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Abstract

Medical image reconstruction is a key component for a broad range of medical
imaging technologies. For classical Computed Tomography systems the amount of
measured signals per second increased exponentially over the last four decades,
whereas the computational complexity of the majority of utilized algorithms has
not changed significantly.
A major interest and challenge is to provide optimal image quality at the fewest
patient dose possible. One solution and active research field towards solving that
problem, are iterative reconstruction methods. Their complexity is a multiple com-
pared to the classical analytical methods which were used in nearly all commer-
cially available systems. In this thesis the application of graphics cards in the field
of iterative medical image reconstruction is investigated. The major contributions
are the demonstrated fast implementations for off-the-shelf hardware as well as the
motivation of graphics card usage in upcoming generations of medical systems. The
first realization describes the implementation of a commonly used analytical cone-
beam reconstruction method for C-arm CT, before covering iterative reconstruction
methods. Both analytical as well as iterative reconstruction methods share the
compute-intensive back-projection step. In addition iterative reconstruction meth-
ods require a forward-projection step with similarly high computational cost. The
introduced Compute Unified Device Architecture (CUDA) builds the basis for the
presented GPU implementation of both steps. Different realization schemes are
presented by combining both steps and applying minor modifications. The im-
plementations of the SART, SIRT as well as OS-SIRT illustrate the realization of
algebraic reconstruction methods. Further, a realization for the more advanced
statistical reconstruction methods is described, introducing a GPU accelerated im-
plementation of a maximum likelihood reconstruction using a concave objective
function.
The achieved reconstruction performance is based on different detailed optimiza-
tions and exploitation of various technical features. In addition the performance
results are evaluated for different hardware platforms – like the CPU – and for
the proposed algorithms. The results implicate that for all presented reconstruc-
tion methods a significant speedup compared to a CPU realization is achieved. In
example, we achieve at least a speedup factor of 10 for the presented OS-SIRT com-
paring a NVIDIA QuadroFX 5600 graphics card with a workstation equipped with
two Intel Xeon Quad-Core E5410 processors. This is additionally supported by the
comparison of the presented implementations to the CUDA alternative OpenCL un-
derpinning the performance lead of GPUs using CUDA.
A further contribution of this thesis is the exemplary clinical application of the pro-
posed algorithms to two different modalities: C-arm CT and 3-D mammography.
These applications demonstrate the potential and importance of GPU accelerated
iterative medical image reconstruction. This thesis is concluded with a summary
and an outlook on the future of GPU accelerated medical imaging processing.



Kurzfassung

Eine wichtige Kernkomponente der medizinischen Bildgebung bildet die medizinis-
che Bildrekonstruktion. Betrachtet man die Anzahl der gemessenen Signale pro
Sekunde für die klassische Computertomographie in den letzten vier Jahrzehnten,
so lässt sich ein exponentielles Wachstum feststellen. Im Vergleich dazu veränderte
sich die Berechnungskomplexität der verwendeten Algorithmen nicht merklich.
Ein wichtiger Aspekt für die Computertomographie ist die Reduktion der appli-
zierten Patientendosis auf ein Minimum unter der Voraussetzung weiterhin eine
optimale Bildqualität zu erhalten. Ein möglicher Lösungsansatz hierfür und Gegen-
stand aktueller Forschung sind iterative Rekonstruktionstechniken. Die Berech-
nungskomplexität dieser ist dabei allerdings ein Vielfaches gegenüber der über-
wiegend kommerziell verwendeten analytischen Rekonstruktionstechniken.
Ziel dieser Arbeit ist es, den möglichen Einsatz von Grafikkarten zur beschleu-
nigten Berechnung iterativer Rekonstruktionstechniken zu untersuchen. Der Nach-
weis und die Erläuterung zu den erzielten performanten Realisierungen mit Hilfe
dieser Technologie zählt zu den wichtigsten Erkenntnissen. Des weiteren kann der
Einsatz dieser breit verfügbaren Technologie in zukünftigen medizinischen Bildge-
bungssystemen nahe gelegt werden. Zusätzlich zu den Erläuterungen bezüglich
der iterativen Rekonstruktionstechniken wird zunächst die Realisierung einer weit
verbreitenden analytischen Rekonstruktionstechnik für die C-arm CT Bildgebung
beschrieben. Ein Bestandteil dieser Rekonstruktionstechnik, die Rückprojektion, ist
eine berechnungsintensive Kernkomponente die sowohl bei analytischen als auch
bei iterativen Rekonstruktionstechniken benötigt wird. Im Unterschied zu den an-
alytischen Methoden benötigen iterative Rekonstruktionstechniken zusätzlich eine
weitere Kernkomponente, die (Vorwärts-)Projektion. Diese stellt dabei einen ähn-
lich hohen Berechnungsaufwand dar, wie die Rückprojektion. Die Basis für die
Implementierungen beider Kernkomponenten bildet dabei die erläuterte parallele
Programmiertechnik für Grafikkarten namens CUDA. Durch geringe Modifikatio-
nen und geschickte Kombination beider Kernkomponenten werden verschiedene
Realisierungen erzielt. Die Implementierung der Rekonstruktionstechniken SART,
SIRT und OS-SIRT stellt die Gruppe der algebraischen Rekonstruktionsalgorithmen
dar. Des weiteren wird ein Implementierungbeispiel für die Gruppe der statistis-
chen Rekonstruktionstechniken anhand einer Maximum Likelihood Rekonstruktion
auf Basis einer konkaven Zielfunktion erläutert.
Die erzielten Rekonstruktionsgeschwindigkeiten basieren auf verschiedenen darge-
legten Optimierungstechniken und der Verwendung neuer technischer Funktionen.
Zusätzlich werden die Rekonstruktionsgeschwindigkeiten zwischen verschiedenen
Hardware-Plattformen und den verschiedenen Algorithmen verglichen. Die Ergeb-
nisse implizieren, dass für alle vorgestellten Rekonstruktionstechniken mittels Gra-
fikkarten ein signifikanter Geschwindigkeitszuwachs im Vergleich zu einer CPU
erzielt werden kann. Zum Beispiel ist die Implementierung der OS-SIRT auf einer
NVIDIA QuadroFX 5600 mindestens Faktor 10 schneller als die CPU Implemen-
tierung auf einer Workstation mit zwei Intel Xeon Quad-Core E5410 Prozessoren.
Dies wird durch den Vergleich der erläuterten Implementierungen zur CUDA Alter-
native OpenCL zusätzlich bekräftigt, der die Geschwindigkeitsvorteile von Grafik-
karten unter der Verwendung von CUDA untermauert.



Ein weiterer Beitrag dieser Arbeit ist die exemplarische Klinische Anwendung der
vorgestellten Algorithmen für zwei unterschiedliche Modalitäten: C-arm CT und
3-D Mammographie. Diese Anwendungen zeigen das Potential und die Bedeu-
tung der GPU beschleunigten iterativen Medizinischen Bildrekonstruktion auf. Ab-
schliessend wird die Arbeit zusammengefasst und ein Ausblick auf die zukünftige
Ausrichtung der Medizinischen Bildverarbeitung gegeben.
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C H A P T E R 1

Introduction

In this thesis we address specific research topics in the field of accelerating medical
image processing algorithms using off-the-shelf hardware, especially modern com-
puter graphics cards. In the last decades, development of these cards was driven
dramatically by the gaming industry. But more and more researchers and manufac-
turers realized their potential compute power.

Already in 1998, Mueller et al. [Muel 98b] made use of the programmable
graphics pipeline for medical image reconstruction and showed a reliable speedup
– more than 10 faster comparing GPUs and CPUs at this time for lower resolutions.
Further on, more and more reports and experiences on graphics cards program-
ming for medical image processing using OpenGL, DirectX, and shading languages
were published [Muel 99, Muel 00, Xu 04, Phar 05, Xu 05, Schi 06, Muel 07, Xu 07a,
Hill 09a, Xu 10]. At the end of 2006 the interest for computations on GPUs, in-
cluding medical image reconstruction, was revolutionary changed by NVIDIA intro-
ducing the first unified architecture of a Graphics Processing Unit (GPU) in their
GeForce 8800 GTX graphics cards.

To understand the meaning of a unified architecture as well as the major dif-
ference compared to a non-unified architecture, it is important to know how tradi-
tional computer graphics computations were processed. In the second chapter we
will explain and discuss this in detail. The relevance for medical image processing
can be seen in the correlation with the history of Computed Tomography (CT) and
its rising application and complexity described in the following section.

1.1 History of CT and its Application and Complexity

Four decades ago, Sir Godfrey Newbold Hounsfield invented the first Computer To-
mograph in the year 1969 at EMI Central Research Laboratories in Hayes, United
Kingdom. Independently Allan McLeod Cormack of the Tufts University in Mas-
sachusetts had a similar idea and published a mathematical technique [Corm 63]
without knowing Hounsfield’s work. In 1979 Hounsfield and Cormack were awarded
the Nobel Prize in Medicine for their invention of Computed Tomography [Fill 10].

Since then Computed Tomography (CT) rose widely in the world not only in the
field of applications, but also in its technical complexity. Specifically the amount
of measured signals (readings) per time increased exponentially. The computation
of transaxial slices from these measured signals is one of the main research foci of
(medical) reconstruction algorithms.

1



2 Introduction

In the following we describe the development of Computed Tomography and
the different generations of CT systems. Afterwards the wide range of Computed
Tomography applications is presented before completing the CT introduction with
the increase in complexity illustrated by classical CT.

1.1.1 Development of Computed Tomography

The original prototype by Hounsfield in 1971 acquired 160 parallel readings through
180 angles, each 1◦ apart. Each scan lasted a little over 5 minutes. It took 2.5 hours
at the EMI computer center to process the image from the first scan by Algebraic Re-
construction Technique (ART) [Doss 00]. The scanner had a single photo-multiplier
detector and operated on a translate and rotate principle. This principle – shown
in Figure 1.1 – is described in literature as 1st generation CT.

During the development of the first CT, Hounsfield’s idea and concept did not
find acceptance at the National Neurological Hospital at Queen’s Square in Lon-
don [Fill 10] where he first presented the idea. The statement was made by the
chief of neuroradiology that with the current technologies like plane tomography
and angiography, there was no brain lesion that could not be diagnosed by imag-
ing already [Fill 10]. Hounsfield went to the number two neurological hospital in
London and managed to solicit their chief of neuroradiology – Jamie Ambrose at
the Atkinson Morley’s Hospital in Wimbledon. While the entire staff members of
the hospital were sworn to secrecy, the machine was built along a plan for commer-
cial production. After the public announcement the first professional assessment
by the National Neurological Hospital was clearly disproved and a wide range of
researchers, physicians and also manufacturers picked up the idea and saw its op-
portunities. For example, the medical equipment manufacturer and one of the
leading companies in healthcare technology – Siemens – established its own CT
development within its basic research department in 1972 [Wiec 04].

