and the
50 images of DSI-1 (internet images) as test set. We used the
pretrained Metafusion classifier from the best performing fold
in Section V-C without further modification. Fig. 15 shows the
ROC curve for this experiment. The results of this experiment
are similar to the best ROC curve in Section V-C, with an AUC
of 82.6%. This indicates that the proposed method offers a de-
gree of generalization to images from different sources and to
faces of varying sizes.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we presented a new method for detecting
forged images of people using the illuminant color. We esti-
mate the illuminant color using a statistical gray edge method
and a physics-based method which exploits the inverse inten-
sity-chromaticity color space. We treat these illuminant maps as
texture maps. We also extract information on the distribution of
edges on these maps. In order to describe the edge information,
we propose a new algorithm based on edge-points and the HOG

Fig. 15. ROC curve provided by cross-database experiment.

descriptor, called HOGedge. We combine these complementary
cues (texture- and edge-baed) using machine learning late
fusion. Our results are encouraging, yielding an AUC of over
86% correct classification. Good results are also achieved over
internet images and under cross-database training/testing.
Although the proposed method is custom-tailored to detect

splicing on images containing faces, there is no principal hin-
drance in applying it to other, problem-specific materials in the
scene.
The proposed method requires only a minimum amount of

human interaction and provides a crisp statement on the authen-
ticity of the image. Additionally, it is a significant advancement
in the exploitation of illuminant color as a forensic cue. Prior
color-based work either assumes complex user interaction or
imposes very limiting assumptions.
Although promising as forensic evidence, methods that op-

erate on illuminant color are inherently prone to estimation er-
rors. Thus, we expect that further improvements can be achieved
when more advanced illuminant color estimators become avail-
able. For instance, while we were developing this work, Bianco
and Schettini [49] proposed a machine-learning based illumi-
nant estimator particularly for faces. An incorporation of this
method is subject of future work.
Reasonably effective skin detection methods have been

presented in the computer vision literature in the past years.
Incorporating such techniques can further expand the applica-
bility of our method. Such an improvement could be employed,
for instance, in detecting pornography compositions which,
according to forensic practitioners, have become increasingly
common nowadays.

REFERENCES

[1] A. Rocha, W. Scheirer, T. E. Boult, and S. Goldenstein, “Vision of
the unseen: Current trends and challenges in digital image and video
forensics,” ACM Comput. Surveys, vol. 43, pp. 1–42, 2011.

[2] C. Riess and E. Angelopoulou, “Scene illumination as an indicator of
image manipulation,” Inf. Hiding, vol. 6387, pp. 66–80, 2010.

[3] H. Farid and M. J. Bravo, “Image forensic analyses that elude the
human visual system,” in Proc. Symp. Electron. Imaging (SPIE), 2010,
pp. 1–10.



CARVALHO et al.: EXPOSING DIGITAL IMAGE FORGERIES BY ILLUMINATION COLOR CLASSIFICATION 1193

[4] Y. Ostrovsky, P. Cavanagh, and P. Sinha, “Perceiving illumination in-
consistencies in scenes,” Perception, vol. 34, no. 11, pp. 1301–1314,
2005.

[5] H. Farid, A 3-D lighting and shadow analysis of the JFK Zapruder
film (Frame 317), Dartmouth College, Tech. Rep. TR2010–677,
2010.

[6] M. Johnson and H. Farid, “Exposing digital forgeries by detecting in-
consistencies in lighting,” in Proc. ACM Workshop on Multimedia and
Security, New York, NY, USA, 2005, pp. 1–10.

[7] M. Johnson and H. Farid, “Exposing digital forgeries in complex
lighting environments,” IEEE Trans. Inf. Forensics Security, vol. 3,
no. 2, pp. 450–461, Jun. 2007.

[8] M. Johnson and H. Farid, “Exposing digital forgeries through specular
highlights on the eye,” in Proc. Int. Workshop on Inform. Hiding, 2007,
pp. 311–325.