It is not surprising, that after the first CT scanner which was specifically used
for Brain CT, the technology evolved. While the EMI head scanner went into clini-
cal service in 1973, competitors began to introduce faster scanners. To reduce the
acquisition time, the next generation scanners measured multiple readings instead
of a single one. The fan-beam geometry utilizing a detector array is the distin-
guishing feature of the 2nd generation CT [Doss 00]. These systems were still using
a translate-rotate scanning motion, illustrated in Figure 1.1, but were achieving
a better performance by measuring a fan-beam concurrently. The first introduced
scanners of this generation used three detector elements per fan. Soon, twelve and
more detector elements [Boyd 90] were manufactured. In example this enabled a
fan angle of 10◦ degree for about 30 detector elements [Doss 00].

In 1975 Hounsfield kept improving CT scanners by introducing the first whole-
body CT. The EMI-5005 was brought to market in 1976 achieving an astonishing
acquisition time of 18 seconds per scan using a 20 elements detector [Chik 78]. The
acquisition time was reduced below 20 seconds which was considered as a breath-
holding interval. Therefore a scan through the thorax, with almost no movement
of the thorax, was possible and just one application of whole-body CT.
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Figure 1.1: The figure illustrates from left to ride the different generations of CT sys-
tems, starting with the 1st generation CT acquiring each measurement by step and
shoot. The 2nd generation CT then acquired acquired already multiple measure-
ments by step-and-shoot. Finally the 3rd generation CT can acquire a significant
detector array and enables a continuous rotation.

During the period 1974-1977 several companies were developing a new class of
scanner that would require only rotary motion using a broader fan-beam. In 1977
Siemens introduced this new class of scanner systems that integrated the radiation
source and a detector system into what became known as a “gantry” [Schm 04].
The mechanism rotates around the patient and allows whole-body Computed To-
mography examinations. These systems are also known in literature as 3rd gener-
ation CT systems (shown in Figure 1.1). The first systems were able to do a 360◦

degree rotation. Since the X-ray source and the detector elements were connected
via cables, the gantry had to stop after one rotation and continued rotating in the
opposite direction. A crucial improvement came with the development of the slip
ring technology in 1987. A bidirectional connection to the components via these
slip rings was enabled while the gantry could rotate continuously. This technology
built the basis of further milestones in the history of Computed Tomography.

In 1989 Siemens introduced the first helical CT scanner. Kalender was credited
for the invention and development of helical scan Computed Tomography. The
advantages of such systems were soon explored. For example, a helical CT was
able to scan a patient’s complete lung – instead of just a part – during a single
breath-hold [Kale 90].

So far, the X-ray emitter and the detector elements of the CT system were mov-
ing around the object on a circular trajectory. Due to the continuous movement of
the gantry, it was possible to introduce a continuous movement of the scanned ob-
ject through the CT system. The rotating acquisition around the moving object ends
up in a helical trajectory. The advantages of a helical acquisition is a fast scanning
of the patient – possible from tip to toe – with less artifacts from patient movement
due to the continuous and non-sequential movement of the table.

In literature a 4th generation of CT systems is also described [Buzu 08]. This
generation of CT systems provides also a rotating X-ray source, but instead of a
rotating detector utilizes a closed stationary detector ring. Due to the fact that such
systems were never introduced to the market, we do not address them in this thesis
and focus on further milestones of 3rd generation CT systems.
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To improve scanning speed and reduce slice thickness, manufacturers were still
improving their CT systems. In 1991, a multi-slice CT was first demonstrated
[Buzu 08] and 7 years later, in 1998, Siemens introduced their first multi-slice CT
scanner to the market. The SOMATOM Volume Zoom was capable of acquiring 4
slices per rotation.

To be able to acquire 4 slices per rotation simultaneously, the manufacturers
added multiple detector arrays. The acquisition geometry changed from a fan-beam
to a cone-beam. Over the years the amount of detector elements along the rotation
axes were steadily increased by the manufactures of CT systems. The maximal
number so far provides Toshiba’s Aquilion ONE utilizing as much as 320 detector
arrays with 896 detector elements per row [Cent 09b].

One recent milestone is the development of multi-source CT. These types of CT
systems are equipped with two multi-slice CTs, wherein the two source/detector
combinations simultaneously collect data. Both X-ray tubes are oriented in about
90◦ degrees to each other. In 2006 Siemens introduced their first dual source CT
system. Flohr et al. [Floh 06] demonstrated different kinds of improvements in CT
using this system. A dual source system also enables an acquisition using tubes at
two different energy levels. This results in a dual energy reconstruction, introduced
by Alvarez et al. [Alva 76] already in 1976.

Figure 1.2: Two examples of CT systems and their application. On the left a
Siemens SOMATOM Definition DS illustrating a beating heart acquisition. On the
right side the latest Siemens SOMATOM Definition Flash is used for a brain perfu-
sion measurement. Images by courtesy of Siemens AG

1.1.2 Computed Tomography Applications

After discussing important steps in the development of Computed Tomography, the
range of this technology is summarized to describe the wide field of applications
where our research results can be applied. There is no question that the 3rd genera-
tion CT device is one of the most distributed diagnostic medical device in the world.
By June 1975 the UK-based music, electronics, and leisure company – EMI Limited
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Figure 1.3: On the left a combination of a SPECT and CT system, the Siemens
Symbia, is shown. The Siemens Biograph mCT as an example for the combination
of PET and CT is depicted on the right side. Images by courtesy of Siemens AG

– still led the CT market and had shipped 122 [Bart 83] of head and whole-body
CT-systems in total, whereas Siemens had sold only two Siretom CT systems in the
year of 1974 [Wiec 04]. In 1990 more than 15000 CT scanners [Boyd 90] were
installed throughout the world and in 2004 Siemens produced as much as 2000
of their CT systems [Wiec 04]. Today the innovation leader – Siemens – produces
about 2000 systems per fiscal year. The broad application range of CT systems is
described in literature [Doss 00, Kram 07, Buzu 08]. Thus, we will shortly give an
overview of important applications.

One of the early applications of CT systems was the visualization of the brain to
detect aneurisms in order to diagnose or prevent strokes by further treatment. To-
day, classic CT systems are able to automatically identify nodules inside a patients’
lung in order to indicate possible tumors [Wiec 04]. They enable virtual flights
through the human colon – out of CT acquired data – for the physician to detect
polyps. After the surgical elimination of these colon polyps an outbreak of colon
cancer can be prevented with high probability [Wiec 04].

A wide range of applications in classical CT is based on perfusion measurements.
Common types are brain perfusion – e.g., to measure the cerebral blood flow and
the cerebral blood volume – and perfusion inside the liver or tumors. Mostly, appli-
cation specific contrast agent has to be used in combination with fast CT scanners
to actually measure the perfusion. Systems are also specialized for Coronary CT
Angiography (CTA) to non-invasively display the coronary vessels for calcifications
and stenoses detection [Wiec 04]. With dual-source CT systems, it is possible to
actually visualize the beating heart in three dimensions [Hsia 10].

An important consideration is the usage of CT systems as a planning tool. All
kind of surgeries as well as radiotherapies are planned using patient information
out of a classical CT system [Buzu 08]. Ultimately, this broad range of applications
and the terrific acquisition speed of current CT systems accomplishes the fast di-
agnoses of a trauma patients’ whole body as well as improves the treatment of the
patient in the first golden hour after the accident [Nico 08].
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Figure 1.4: The Siemens Axiom Artis – mounted on the ceiling – in the left image
and the Siemens Artis ZeeGo – integrating industrial robot technology – on the
right side demonstrate the flexible movability of state-of-the-art C-arm CT systems.
Images by courtesy of Siemens AG

While the history of Computed Tomography is pointed out by classical CT sys-
tems, the technology itself over the time made its way into specialized diagnostic
machines such as Micro CT, Dental CT or Breast CT systems. Computed Tomo-
graphy is also used for quality assurance and testing of materials and products –
named Non-Destructive Testing (NDT).

In the last decade classical CT systems were more and more combined with dif-
ferent diagnostic technologies. Not only in the way of merging differently acquired
datasets, but also by combining these technologies in a single device. Examples for
such systems – so called “hybrids” – are the combinations of Single Photon Emission
Computed Tomography and CT (SPECT/CT) or Positron Emission Tomography and
CT (PET/CT). Examples for both systems are shown in Figure 1.3.

We demonstrate the application of our research results on two specific systems.
These are pointed out next, before going on with the increase in complexity of
Computed Tomography justified by classical CT.

The first specific system and application concerns Computed Tomography in the
field of interventional procedures. The main interest in Angiography is the visual-
ization of blood vessels and organs of the human body. Therefore, Angiographic
C-arm systems provide high-resolution 2-D X-ray images in real-time for surgery
guidance.

The flexible movement of C-arm systems also allows the usage for tomographic
3-D imaging – so called C-arm CT. This capability was examined and published
more then 20 years after the invention of Computed Tomography [Fahr 97]. Since
then quality, usability and applications were continuously improved [Stro 09]. The
basic principle is similar to multi-slice CT. In this case a C-arm instead of a gantry
rotates around the patient and acquires a set of 2-D X-ray projections. Similar to
the first generation CT these systems perform not a full 360◦ rotation. Instead an
adequate half rotation is induced. For these systems therefore it is 180◦ + fan-angle.
Figure 1.4 shows two examples of state-of-the-art C-arm systems.
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Figure 1.5: Siemens ARCADIS Orbic a mobile C-arm CT system. Image by courtesy
of Siemens AG

Since these 3-D imaging applications are generally used during intervention, re-
construction times and delays are critical. Details about the application of C-arm
CT can be found in Strobel et al. [Stro 09]. C-arm CT systems are geometrically
very flexible, but require also remarkable amount of space. Therefore smaller and
moveable mobile versions were introduced. These smaller system are also capable
of Computed Tomography. An example for such a device is illustrated in Figure 1.5.

The second application covered in this thesis is 3-D mammography. In the west-
ern world breast cancer is the most common form of cancer for females [RKI 12].
Up to 8− 10% of all females develop breast cancer in their lifetime [Siem 04]. In
Germany these are around 46000 females p.a., around 17000 of whom are younger
than 60 years old. To prevent breast cancer screening examinations were estab-
lished. Mammography is commonly used as a screening method. The images are
then inspected by two physician on an average of five minutes [Enzm 01] for in-
terpretation of these images. While 3-D mammography provides many advantages
compared to a 2-D mammography, it is also more compute intensive and especially
more time consuming. This is critical in the case of screening methods, where
throughput is an important economical aspect.

Speaking of 3-D in this case might be exaggerating due to the fact that meth-
ods of digital tomosynthesis are used. Although there are some similarities to CT,
it is a separate technique. Tomosynthesis allows to generate an arbitrary number
of in-focus planes retrospectively from a sequence of projection radiographs that
are acquired during a single motion of the X-ray source. Dobbins et al. summa-
rize the history and advantages of tomosynthesis as well as its clinical potential
in [Dobb 03]. To name important facts, Tomosynthesis is already known since the
1930s. Even decades before the development of CT, tomographic imaging provided
for physicians three important advantages over conventional projection radiogra-
phy:

1. Due to varying shifts in acquisition, planes at different depths can be rendered
in focus, such that it permits a depth localization of structures
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Figure 1.6: The Siemens MAMMOMAT Inspiration. In the left image detector, com-
pression plate and X-ray source illustrate the acquisition system. The right image
exemplifies an examination. Images by courtesy of Siemens AG

2. Improved conspicuity of structures by decreasing the influence of interfering
attenuation from overlaying anatomy

3. Contrast of local structures is improved by restricting the overall image dy-
namic range to that of a single slice

In digital breast tomosynthesis a series of consecutive two dimensional projections
of a compressed breast at different angles are acquired. To be more specific, such
acquisitions are performed over an angular sweep of thirty to fifty degrees. Within
this sweep eleven to thirty projection-views are measured. This incomplete set of
data can be digitally processed to yield images similar to conventional tomography,
but is unable to offer the extremely narrow slice widths that CT provides. Figure
1.6 gives an impression of a state-of-the-art 3-D mammography system and the
acquisition procedure.

1.1.3 Increasing Complexity in CT

The significance of High Performance Computing (HPC) in Computed Tomography
is argued by the increasing complexity in CT over the last decades. On one hand,
the complexity is related to the complexity of the applied reconstruction algorithm.
We will discuss the complexity of the utilized reconstruction algorithms in Chapter
3. On the other hand, the complexity depends on the amount of data used for the
reconstruction of transaxial slices. In case of time critical imaging the amount of
data per time is relevant.

The original EMI head scanner used an 802 image matrix. Most scanners today
use 5122 up to 10242 image matrices. Boyd et al. [Boyd 90] state a rule of thumb:
for CT fan-beam scanners using a image resolution of n× n the number of angular
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Figure 1.7: An exponential increase of measured signals per second for classic CT
system over the last four decades is given by measurement points for several CT
systems. Please note the logarithmic scale of the plot.

samples must be 2n and the number of samples in a projection should be 1.4n. As n
becomes larger resolution improves, but the total number of attenuation measure-
ments increases with O(n2). For details on the sampling theorem in CT we refer to
the literature [Natt 86].

Over the last four decades CT manufacturers increased the resolution, but also
accomplished an incredible decrease in acquisition time. Boyd et al. already pre-
sented the CT scan speed development and its historical progression from 1972
till 1990 in [Boyd 90]. The immense increase in measured signals per second –
depicted in Figure 1.7 – depends on the following improvements. First the rota-
tion speed was increased. The biggest improvement was the introduction of the
gantry facilitating a continuous rotation. Thereafter, the rotation time – limited
by physics and gravitation – was piecewise accelerated by new technologies. The
latest high-end CT systems can perform up to 3.5 rotations per second [Cent 09b].
All components mounted on the inside of the gantry have to withstand extreme
gravitational forces – more than 30g for a rotation speed of 0.28s. Important to
note is that such speed improvements were only possible due to better and faster
X-ray tubes as well as the development of new detectors. E.g., Siemens developed
the STRATON X-ray tube as well as a detector made of Ultra Fast Ceramic (UFC).

In the second generation of CT systems the number of detector elements/chan-
nels per detector row evolved up to 12− 60 [Chik 78]. Third generation CT systems
introduced significantly larger fan-angles and therefore a significant higher amount
of detector elements. The Siemens SOMATOM Plus from 1987 used 416 channels,
while the Philips Brilliance iCT from 2005 uses as much as 672 channels. The age of
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multi-slice CT scanners multiplied the amount of detector elements by introducing
several detector arrays along the rotation axis.

Next specific technical inventions like the quarter detector shift, flying focus
technology or z-sharp technology are utilized to improve geometrical informa-
tion as well as increasing the amount of readings using the same detector arrays
[Cent 09a]. At last dual-source CT systems – motivated by even faster acquisition
time and dual-energy acquisitions – basically consist of two CT systems and were
again raising the peak of measurements per second for CT scanners.

All these improvements over the last 40 years raised the growth of readings
per time in Computed Tomography. In Figure 1.7 we depict this exponential in-
crease for the last four decades using the amount of measured signals per second
for several classic CT systems. In 2007 Polacin et al. analogously showed that the
increasing amount of slices in combination with shorter scan time leads to very
high input data rates, which has to be handled (see [Pola 07] Fig.2). Technical
details about the classic CT scanning devices from the last decade can be found in
[Cent 09a, Cent 09c, Cent 09b].

The exponential increase of measurement data is an important motivation for
this work. Therefore, the data rates for the two focussed modalities are detailed as
well. In 3-D mammography 25 projections – each up to 2816× 3584 readings – are
acquired in about 5 seconds.
For interventional C-arm CT digital flat-panel detectors with a resolution up to
2480× 1920 or 20482 are used. Typically a 2× 2 binning of the acquired data is
directly applied in the detector such that the provided data provides a projection
resolution of up to 1240× 960 or 10242 pixels.

The C-arm of the Siemens Axiom Artis can rotate 220◦ in about 3 seconds. The
successor – Siemens Artis ZeeGo – theoretical can perform the same rotation even
faster, but this is currently not allowed due to security reasons. These systems
currently acquire – depending on the protocol – from 130 up to 550 projections per
sweep.
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1.2 Original Work and Outline of this Thesis

In this thesis we present and evaluate different approaches of GPU accelerated
image reconstruction algorithms. We argue application specific why the acceler-
ation is essential for state-of-the-art and future Computed Tomography systems.
An overview of state-of-the-art accelerated medical image reconstruction is given
before the contribution of our work in this field of research is stated.

1.2.1 State-of-the-Art

To overcome the exponential increase – of acquired data per time and its digital
processing – manufacturers focussed on developing specialized hardware in the
last decade. The developed components are installed in order to meet the require-
ments for the computing time of clinical systems. Therefore large parts of this
research area were driven by commercial interests. Instead of computing centers
or several computers most manufacturers utilized specifically developed accelera-
tion cards [Heig 07] equipped with Field-Programmable Gate Arrays (FPGA). The
Cell processor – introduced in 2005 – came also to manufacturers’ and researchers’
attention. First publications on accelerated reconstruction using this architecture
were made by Kachelrieß et al. [Kach 07] and Scherl et al. [Sche 07c], while for
commercial usage Mercury Computer Systems for example offered an acceleration
card [Bock 07].

In the end of 2006 NVIDIA introduced their new graphics processing unit offer-
ing more then 300 GFlops of peak performance. By the turn of that year this was
heavily recognized by both researchers and manufacturers. Hence many works on
GPU accelerated reconstruction were published [Riab 07, Sche 07b, Vaz 07, Xu 07a,
Xu 07b, Yang 07]. To mention the important publications we will divide them into
different groups. First the computationally less compute intensive analytical recon-
struction algorithms. Both other groups are on iterative reconstruction methods.
The second group focus on algebraic reconstruction methods and the third group
on statistical reconstruction methods. Each group will be further split by their pro-
gramming language.

Analytical Reconstruction

In the year 1997 Sabine Iserhardt describes in her thesis [Iser 97] one of the early
realization of an cone beam reconstruction using the hardware supported texture
mapping of an SGI Indigo2 High IMPACT workstation. Mueller et al. is clearly one
of the early adopters for medical image reconstruction accelerated by graphics cards
[Muel 98b]. Since 1998, he and his group are continually contributing to this field
of research. Their research also includes analytical reconstruction using OpenGL
and shading languages. Important to mention is Xu et al. with a 3-D computed to-
mographic reconstruction on a NVIDIA GeForce 8800 GTX graphics card [Xu 07a].
Vaz et al. – from Barco Medical Imaging Systems – published also an OpenGL ap-
proach with similar performance [Vaz 07] using a Barco MXRT 7200 GPU – based
on AMD GPU RV600 class. Their software also offers a 2-D real-time visualization
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during the reconstruction. Hillebrand et al. [Hill 09a, Hill 09b] published an in-
teractive CT reconstruction using OpenGL on a NVIDIA GPU. The reconstruction is
based on filtered back-projection. All pre-filtered projection images persist in the
device memory of the GPU. The reconstructed slice then can be geometrically modi-
fied, while for each configuration the slice reconstruction is performed in real-time.
Such they gain a highly interactive reconstruction and viewing of reconstructed 2-D
slices.

One of the early approaches using the CUDA programming language was pub-
lished by Riabkov et al. [Riab 07]. They apply a filtered back-projection reconstruc-
tion for their mobile C-arm CT and show a reasonable speedup compared to CPU
solutions with roughly the same performance for the same graphics card as Xu et al.
Excepting our research results we would like to mention two more recent CUDA-
based analytical reconstruction acceleration approaches. In 2009 Bi et al. [Bi 09b]
published results on real-time visualization of 3-D reconstruction using CUDA. In-
stead of a 2-D visualization, they perform a 3-D rendering of the volume during
the reconstruction using the NVIDIA Tesla C1060 GPU. Last, Ino et al. [Ino 10]
published an out-of-core cone beam reconstruction using multiple GPUs.

An early competition to NVIDIA’s CUDA language is the less common ATI CAL
language by AMD. Wang et al. [Wang 09] presented that AMD graphics cards can
achieve comparable performance to NVIDIA’s graphics cards. With a promising fu-
ture a new programming language – called OpenCL – was already focus of research
of Zhang et al. [Bi 09a] and Wang et al. [Wang 10]. Both show the possible ac-
celeration of analytic reconstruction using OpenCL in combination with GPUs. So
far the performance results are not comparable with the better performing CUDA
approaches. We will mention and update this in Chapter 6 – where we discuss the
future of GPU accelerated medical image processing.