[9] E. Kee and H. Farid, “Exposing digital forgeries from 3-D lighting en-
vironments,” in Proc. IEEE Int. Workshop on Inform. Forensics and
Security (WIFS), Dec. 2010, pp. 1–6.

[10] W. Fan, K. Wang, F. Cayre, and Z. Xiong, “3D lighting-based image
forgery detection using shape-from-shading,” in Proc. Eur. Signal Pro-
cessing Conf. (EUSIPCO), Aug. 2012, pp. 1777–1781.

[11] J. F. O’Brien and H. Farid, “Exposing photo manipulation with incon-
sistent reflections,” ACM Trans. Graphics, vol. 31, no. 1, pp. 1–11, Jan.
2012.

[12] S. Gholap and P. K. Bora, “Illuminant colour based image forensics,”
in Proc. IEEE Region 10 Conf., 2008, pp. 1–5.

[13] X.Wu and Z. Fang, “Image splicing detection using illuminant color in-
consistency,” in Proc. IEEE Int. Conf. Multimedia Inform. Networking
and Security, Nov. 2011, pp. 600–603.

[14] P. Saboia, T. Carvalho, and A. Rocha, “Eye specular highlights telltales
for digital forensics: A machine learning approach,” in Proc. IEEE Int.
Conf. Image Processing (ICIP), 2011, pp. 1937–1940.

[15] C. Riess and E. Angelopoulou, “Physics-based illuminant color esti-
mation as an image semantics clue,” in Proc. IEEE Int. Conf. Image
Processing, Nov. 2009, pp. 689–692.

[16] K. Barnard, V. Cardei, and B. Funt, “A comparison of computational
color constancy algorithms–Part I: Methodology and Experiments
With Synthesized Data,” IEEE Trans. Image Process., vol. 11, no. 9,
pp. 972–983, Sep. 2002.

[17] K. Barnard, L. Martin, A. Coath, and B. Funt, “A comparison of
computational color constancy algorithms – Part II: Experiments With
Image Data,” IEEE Trans. Image Process., vol. 11, no. 9, pp. 985–996,
Sep. 2002.

[18] A. Gijsenij, T. Gevers, and J. van deWeijer, “Computational color con-
stancy: Survey and experiments,” IEEE Trans. Image Process., vol. 20,
no. 9, pp. 2475–2489, Sep. 2011.

[19] M. Bleier, C. Riess, S. Beigpour, E. Eibenberger, E. Angelopoulou, T.
Tröger, and A. Kaup, “Color constancy and non-uniform illumination:
Can existing algorithms work?,” in Proc. IEEE Color and Photometry
in Comput. Vision Workshop, 2011, pp. 774–781.

[20] M. Ebner, “Color constancy using local color shifts,” in Proc. Eur.
Conf. Comput. Vision, 2004, pp. 276–287.

[21] A. Gijsenij, R. Lu, and T. Gevers, “Color constancy for multiple light
sources,” IEEE Trans. Image Process., vol. 21, no. 2, pp. 697–707, Feb.
2012.

[22] R. Kawakami, K. Ikeuchi, and R. T. Tan, “Consistent surface color
for texturing large objects in outdoor scenes,” in Proc. IEEE Int. Conf.
Comput. Vision, 2005, pp. 1200–1207.

[23] J. van de Weijer, T. Gevers, and A. Gijsenij, “Edge-based color con-
stancy,” IEEE Trans. Image Process., vol. 16, no. 9, pp. 2207–2214,
Sep. 2007.

[24] T. Igarashi, K. Nishino, and S. K. Nayar, “The appearance of human
skin: A survey,” Found. Trends Comput. Graph. Vis., vol. 3, no. 1, pp.
1–95, 2007.

[25] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based
image segmentation,” Int. J. Comput. Vis., vol. 59, no. 2, pp. 167–181,
2004.

[26] G. Buchsbaum, “A spatial processor model for color perception,” J.
Franklin Inst., vol. 310, no. 1, pp. 1–26, Jul. 1980.