Algebraic Reconstruction

The first GPU accelerated algebraic reconstruction was presented by Mueller et al.
in 1998 [Muel 98b] utilizing the Open Graphics Library (OpenGL) and the associ-
ated shading language. His research was further refined in his group. Important
to mention is the work of Xu et al. [Xu 10] on the efficiency of iterative ordered
subset reconstruction algorithms for acceleration on GPUs as well as [Xu 09a] for
GPU-accelerated SART reconstruction. They prove that due to the time costs of
the update procedure in iterative reconstructions an ordered subsets approach can
significantly improve the overall performance. While such an orderered subset ap-
proach provides a slower convergence, this can be neglected due to the higher per-
formance benefit. Wei Xu published a combination of the preceding approach with
a bilateral filter regularization [Xu 09b]. The filtering as well as the reconstruction
are programmed with the OpenGL Shading Language (GLSL) using OpenGL.

For accelerated algebraic reconstruction using the CUDA language we want to
mention the results of the following researchers. In the end of 2008, Knaup et al.
[Knau 08] published accelerated forward- and back-projection algorithms – the ba-
sis for algebraic reconstruction – for parallel- and cone-beam tomographic imaging.
Like most implementations, a voxel-based back-projection for an ideal geometry is
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presented. The forward-projection is based on a 3-D parallel version of the Joseph
algorithm [Jose 82]. Second is Lu et al. – in August 2009 – on accelerating algebraic
reconstruction using CUDA-enabled GPU [Lu 09]. Analogous to the approach pre-
sented in this thesis, they use a ray-driven forward-projection step and voxel-driven
back-projection. They utilize a 3-D texture array to benefit from the texture inter-
polation in the forward-projection step. The performance results are unfortunately
only given for a small volume size of 1283 voxels, rarely used in state-of-the-art CT.
Finally the work of Pan et al. is considered. He published the idea [Pan 09] of Total
Variation (TV) regularized iterative image reconstruction for mobile C-arm CT in
February 2009, while the implementation and performance results [Pan 10] were
published one year later in February 2010.

Statistical Reconstruction

The third group considers statistical reconstruction algorithms accelerated by the
GPU. Most contributions focus on reconstruction algorithms with application in
emission tomography where the lack of data and intense noise make statistical re-
construction algorithms indispensable. The typical volume sizes used in emission
tomography are obvious smaller, such that a direct comparison to transmission to-
mography is very difficult. Pratx et al. [Prat 09] published a 3-D Ordered Subsets
- Expectation Maximization (OS-EM) algorithm with application in PET based on
OpenGL and shading languages. They state that even for smaller volume sizes and
therefore less parallelization GPUs are becoming increasingly useful as a computing
platform for medical image reconstruction.

Herraiz et al. introduced a similar idea in GPU acceleration of a fully 3-D itera-
tive reconstruction software for PET using CUDA [Herr 09]. They present a loop re-
ordering and optimized memory allocation for further performance improvements.
Also in 2009 Nguyen et al. [Nguy 09] published a CUDA-based relaxed version
of the OS-EM algorithm. While the application is used for image reconstruction
with Compton cameras, the most time consuming operations – forward- and back-
projection – were parallelized for GPU acceleration analogously. Another iterative
CUDA implementation [Andr 09] – in this case for SPECT – was presented by An-
dreyev et al. The more compute intensive forward-projection based on spherically
symmetric basis functions – also called “blobs” – has to be emphasized.

Finally we want to mention the work of Vintache et al. who published one
of the few papers on GPU accelerated statistical reconstruction for Computed To-
mography. This is probably due to the higher computational complexity and the
immense amount of data acquired in CT. Their work on iterative reconstruction
for transmission tomography on a GPU using NVIDIA’s CUDA was published in
2010. They accelerate an Ordered Subsets Convex (OSC) algorithm [Vint 10] by
dividing the reconstruction in three parallel executed kernels – forward-projection,
back-projection and estimated volume update operation. Unfortunately they do not
detail on the exact implementation components or memory usage, making a com-
parison clearly impossible.
Additionally, our presented work effected recent exploratory work, e.g., research
on perfusion C-arm CT [Manh 12, Manh 13] and cardiac reconstruction [Schw 13].
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1.2.2 Contribution of this Work

Subsequently, an overview of the original contributions of this thesis along with
the corresponding scientific publications is provided. We split the overview in four
different categories.

Analytical CUDA-based reconstruction

One of the earliest publications for CUDA-based analytical reconstruction using the
FDK reconstruction is [Sche 07b].

• Initial performance results of the back-projection were three times higher than
the CELL performance

• Dramatic decrease in development time for CUDA and GPUs

The proposed voxel-driven back-projection represents the starting point for further
reconstruction approaches like algebraic and statistical reconstruction. We show
that the operator can be applied to any arbitrary acquisition trajectory using pro-
jection matrices. Further we show that the performance of our highly optimized
approach is limited by the memory-bandwidth of GPUs.

Ray-driven forward-projection comparison on GPUs

A comparison of GPU implementations of a ray-driven forward-projection utilizing
different programming languages and technologies was introduced in [Wein 08].

• CUDA implementations can keep up with the performance of OpenGL-based
implementation utilizing 3-D textures

• Early CUDA implementations were not capable of such high performance due
to missing feature support of 3-D textures

To accelerate the forward-projection – 2nd important operator for iterative recon-
struction algorithms – we have introduced two CUDA implementations and com-
pared them with a common OpenGL implementation. We can show that after the
introduction of CUDA 2.0 the technology was on an equal footing with OpenGL
considering a 3-D ray-driven forward-projection for arbitrary geometries.

CUDA-based algebraic reconstruction

The first performance results on 3-D CUDA-based iterative reconstruction using
the Simultaneous Algebraic Reconstruction Technique (SART) were published in
[Keck 09a]. The enhanced usage of new technical features for higher resolutions
and reduced memory consumption were presented in [Keck 09b].

• Iterative algebraic reconstruction approaches for CUDA 1.1 and CUDA 2.0
using 2-D resp. 3-D textures

• Performance comparison and improvement due to ordered subsets (Ordered
Subsets for the Simultaneous Iterative Reconstruction Technique)
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• High resolution approach with slightly lower performance but less memory
consumption (only 50%)

We update the performance results on our significant contribution on GPU acceler-
ated algebraic reconstruction using CUDA. Further we present an improved version
utilizing a 2-D texture from pitch linear memory for volume representation intro-
duced in CUDA 2.3.

Statistical reconstruction utilizing CUDA-enabled GPUs

Highly efficient decomposition of the compute intensive statistical reconstruction
algorithm for GPU acceleration.

• Parallel implementation of a maximum likelihood reconstruction approach
with a concave objective function

• 3-D and 2-D texture usage for performance and high-resolution approaches

• Possible extension to incorporate prior usage

The GPU acceleration approach for a suitable statistical reconstruction algorithm
is presented. The parallel pattern and decomposition in this case are important
for performance increase while the additional memory usage of the presented ap-
proach points out possible limitations.

Our research results of CUDA-based filtered back-projection have heavily in-
fluenced product development. Since 2010 a product version of our code is in-
cluded in state-of-the-art C-arm CT systems. The statistical reconstruction algo-
rithm and its optimization can provide advanced image quality for 3-D mammogra-
phy [Jere 10b]. Due to the time critical application as a screening method our GPU-
acceleration approach is important for products in this field. In addition our patent
application [Keck 10] on Reduction of artifacts caused by movement of an X-ray tube
in object reconstruction needs to be named in this field. This research was extended
by a comparison of CUDA to OpenCL, which was published [Sieg 11a, Sieg 11b] in
2011.
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1.2.3 Outline of this Thesis

A chapter-wise overview of this thesis is provided subsequently. Additionally, a
graphical structure is depicted in Figure 1.8 to provide a graphical overview of the
thesis structure.

Chapter 2 – GPU Programming / CUDA Acceleration

In the second chapter, the usage of GPUs for medical image processing is
motivated by picturing the performance evolution of both compute power
and memory bandwidth for parallel processing. The usage of GPUs for gen-
eral purpose computations and the influence on research and industry is dis-
cussed. Further an insight into GPU programming using shading languages is
given. After clarifying the drawbacks of a static non-unified GPU architecture
the compute unified device architecture (CUDA) and its programming con-
cept are introduced. Two different generations of such devices and technical
features are then analyzed. Specific performance optimization techniques are
detailed which are used in our research approaches. An outlook for the GPU
architecture successor, the Open Computing Language and its correlation to
CUDA concludes this chapter.

Chapter 3 – Medical Image Reconstruction Algorithms

The used nomenclature as well as the describing geometry definition starts
the third chapter. After a brief overview of reconstruction algorithms the
covered reconstruction algorithms are summarized in order to prepare the
prerequisites of our research. Looking at the three different groups of recon-
struction algorithms the analytic reconstruction is dealt with first. Afterwards
the reconstruction problem is solved by algebraic methods. Here, four recon-
struction algorithms are differentiated due to the iteration scheme. Lastly, the
class of statistical reconstruction algorithm is represented by the derivation
of a Maximum Likelihood (ML) approach using a concave objective function.
The presented reconstruction formulas then represent the basis for the pre-
sented implementations.

Chapter 4 – High Performance Medical Image Reconstruction

Prepared with an understanding of GPU acceleration as well as the utilized
reconstruction algorithms, this chapter details our high performance imple-
mentations together with performance verifications. Therefore, the two ma-
jor operators and their implementations are discussed after two examples for
GPU acceleration are stated. The back-projection approach – as first major
operator – is utilized in all three groups of reconstruction algorithms. After-
wards the forward-projection necessary for iterative algorithms is introduced
as the second major operator. For this implementation the basic principle is
distinguished by several kinds of GPU memory. In the second part the design
of each reconstruction implementation is proposed. Using the back-projection
component and FFT based filtering, the implementation concept of the FDK
reconstruction is depicted. Depending on the forward-projection different
kinds of algebraic reconstruction approaches are illustrated. Disadvantages
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as well as advantages of each version demonstrate the limitations and their
usability. Finally the combination of both major operators together with a
specific update routine represents the GPU accelerated implementation of a
statistical reconstruction approach.

Chapter 5 – Clinical Applications

The performance and image quality evaluation is demonstrated for two spe-
cific clinical applications. The first scenario is based on interventional C-arm
CT. Due to the fact that analytical reconstruction algorithms can already be
performed on-the-fly, the next class of reconstruction methods with higher
complexity – named algebraic reconstruction – is proposed for possible appli-
cations. Higher resolutions and GPU memory usage as the current limitations
are shown. 3-D mammography as a method for breast cancer screening cov-
ers the second scenario. While specific filters are combined with analytical
reconstruction in current systems the realization of advantages of statistical
reconstruction methods over the current filtered back-projection methods in
this field is demonstrated. The performance measurements underpin the pos-
sible application as well as the necessity of GPU acceleration.

Chapter 6 – Summary and Outlook

In the last chapter this thesis is summarized first. Before the possible usage
of GPUs in future medical image processing systems is discussed, the Open
Computing Language is compared to CUDA for the two major operators. Fi-
nally the prevision of future computing trends – such as converging of CPU
and GPU technologies – in relation to medical image processing is stated in
the Outlook.
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C H A P T E R 2

GPU Programming / CUDA
Acceleration

Graphics processings units build a strong influence on modern high performance
computing. It is likely that GPUs will enlarge their share in compute demanding ap-
plications even more over the next years. The basis of our research besides medical
image reconstruction algorithms requires knowledge about GPU programming. In
the following chapter, the reader will be introduced to the evolution of GPUs used
for general purpose computing. Goal of this chapter is to transfer the necessary
knowledge for an easier perception of our suggested implementations. For more
detailed information we suggest the online lecture “Programming Massively Paral-
lel Processors with CUDA” at Stanford University by Hoberock and Tarjan [Hobe 10]
available via iTunesU1 or refer to the book “Programming Massively Parallel Proces-
sors” by Kirk and Hwu [Kirk 10]. The official CUDA programming guide [NVID 07a]
and CUDA manual reference [NVID 07c] may be self-evident. After stating a brief
history, the important steps in the significant change of GPU Programming are clar-
ified.

2.1 Parallel Evolution

Gordon E. Moore – cofounder of Intel – was quoted as saying that “The number of
transistors on an integrated circuit doubles every two years” also known as Moore’s
Law [Inte 05]. This law is somehow proven for the last four decades (1970-2010).

After the turn of the millennium serial performance improvements by higher
frequencies came to an end. Due to the non-linearly scale of power consumption
as well as arising heat, CPU inventors could not continue to increase the frequency
in order to not melt the chip. However Moore’s Law still holds as transistors den-
sity kept increasing over time. Instead of higher frequencies, manufactures had
to improve different levels of parallelism, for instance data-level parallelism. For
data-level parallelism a specific instruction for several data elements is not per-
formed serialized but in parallel instead. Most common representatives are vector
units for SIMD (Single instruction, multiple data) execution, Streaming SIMD Ex-
tensions (SSE) , the CELL Single Processing Element (SPE) and GPUs. Another
trend were improvements in thread-level parallelism. Here, different programs re-
spectively threads are not executed alternating on the same executions units, but

1http://www.apple.com/education/itunes-u/
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in parallel on different execution units instead. Not only the multi-threading ca-
pability was increased, but also the amount of cores respectively compute units.
Examples are multi-core and many-core architectures like Intel Core2, Intel Core
iX, AMD Phenom, IBM CELL, Sun Niagara or NVIDIA GPUs.

2.1.1 Immense Compute Power

To answer the question, why massively parallel processing is that important these
days, somebody can argue very simple: “Because of the immense compute power!”
In fact, looking on the historical single- and double- precision peak computing rates
– shown in Figure 2.1 – GPUs clearly dominate this field. But the correct answer is
more complex than that.
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Figure 2.1: Historical single- and double- precision peak computing rate for Intel
CPUs and GPUs by AMD and NVIDIA. The plot shows the contrast between CPU and
GPU compute performance development over the last decade. The measurements
are given in Giga Floating Point Operations per Second (GFLOPS). Courtesy of John
Owens.
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In 2005, Owens et al. already compared [Owen 05] the performance for GPUs
and CPUs before the introduction of a unified shader architecture. The authors also
detailed the limitations and difficulties at that time for General Purpose Computa-
tion on Graphics Processing Units (GPGPU). In the following years both GPU ven-
dors could significantly improve the peak performance of GPUs and could clearly
outpace the CPU performance development. Before discussing how this high perfor-
mance can be actually achieved it is as important to look at the history of memory
bandwidth development.

2.1.2 Extreme Memory Bandwidth

While GPUs gain their immense compute power due to a tremendous amount of
Arithmetic Logic Units (ALU), this logic cannot be reasonably used without the
data to be computed. In a realistic scenario high compute performance correlates
also to data access performance. In case of massively parallel GPU programs the
memory bandwidth is crucial, too.

Analogously to the peak compute rates, the historical peak bandwidth shown
in Figure 2.2 proves a significant advantage by the GPU compared to the CPU. On
the other hand to conclude, that highly optimized CPU programs are limited by the
memory bandwidth is practically wrong. CPUs have a far more advanced technical
structure in different levels of cache. In fact it is very hard to get an optimized
program on a multi-CPU multi-core system to be limited by the system’s memory
bandwidth and not the compute barrier.

An example for bandwidth limitation in medical image reconstruction can be
found in Hofmann et al. [Hofm 09a, Hofm 10b]. For a system equipped with four
Intel Dunnington CPUs (Hexacores) a speedup of 19.5 could be achieved for an
optimized single-threaded program compared to 24 threads. This indicates that the
system was limited by its bandwidth. But modern CPU architectures like the Intel
Dunnington in contrast can scale better than just a linear improvement correlated
to the number of cores. A system equipped with two Quad-Core CPUs reached
a speedup more then 10 comparing the optimized single-threaded version against
16 threads – making use of Intel’s Hyper-Threading Technology (HTT). Looking at
the GPU, bandwidth limitation certainly matters. This strongly motivates higher
bandwidth rates for GPUs.

2.1.3 CPU versus GPU

It is clear that graphics processing units differ highly from central processing units.
As the name central processing states the CPU is the center of data processing.
CPUs must be good at everything, even if parallel or not. While the complexity
of operating systems grew over time so did CPUs to accomplish the complicated
execution of hundreds of different tasks almost at the same time. Therefore the
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Figure 2.2: Historical GPU peak memory bandwidth for AMD and NVIDIA GPUs.
The plot illustrates the immense bandwidth improvements over the last decade. In
contrast the maximal memory bandwidth of an Intel CPU is exemplified. Courtesy
of John Owens.

latency experienced by a single thread had to be minimized. To do so manufactures
introduced big on-chip caches and developed a sophisticated control logic.

Different requirements produce different chips – see Figure 2.3 for a rough vi-
sual comparison of the CPU versus GPU. From the traditional graphics pipeline GPU
architects learned that throughput is of key importance. The graphics cards respec-
tively the GPU must paint respectively compute every pixel within each frame in
a specific time. This specific time defines the frame rate, meaning the amount of
frames painted per second. Interactive programs require a frame rate about 5− 6
frames per second (fps). To achieve real-time a frame rate greater than 20 fps is
necessary. While the human brain is limited in its recognition a frame rate of ap-
proximately 60 fps is favored for computer games – making the different frames
indiscernible for the player.
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Figure 2.3: CPU versus GPU architecture. Courtesy of NVIDIA.

In order to maximize the throughput GPU developers pursued a different strat-
egy. On the GPU lots of threads are created, run and retire very rapidly. While
the number of threads in flight – meaning the number of threads that are ac-
tually running and those ready to run – is limited by resources such as registers
and bandwidth, lots of resources were built in GPUs in order to gain a high num-
ber of threads. The usage of multi-threading allows hiding memory latency. This
means that it is accepted that one thread stalls if hundreds are ready to run. Thus,
GPU architects skipped big caches and introduced shared control logic across many
threads.

Over time motivated by more and more complex graphics of computer games
the GPUs gained more and more compute power. More important, specifically pro-
grammable hardware components were introduced – starting in 2001 with the
NVIDIA GeForce 3 – to realize complex and individual graphics computations.
While computer graphics benefited from the increasing compute power, general-
purpose computations hardly could.

2.2 GPGPU History

In order to understand General Purpose Computation on Graphics Processing Units,
traditional architectures and methods like the graphics pipeline, OpenGL and shad-
ing languages are revisited. Afterwards the Compute Unified Device Architecture is
explained including the device, execution and memory model.

Until 2006, programmers had a hard time to use GPUs for general purpose.
The equivalent of the graphic application programming interface (API) had to be
used to access the processors cores – meaning that OpenGL or Direct3D techniques
were creatively used to program these chips. This techniques are called GPGPU
programming.
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Even with a higher level programming environment – e.g., BrookGPU2 – the
underlying code is still limited by the APIs. The APIs limit the complexity of ap-
plications that can be written for these chips. Only a few people overcame the
required qualifications to use these chips for a high performance achievement in
a limited field of applications. Therefore, GPGPU did not become a widespread
programming phenomenon in the early days.

2.2.1 Programmable Graphics Pipeline

Due to the introduction of programmable segments in the graphics pipeline, graph-
ics programmers were able to model a specific behavior in the graphics computa-
tion. For example to incorporate shading methods, where the reflection of light
from surfaces and the corresponding pixel colors are estimated by interpolating
surface normals across rasterized polygons [Shir 02, Enge 06]. In case of the tradi-
tional graphics pipeline – depicted in Figure 2.4 – this shading is implemented in
the Programmable Fragment Processor. Despite the fragment processor the Vertex
Processor provided programmability for specific geometrical transformation and
lighting. Both are part of the fixed-function pipeline, which represents the non-
unified device architecture.
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Figure 2.4: Traditional graphics pipeline depicts the fixed-function pipeline despite
the programmable vertex and fragment processor. The CPU - GPU boundary illus-
trates the physical separation of the computation on the graphics card [Fern 03].

Looking at the GPGPU techniques, a programmer had to cast the algorithmic
problem into native graphics operations to access the computational resources.
Otherwise the computation could not be launched through the OpenGL Shading
Language (GLSL) or DirectX using the High Level Shading Language (HLSL). For

2http://graphics.stanford.edu/projects/brookgpu



2.2 GPGPU History 25

example, to perform a parallelized addition of two matrices, the computation had
to be written as a pixel shader. The collection of input data – in this case the two
matrices – had to be stored in 2-D texture images and issued to the GPU by sub-
mitting a rectangular shape. The result had to be cast as a set of pixels generated
from the raster operations and stored in a 2-D frame buffer. The frame buffer is a
memory buffer containing the complete data of the frame.