[27] A. Gijsenij, T. Gevers, and J. van de Weijer, “Improving color con-
stancy by photometric edge weighting,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 5, pp. 918–929, May 2012.

[28] R. Tan, K. Nishino, and K. Ikeuchi, “Color constancy through in-
verse-intensity chromaticity space,” J. Opt. Soc. Amer. A, vol. 21, pp.
321–334, 2004.

[29] C. Riess, E. Eibenberger, and E. Angelopoulou, “Illuminant color esti-
mation for real-world mixed-illuminant scenes,” in Proc. IEEE Color
and Photometry in Comput. Vision Workshop, Barcelona, Spain, Nov.
2011.

[30] W. R. Schwartz, A. Kembhavi, D. Harwood, and L. S. Davis, “Human
detection using partial least squares analysis,” in Proc. IEEE Int. Conf.
Comput. Vision (ICCV), 2009, pp. 24–31.

[31] A. Carkacioglu and F. T. Yarman-Vural, “Sasi: A generic texture de-
scriptor for image retrieval,” Pattern Recognit., vol. 36, no. 11, pp.
2615–2633, 2003.

[32] O. A. B. Penatti, E. Valle, and R. S. Torres, “Comparative study of
global color and texture descriptors for web image retrieval,” J. Visual
Commun. Image Representat., vol. 23, no. 2, pp. 359–380, 2012.

[33] J. Canny, “A computational approach to edge detection,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 8, no. 6, pp. 679–698, Jun. 1986.

[34] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. IEEE Conf. Comput. Vision and Pattern Recogni-
tion, 2005, pp. 886–893.

[35] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual
categorization with bags of keypoints,” in Proc. Workshop on Statis-
tical Learning in Comput. Vision, 2004, pp. 1–8.

[36] J. Winn, A. Criminisi, and T. Minka, “Object categorization by learned
universal visual dictionary,” in Proc. IEEE Int. Conf. Comput. Vision
(ICCV), 2005, pp. 1800–1807.

[37] C. M. Bishop, Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Secaucus, NJ, USA: Springer-Verlag
New York, Inc, 2006.

[38] O. Ludwig, D. Delgado, V. Goncalves, and U. Nunes, “Trainable clas-
sifier-fusion schemes: An application to pedestrian detection,” in Proc.
IEEE Int. Conf. Intell. Transportation Syst., 2009, pp. 1–6.

[39] J. L. Fleiss, “Measuring nominal scale agreement among many raters,”
Psychol. Bull., vol. 76, no. 5, pp. 378–382, 1971.

[40] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977.

[41] F. Ciurea and B. Funt, “A large image database for color constancy
research,” in Proc. IS&T/SID Eleventh Color Imaging Conf.: Color
Sci. and Eng. Syst., Technologies, Applicat. (CIC 2003), Scottsdale,
AZ, USA, Nov. 2003, pp. 160–164.

[42] L. Shi and B. Funt, Re-processed Version of the Gehler Color Con-
stancy Dataset of 568 Images, Jan. 2011 [Online]. Available: http://
www.cs.sfu.ca/colour/data/shi_gehler/

[43] A. C. Popescu and H. Farid, “Statistical tools for digital forensics,” in
Proc. Inf. Hiding Conf., Jun. 2005, pp. 395–407.

[44] M. Kirchner, “Linear row and column predictors for the analysis of re-
sized images,” in Proc. ACM SIGMM Multimedia Security Workshop,
Sep. 2010, pp. 13–18.

[45] J. Lukas, J. Fridrich, andM.Goljan, “Digital camera identification from
sensor pattern noise,” IEEE Trans. Inf. Forensics Security, vol. 1, no.
2, pp. 205–214, Jun. 2006.

[46] S. Bayram, I. Avcibas, B. Sankur, and N. Memon, “Image manipula-
tion detection with binary similarity measures,” in Proc. Eur. Signal
Processing Conf. (EUSIPCO), 2005, vol. I, pp. 752–755.