The GPU processor array and frame buffer memory interface were designed
to process graphics data. For general numerical applications this is too restric-
tive. In particular, the output data of the shader programs are single pixels whose
memory locations have been predetermined. Thus, the graphics processor array is
designed with very restricted memory reading and writing capability. More impor-
tantly, shaders did not have the means to perform writes with calculated memory
addresses to memory. The only way to write a result to memory was to emit it as
a pixel color value, and configure the frame buffer operation stage to write to the
frame buffer. The only way to get a result from one pass of computation to the next
was to write all parallel results to a pixel frame buffer, then use that frame buffer as
a texture map input to the pixel fragment shader of the next stage of computation.
Furthermore, no user-defined data types were available. Therefore, most data had
to be stored in one-, two-, or four-component vector arrays.

In order to sum up, mapping general computations to a GPU in this early stage
of the GPGPU era was quite complicated. Nevertheless, researchers demonstrated
a handful of useful applications with the cost of high implementation efforts.

2.2.2 Load Imbalance

At last, another reason for a new device architecture was motivated by the ratio of
vertex and fragment shader compute power. Due to the fact that different graphics
applications require a different amount of vertex and fragment computation an im-
balance existed.

The GeForce 7800 GTX, for example, provided eight vertex shaders and 24 pixel
shaders designed on the chip. For specific computer games a high amount of vertex
computations is required due to complex scenes with many objects. On the other
side specific applications – e.g., virtual reality – seek for realistic effects as good
as possible. Therefore high fragment performance is needed. This resulted in an
imbalance of the utilized shaders as either vertex or pixel shaders were not fully
utilized. The imbalance represents a case depending waste of computing power
left one the device. In order to solve this problem a new compute unified device
architecture was developed.
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2.3 Compute Unified Device Architecture

The field of GPGPU computations changed at the turn of the year 2006/2007.
In November 2006 NVIDIA introduced its G80 chip. The first of its kind provid-
ing a unified shader architecture shown in Figure 2.5. Instead of separate vertex
and fragment shaders this chip provided 16 streaming multiprocessors (SM) each
equipped with 8 single execution units – also called scalar processors (SP). The
figure illustrates 8 Texture / Processor Clusters (TPC) each consists of 2 streaming
multiprocessors (SM) which share 4 texture processing (TP) units also named tex-
ture mapping units (TMU). The instruction and data flow as well as different cache
levels are additionally illustrated together with the 6 memory controllers.

Overall this chip provides 128 scalar processors running at the shader clock
frequency of 1.35 GHz in the first available card – the GeForce 8800 GTX. Thus
the introduced NVIDIA GeForce 8800 GTX graphics card achieved a theoretical
peak computation performance of 345.6 GFLOPS. This was about 65% more then
the – at this time leading – Cell Broadband Engine Architecture (CBEA) providing
a peak performance of 208.4 GFLOPS. But for GPGPU the innovation was not only
based on the hardware architecture. Together with the architecture a new approach
was introduced on the programming side. In order to introduce this approach this
is split into three different sections on the programming, the execution and the
memory model.
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Figure 2.5: The NVIDIA G80 architecture as first graphics processing unit providing
a unified device architecture. The sketch is based on the published idea of NVIDIA.
The architecture is motivated by the unified shader design.
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2.3.1 Programming Model

In 2007 NVIDIA released CUDA – standing for Compute Unified Device Architec-
ture. NVIDIA actually devoted silicon area to facilitate the ease of parallel program-
ming [Kant 08]. Without public notice, NVIDIA had added additional hardware to
the chip despite the change in GPGPU software alone. In the G80 and its successor
chips for parallel computing, CUDA programs no longer go through the graphics
interface at all. Instead, a new general-purpose parallel programming interface on
the silicon chip serves the requests of CUDA programs. Moreover, NVIDIA had to
redo all other previous software layers to use this chip as well as a high end graph-
ics device. The best thing about it, NVIDIA provided a new API to programmers
enabling the use of familiar C/C++ programming tools for parallel programming.

The concept behind CUDA is to program a parallel processors in order to achieve
high performance as well as keeping higher functionality and maintainability. More
important, the API should be usable not only for NVIDIA’s high-end graphics cards,
but for NVIDIA’s mobile and cheaper low-end GPUs as well as faster future genera-
tions. To achieve such a scalable parallel programming model, CUDA introduces a
key parallel abstraction.

An easy way to explain this abstraction is in a two-dimensional data-parallel
fashion. Assuming that a problem can be computed independently for each element
of a two-dimensional array, each element of this array then corresponds to a thread.

Threads
Characteristically for such CUDA threads are lightweight and non-complex com-
putations. A simple example would be adding up 2 two-dimensional arrays. This
corresponds in two data elements that are added up for each thread. All threads
execute the same sequential program – also called kernel function. In order to dif-
fer from each other, each thread can be identified via its thread ID. Due to this ID
– a 3-dimensional vector – the data parallelism can be evoked. While each thread
executes the same kernel, the data elements are loaded depending on the thread
ID. Using this kind of parallelism, a natural way is provided to invoke computation
across the elements in a domain such as a vector, matrix, or volume. To deal with
more difficult problems as well as to gain scalability these threads are clustered in
thread blocks.

Thread Blocks
Threads are grouped into thread blocks. Particular parallel computation problems
can be realized in much better performing solutions if the parallel tasks can com-
municate with each other. Examples for such problems are the histogram compu-
tation, the FFT and the computation of an integral, sum or norm of a large vector.
Thread blocks have a block ID. The combination of block ID and thread ID provides
a unique identification for each of the parallel computations. An automatic map-
ping of parallel programs – providing thousands of threads – onto hardware is a
fairly hard task. CUDA virtualizes the physical hardware. For the programmer the
scheduling of these thread blocks is unknown on purpose. Thread blocks should be
independent, since they will be scheduled onto physical hardware without specific
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priorities. The execution of thread blocks and their threads is explained in the next
subsection where the execution model is covered.

Grid
In order to complete the key parallel abstraction, all thread blocks are stacked in
a grid. This implies that the whole parallel computation consists of one grid filled
with thread blocks – made of lightweight threads. Due to this abstraction CUDA
achieves its scalability for different and future GPUs by NVIDIA. An overview of
this concept is depicted in Figure 2.6.
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Figure 2.6: Parallelization by a grid and block scheme keeps scalability and hard-
ware independence. The execution is split between serial CPU code as well as
parallel GPU code. The snaked arrows each represent a (parallel) task. The sketch
is based on the idea of NVIDIA [NVID 07a].

Invoking this parallel scheme, the CUDA API encompasses a whole software
environment. CUDA C is a variant of C with extensions. It is compiled with
NVIDIA’s compiler – nvcc. The extensions can be grouped into four different cat-
egories [Kant 08]:

• Function qualifiers: indicating whether a function executes on the host CPU
or the GPU

• Memory type: indicating where a variable is located in the GPU address spaces

• Execution configuration: specifying the execution parallelism of a kernel func-
tion in terms of grids and blocks

• Unique identifier: state variables which store grid and block dimensions and
thread IDs
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The CUDA programming language is made for a heterogeneous serial-parallel
computing. Parts of the program are executed serially on the CPU while the decom-
posed parallel threads are accelerated by the GPU. CUDA provides a straightforward
mapping onto the hardware that fits well on the GPU architecture. But this model
maps as well to multi-core CPUs, which will discussed together with future parallel
programming in Section 2.4.

In order to achieve a hierarchy of concurrent threads, it is important that a pro-
grammer identifies the inherent parallelism of the problem to be solved respectively
the algorithm to be executed. The challenging part is to figure out a lightweight
decomposition that is parallel at a large scale. The program then benefits from the
GPU’s immense computer power if the program meets the execution model.

2.3.2 Execution Model

One of the key architectural ideas is inside the Streaming Multiprocessor (SM).
NVIDIA describes its SM to be likewise a SIMD unit respectively vector unit. Their
architecture is called SIMT, standing for Single Instruction Multiple Thread. Anal-
ogously to SIMD each scalar processor computes the same instruction at a specific
time. Differing from SIMD, NVIDIA wants to indicate by SIMT that the vector size
is hidden from the programmer. The vectors are automatically filled and handled
by the hardware.

The frequency domain of the streaming multiprocessor is split into the chip-
and shader-frequency. The SPs are running at the shader frequency – also called
“hot clock” – almost twice as fast as the chip clock. The instruction decoding,
registers and data handling are processed with the slower chip clock. Instructions
like floating-point multiplication, addition as well as fused multiply-add and integer
addition demand four clock cycles to be computed. Floating-point division, modulo,
integer multiplication and division require more cycles. More complex instructions
are replaced by combining several basic instructions.

While the G80 and its successor chips are based on a pipelining principle, two
instructions can be issued in every chip clock cycle. In the ideal case an instruction
is computed in four shader clock cycles respectively two of the chip clock. Assuming
a filled pipeline, several four cycle instructions can be streamed by instruction plan-
ning. This results effectively in a computation time of only one shader clock cycle
for those instructions. This principle and the interaction between chip- and shader
clock is illustrated in Figure 2.7. The peak performance then can be computed for
the case of using only fused multiply-add instructions – e.g., matrix multiplication.

The CUDA execution model maps the parallel abstraction to the silicon. Threads
within a thread block run in groups of 32 called warps. These threads in a warp
share the same instruction units. In order to hide latencies, the hardware relies on
threads. While a specific warp is waiting for data, any other warp – not waiting
for anything – can run instantly. The hardware is designed that a context switch is
basically free. Additionally lightweight synchronization primitives are provided to
keep the abstraction model upright.
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Bild 2.2: Instruktionseinplanung auf einem Scalar Processor

Damit erreicht der Grafikchip eine theoretische Leistung von 345.6 GFLOPS. ([Kan08], [Tri07]
S.2)

Threadblocks - Verbund von Threads

Ein Thread ist in diesem Zusammenhang ein ultraleichtgewichtiger Programmstrang, der auf ei-
nem Scalar Processor abläuft. Auf einem Streaming Multiprocessor werden 32 Threads (Warp)
zur selben Zeit ausgeführt. Gleichzeitig können bei der G8X Architektur jedem Scalar Proces-
sor bis zu 96 Threads zugewiesen werden. Somit können auf jedem Streaming Multiprocessor
höchstens 768 Threads ausführungsbereit sein. Damit Probleme dynamischer Größe gelöst wer-
den können, werden Teilprobleme in einem ein-, zwei- oder dreidimensionalen Threadblock mit
einer maximalen Größe von 512 Threads zusammengefasst. Die Kommunikation zwischen die-
sen Threads ist über einen speziellen Speicher auf dem Streaming Multiprocessormöglich, dem
Shared Memory. Teilprobleme können so eine gewisse lokale Abhängigkeit aufweisen. Durch
diese gemeinsamen Ressourcen muss ein Threadblock immer zwingend auf einem Streaming
Multiprocessor ausgeführt werden. ([Kan08]; [NVI07c], S.74)

Unterteilung der Threadblocks in Warps

Ein Threadblock wird intern in Warps unterteilt, einer Einplanungseinheit, die aus jeweils 32

Threads besteht. Nach der Abarbeitung eines Maschinenbefehls befinden sich alle Threads des

Figure 2.7: Ideal instruction planning. The different colored bars depict different
instructions and their execution on a single Arithmetic Logic Unit (ALU). The fused
multiply-add (FMAD) operations are executed respectively combined together in
the ideal pipeline principle. Therefore at each cycle of the shader clock a FMAD
operation finishes while four of them are executed in parallel. The sketch is based
on the description of NVIDIA [NVID 07a].

It is assumed, that there is always certain work available to execute. Since there
are no branch predictors, warps which execute a branch wait until every thread in
the warp has been calculated. When a warp diverges – threads within a warp are
executing different instructions – performance gracefully decreases. If there are N
divergent paths in a warp, performance decreases by about a factor of N, depending
on the length of each path. Each divergent path of a warp is serially issued until
all threads can continue with the same instructions. In contrast, it is not an issue
if all threads within different warps execute a different branch. An example for
branching and serialization is illustrated in Figure 2.8.

In summary, NVIDIA describes their execution model as Single Instruction, Mul-
tiple Thread (SIMT) a variant on SIMD. From a programming perspective this is
big difference. The vector width is architecturally visible for SIMD and data must
be packed and unpacked into vectors for computation. In the SIMT model, execu-
tion width is a micro-architectural feature handled solely by hardware and a SIMT
instruction such as a conditional branch specifies the behavior of a single indepen-
dent thread. A thread is a virtualized scalar processor (registers, program counter,
state). A thread block is a virtualized multiprocessor (threads, shared memory/-
cache). Threads and thread blocks launch and run to completion. Having such a
flexible and powerful execution model is important as well as accessing the data to
be computed. The latter is covered in the memory model.
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Bild 2.3: Divergenz bedingter Codepfade führt zu Serialisierung

aktivenWarps immer am selben Instruktionszeiger. Die G8X Architektur unterstützt simultan 24

Warps pro Streaming Multiprocessor. Insgesamt können so auf den 16 Streaming Multiproces-
sors des gesamten G80-Chip 12288 Threads gleichzeitig ausführungsbereit sein. Allerdings sind
zur selben Zeit nicht mehr als acht Threadblocks auf einem Streaming Multiprocessor möglich.
Die 32 Threads eines Warps starten vom selben Instruktionszeiger und zu keinem Zeitpunkt ist
mehr als ein Warp auf jedem Streaming Multiprocessor aktiv.

Alle Threads eines Warps arbeiten immer an derselben Instruktion. Deshalb führen beding-
te Sprünge, deren Bedingungen in den Threads eines Warps zu unterschiedlichen Ergebnissen
führen, zu einer Abarbeitung der verschiedenen Codepfade in Reihe. Somit entspricht die Zeit,
die zum Abschließen der divergenten Ausführungspfade benötigt wird, der Summe aller auf
einem Warp ausgeführten unterschiedlichen Verzweigungen. Alternative Codepfade, deren zu-
gehörige Bedingungen jedoch innerhalb eines Warps zum selben Ergebnis evaluieren, können
ohne Verzögerung weiterlaufen (vgl. Bild 2.3, S.9). Dies wird als Branching an Warp-Grenzen
bezeichnet. ([Kan08]; [NVI07c], S.74)

Maskierung der Speicherlatenz

Es werden Speicheroperationen gesammelt für einen halben Warp (Half-Warp) durchgeführt, al-
so für 16 Threads. Die Speicherverwaltungseinheit ermöglicht das Laden und Speichern von 32-,
64- oder 128-bit breiten Werten. Datentypen, die eine andere Größe aufweisen, werden auf meh-
rere gleichartige Speicheroperationen verteilt. Während der 400 bis 600 TaktzyklenWartezeit auf
das Ende der Speicheroperation kann der Thread-Scheduler des Streaming Multiprocessors sehr
schnell auf andere lauffähige Threads umschalten. Wenn nun genügend Rechenzeit von ande-
ren Warps benötigt wird, um die Wartezeit zu überbrücken, kann die Wartezeit auf den globalen

Figure 2.8: This example illustrates the execution of threads within a warp in case
of divergence. While the commonFunc can be executed in parallel, half of the
threads in both warps have to wait for each conditional branch and the perfor-
mance decreases by a factor of two. This is illustrated by func0() and func1() .
Instead if the condition is warp dependent – equal for all 32 threads within a warp
– again the parallelization can be fully utilized. This is illustrated by func0() and

func1() . The sketch is based on the description of NVIDIA [NVID 07a].

2.3.3 Memory Model

In addition to an execution model, CUDA also specifies a memory model – shown
below in Figure 2.9. It provides a variety of different address spaces for commu-
nication within the GPU and with the host CPU. Fast, on-chip storage is colored in
red. The memory kept in the DRAM of the graphics device is depicted in grey. The
important attributes are stated – after detailing each memory – in Table 2.1.

Registers

The largest and the fastest level of the on-chip memory hierarchy is the register file.
It provides 32− 64 kB space on the chip. Register-to-register instructions achieve
the peak instruction throughput if the vector length is large enough. Equally to
a CPU register file, it is private for each thread and read-/write-able. Typically
the variables, input and output operands for a thread are stored in registers. The
amount of registers is limited depending on the occupancy, the kernel complexity
and the GPU generation. Should the register file be exhausted, then data spills into
local memory.

Local Memory

Like registers, local memory is private for each thread, but is held in DRAM. There-
fore its performance is equally slow as global memory and the usage should be
avoided. It is introduced to provide a dynamic approach of register files in order to
overcome hard limitations. Otherwise the complexity of kernel functions would be
dramatically limited in general. The price to be paid is performance loss, in case
it’s utilized. Instead programmers should use shared memory.
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GPU

device memory

Figure 2.9: The CUDA memory model. The sketch is based on the description of
NVIDIA [NVID 07a].

Shared Memory

The shared memory can be used for communication between all threads of a thread
block as well as primary local storage space. Even it is on-chip memory, it is slightly
slower then register files [Volk 08a]. Shared memory is generally the lowest la-
tency communication method between threads. Shared memory can be used for a
variety of purposes, such as holding shared counters or shared results from thread
blocks. It is read- and write-able, but no coherency is guaranteed if two threads try
to access it at same point of time. Therefore atomic functions are included in the
framework. On the first and second generation GPU only 16 kB of shared memory
are provided per SM and shared for all thread blocks running on the SM. In order
to achieve low latency for all threads accessing this memory, bank conflicts must be
avoided.

Constant Memory

The constant memory is one of the read only address spaces. With 64 kB it is a
relatively small space and can be used, e.g., for random accesses and frequently-
accessed parameters inside the kernel function. The memory resides in the DRAM,
but since it is read only, it is readily – if cached – on-chip. The constant cache does
not enforce coherency. Thus if the CPU writes to the constant memory, the caches
are invalidated before using the new data. This is equally for texture caches.
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1-D Texture Array

A one dimensional texture array in CUDA is basically similar to constant memory.
The big difference is the allocation and initialization as well as the usage inside the
kernel function. To access a 1-D texture array a specific function – tex1D(textureRef,
float pos) – has to be used. In contrast to the constant memory the texture array
allows an automatic interpolation between neighboring values – in hardware – de-
pending on the given position. All textures in common is, that the texture function
implies an addressing mode as well as specific data formats – e.g., for the RGBA
color representation of a pixel. The addressing mode specifies how out-of-range
texture coordinates are handled – e.g., clamped to the texture border. The size of
1-D texture arrays is limited to 8192 elements residing in DRAM.

1-D Linear Texture

The difference between a 1-D linear texture and a 1-D texture array is the missing
texture interpolation. Therefore to access a 1-D linear texture the function call uses
integer positions – tex1Dfetch(textureRef, int pos). In contrast to the 1-D texture
array, the 1-D linear texture is write-able for kernel functions. Since the texture
caches don’t enforce coherency, it is of importance to understand that the behav-
ior is undefined if a thread writes to a certain position during an kernel execution
while another thread is reading this position. After an kernel execution the caches
are invalidated such that a 1-D linear texture can be either used as write-only or
read-only during a kernel execution. 1-D linear texture can contain up to 227 ele-
ments respectively 512 MB for float values.

2-D Texture Array

Analogously to the 1-D texture array, the two-dimensional provides read-only data,
but provides a bilinear interpolation by hardware. In order to access the 2-D array
a different function – tex2D(textureRef, float posX, float posY) – is used. Clamping
and cache are supported as well. A little bit tricky is the size limitations, since the
maximal 2-D texture size is defined by 216 bytes ×215 elements. This means that
depending on the data type 64 kB can be used in the first dimension while the sec-
ond dimensions is limited by 215 elements. Overall a maximum of 2 GB per 2-D
texture array can reside in DRAM.

2-D Texture from Pitch-Linear Memory

At last with CUDA 2.3, NVIDIA introduced 2-D textures from pitch-linear memory.
In principle they are not distinguishable from 2-D texture arrays, despite the fact
they are write-able by the kernel. Like 1-D linear textures, the cache is not pro-
viding coherency, such that the behavior for reading and writing during a kernel
execution is undefined. However, they can be used either for writing or reading
during a kernel execution. Access by function tex2D, size limitations as well as bi-
linear interpolation by hardware are equal to 2-D texture arrays.
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3-D Texture Array

The capability of 3-D texture arrays was introduced in CUDA 2.0. It is the three
dimensional companion piece to two dimensional texture arrays: Not write-able
via kernels, cached, and providing trilinear interpolation. However the actual data
layout on the device is swizzled. Swizzling [Enge 06] is originated by computer
graphics in order to improve the average sampling rate for different view direc-
tions. This ensures a balanced memory access performance. In Chapter 4 the size
limitations for 3-D texture arrays is again in focus due to its restrictions. A maxi-
mum of 2048 elements in each direction is the boundary for such 3-D texture arrays
in CUDA. Therefore theoretically a volume made of 20483 elements – 32GB float
volume – can be stored in DRAM. However, current graphics cards do not provide
this enormous amount of memory. Unfortunately, there is no 3-D write-able texture
available up to version 2.3 of the CUDA API.