[47] T. Bianchi and A. Piva, “Detection of non-aligned double JPEG com-
pression based on integer periodicitymaps,” IEEE Trans. Inf. Forensics
Security, vol. 7, no. 2, pp. 842–848, Apr. 2012.

[48] A. Rocha, T. Carvalho, H. Jelinek, S. K. Goldenstein, and J. Wainer,
“Points of interest and visual dictionaries for automatic retinal lesion
detection,” IEEE Trans. Biomed. Eng., vol. 59, no. 8, pp. 2244–2253,
Aug. 2012.

[49] S. Bianco and R. Schettini, “Color constancy using faces,” in Proc.
IEEE Comput. Vision and Pattern Recognition, Providence, RI, USA,
Jun. 2012.

Tiago José de Carvalho (S’12) received the B.Sc.
degree (computer science) from Federal University
of Juiz de Fora (UFJF), Brazil, in 2008. He received
the M.Sc. degree (computer science) from University
of Campinas (Unicamp), Brazil, in 2010. Currently,
he is working toward the Ph.D. degree at the Institute
of Computing, Unicamp, Brazil.
His main interests include digital forensics, pat-

tern analysis, data mining, machine learning, com-
puter vision, and image processing.



1194 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 7, JULY 2013

Christian Riess (S’10–A’12) received the Diploma
degree in computer science in 2007 and the doctoral
degree in 2013, both from the University of Erlangen-
Nuremberg, Germany.
From 2007 to 2010, he was working on an in-

dustry project with Giesecke+Devrient on optical
inspection. He is currently doing his postdoc at
the Radiological Sciences Laboratory at Stanford
University, Stanford, CA, USA. His research in-
terests include all aspects of image processing,
in particular with applications in image forensics,

medical imaging, optical inspection, and computer vision.

Elli Angelopoulou (S’89–M’90) received the Ph.D.
degree in computer science from the Johns Hopkins
University in 1997.
She did her postdoc at the General Robotics, Au-

tomation, Sensing and Perception (GRASP) Labo-
ratory at the University of Pennsylvania. She then
became an assistant professor at Stevens Institute of
Technology. She is currently an associate research
professor at the University of Erlangen-Nuremberg.
Her research focuses on multispectral imaging, skin
reflectance, reflectance analysis in support of shape

recovery, image forensics, image retrieval, and reflectance analysis in medical
imaging (e.g., capsule endoscopy).
Dr. Angelopoulou has over 50 publications, multiple patents, and has re-

ceived numerous grants, including an NSF CAREER award. She has served
on the program committees of ICCV, CVPR, and ECCV and is an associate ed-
itor of Machine Vision and Applications (MVA) and the Journal of Intelligent
Service Robotics (JISR).

Hélio Pedrini (S’99–M’00) received the Ph.D.
degree in electrical and computer engineering from
Rensselaer Polytechnic Institute, Troy, NY, USA. He
received the M.Sc. degree in electrical engineering
and the B.Sc. degree in computer science, both from
the University of Campinas, Brazil.
He is currently a professor with the Institute of

Computing at the University of Campinas, Brazil.
His research interests include image processing,
computer vision, pattern recognition, computer
graphics, and computational geometry.

Anderson de Rezende Rocha (S’05–M’10) re-
ceived the CS B.Sc. degree from Federal University
of Lavras (UFLA), Brazil, in 2003. He received the
Computer Science M.S. and Ph.D. degrees from
University of Campinas (Unicamp), Brazil, in 2006
and 2009, respectively.
Currently, he is an assistant professor in the

Institute of Computing, Unicamp. As of 2011, Prof.
Rocha is a Microsoft Research Faculty Fellow
and an elected member of the Brazilian Academy
of Sciences. He is also an elected member of the

IEEE Information Forensics and Security Technical Committee (IFS-TC). His
interests include digital image and video forensics, machine intelligence, and
general computer vision.