Global Memory

The global memory completes the CUDA memory model. As the name states it is
globally visible to an entire grid and can be arbitrarily written to and read from by
the GPU or the CPU. Since the global memory can be written to, it is not cached
anywhere on chip. Compared to registers, shared memory and textures it is the
slowest possible access. The non-cached memory access takes about 470− 720 cy-
cles [Volk 08a], roughly matching the official 400 − 600 cycle stated by NVIDIA.
Global memory resides in DRAM and is limited only by the amount of memory
available on the graphics card. Volkov et al. made an detailed analysis [Volk 08a]
of CUDA’s memory model.

memory type speed write-able caching hw. interp. size limit

registers +++ yes no no by GPU

shared memory ++ yes no no by GPU

constant memory + no yes no 64 kB

1-D texture array + / - no yes yes 8192

1-D linear text. + / - either yes no 227

2-D tex. array + / - no yes yes 64 kB×32 k

2-D tex. pitchl. m. + / - either yes yes 64 kB×32 k

3-D tex. array + / - no yes yes 20483

local memory - yes no no by device

global memory - yes no no by device

Table 2.1: Overview of the memory types available in CUDA. This includes a speed
– cache depending – review, the capabilities of writing via threads as well as caching
and hardware interpolation.

The reviewed memory model shows advantages as well as disadvantages of the
utilized GPU memory. Limitations and missing features – respectively later intro-
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duced memory support – are of importance. Without detailed knowledge about
this memory model a parallel implementation is still possible, but a huge loss in
performance is very likely.

2.3.4 Utilized CUDA GPUs

The hardware side of the equation is equally important. For our research, develop-
ment as well as evaluation and performance measurements, we utilized different
kind of graphics cards since 2007. In the following we shortly want to give an
overview and detail important properties. Table 2.2 shows the utilized graphics
cards including GPU generations and frequencies for chip-, shader- and memory-
clock. Later, we will show the significance of available DRAM and memory band-
width, such this capabilities are stated as well. For the texture performance, we
used the numbers officially stated by NVIDIA, except the Performance of the Tesla
C1060, which is taken from Schwarz et al. [Schw 11] 3

graphics

cards

GeForce

8800 GTX

QuadroFX

5600

GeForce

8800 Ultra

GeForce

GTX 280

Tesla

C1060

GPU gen. G80 G80 G80 GT200 GT200

shared mem. 16 kB 16 kB 16 kB 16 kB 16 kB

chip clock 575 MHz 600 MHz 612 MHz 602 MHz 612 MHz

shader clock 1350 MHz 1400 MHz 1500 MHz 1296 MHz 1296 MHz

db. memory cl. 900 MHz 800 MHz 1080 MHz 1107 MHz 800 MHz

# of SMs 16 16 16 30 30

# of SPs 128 128 128 240 240

register file 32 kB 32 kB 32 kB 64 kB 64 kB

texture units 6 6 6 8 8

memory BW 86.4 GB/s 76.8 GB/s 103.7 GB/s 141.7 GB/s 102.4 GB/s

GTexels 36.8 38.4 39.2 48.2 48.83

DRAM 768 MB 768 MB 1.5 GB 1 GB 4 GB

Table 2.2: Overview of technicals details for the utilized graphics cards.

For the research in this thesis the 1st and 2nd generation of CUDA capable graph-
ics cards were utilized. The 3rd generation – namely “Fermi” architecture – is shortly
introduced in Section 2.4.4, but not evaluated. Neither the presented code is op-
timized for that architecture. As GPU architectures currently evolve about every
two years, newer GPU architectures are out of scope in this thesis. The first gen-
eration is based on NVIDIA’s G80 chip, the first unified device architecture, where
we started our research. Due to the fact that NVIDIA’s GT200 – the 2nd genera-
tion – is an incredibly aggressive derivative of the G80 architecture, we extended

3The performance number is taken from [Schw 11]
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our research. The GT200 provided substantial improvements in almost every as-
pect of the architecture [Kant 08]. Increasing the overall performance as well as
adding more features for programmability furthering NVIDIA’s vision of GPGPU.
Many changes are obvious, such as the registers per SM, the number of SMs, or the
ratio of SMs to memory pipelines. An extensive description about NVIDIA’s G80 and
GT200 GPU as well as further details about improvements can be found in Kanter
et al. [Kant 08]. With the introduction of the GT200 NVIDIA certainly cemented
their status as leader in general purpose computation on GPUs.

2.3.5 Optimizations

In order to gain high performance certain optimizations are considered in our im-
plementations. The performance of GPU implementations heavily depends on an
optimal usage of the underlying hardware. In many tutorials, lectures and books a
similar statement as follows can be found [Kirk 10, p. 15, l. 11]:

“Someone once said that if you don’t care about performance,
parallel programming is very easy.”

The introduction of CUDA strongly simplified parallel programming as well as
GPGPU. Using a few lines of code, simple compute intensive programs can be paral-
lelized and ported to the GPU within few hours. Since the GPU provides substantial
compute power, even non-optimized parallel programs can gain a significant per-
formance improvement. Unfortunately, many of these performance improvements
are published, giving the delusive impression that using GPU programming an per-
formance improvement, more than hundreds time faster, easily is achieved. Most
of the times, the compared CPU programs are totally non-optimized and possibly
poorly designed for CPU computation. To get a better impression, we recommend
Lee et al., who published [Lee 10] a relevant CPU vs. GPU performance comparison
for several applications.

However, high performance computing using GPUs is still important and has
significant impact especially for medical image reconstruction as shown in this the-
sis. By augmenting C/C++ with minimalist abstractions, programmers can focus
on parallel algorithms and not the mechanics of a parallel programming language.
To gain steady performance the program should scale to hundreds of cores and
ten-thousands of parallel threads. GPU threads are lightweight, create and switch
is free. Therefore the GPU typically needs thousands of threads for full utilization.
This is not only important to achieve a high compute rate, but more to hide memory
latencies.

As mentioned in Section 2.3.2, a warp diverges if threads within execute differ-
ent instructions. This branching has to be serialized and performance is decreased.
In order to achieve high performance, the programmer has to prevent branching by
strategy if possible.

Since computations are performed on data, we distinguish between three types
of memory access. Common shared input data – typically a small amount of data,
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non-structured input data and output respectively updated data. The different
memory types are explained in Section 2.3.3.

In order to read data that is equally used throughout thread blocks the perfor-
mance is improved by using shared memory for smaller amounts of common data
and parameters. Alternatively – limited by registers – kernel parameters can be
used if the data equals for all thread blocks.

For data that is non-structured and read only the programmer should utilize
textures and their hardware interpolation if applicable. In this case considering
the texture caches and cache-lines by specific access patterns additionally improves
performance.

For the last type of memory access, output or updated data, global memory has
to be utilized. Due to the fact that the global memory bandwidth is the limiting fac-
tor in many cases. Coalescing techniques can dramatically influence performance
if global memory is used heavily. Basically the favorable access pattern is achieved
when the same instructions for all threads in a warp access consecutive global mem-
ory locations. Here, the hardware combines, or coalesces, all of these accesses into
a consolidated access to consecutive DRAM locations – achieving a data rate close
to the peak of global memory bandwidth.

The introduction of shared memory indented to allow communication between
threads. However, different program designs may minimize communication be-
tween threads and thus improve performance.

Theoretically, an optimal block- and grid-size can be estimated by the problem
design, but it turned out that this is not always the case. Therefore, heuristically
determining the best performing block- and grid-size for each different device and
utilized kernel is recommended.

For further optimization techniques and performance consideration we refer to
NVIDIA’s “CUDA C Best Programming Guide” [NVID 10a] or the book by Kirk et al.
[Kirk 10].
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2.4 Future Parallel Programming

In the last Section – Future Parallel Programming – we want to focus on several
changes in the field of GPGPU and parallel computing, introduced since 2008.

First to be named are two new frameworks for parallel computing. Most promis-
ing is the Open Compute Language (OpenCL) administrated by the Khronos Group.
After that, Microsoft’s Direct Compute is mentioned briefly. As an extension for
CUDA, NVIDIA’s announced a general x86 compiler for CUDA programs. The com-
piler is supposed to allow an effective use of CPUs compute performance – includ-
ing vector units – for parallel CUDA programs. At last, NVIDIA also introduced the
third generation of CUDA capable devices. The architecture – named Fermi – is
considered and relevant changes are skimmed.

2.4.1 Open Computing Language

In 2007, NVIDIA launched CUDA which is today the most mature of the emerging
programming models and toolchains for GPUs. Certainly there are quite a few other
efforts in the same field, some pre-dating CUDA and some created in response to
CUDA.
An alternative for parallel programming is the Open Computing Language (OpenCL).
In order to avoid being tied to any specific hardware vendor, Apple began working
on what would become OpenCL. After the initial development, OpenCL was refined
in collaboration with technical teams at AMD, IBM, Intel and NVIDIA. The initial
proposal was submitted to the Khronos Group, common for the OpenGL standard.
Since June 2008 OpenCL is under the auspices of the Khronos Compute Work-
ing Group. In the end of 2008 OpenCL finally found approval and was publicly
released as an open standard for general purpose parallel programming of het-
erogeneous systems. Despite CUDA, which is supported merely by NVIDIA GPUs,
OpenCL can be utilized also on AMD GPUs, x86 CPUs and CELL processors. Theo-
retically, OpenCL provides a portability between different multicore/multiprocessor
platforms.

CUDA and OpenCL have a lot in common. The first versions of CUDA (up to
V3.0) and early versions of OpenCL (up to V1.1) were very similar in terms of
functionality, but provided a slightly different nomenclature. The key-concept of
OpenCL is a hardware abstraction layer, consisting of a platform, execution and
memory model. The platform model is analog to CUDA’s device model, which is not
discussed. The execution and memory model are almost the same within CUDA and
OpenCL. A list of most important technical terms in comparison between both can
be found in Table 2.3. Technical details about OpenCL can be found on the official
website4 of the Khronos Group, their Quick Reference Card [Khro 10] and for the
NVIDIA architecture in [NVID 10c].

The three models can be summarized shortly subsequently:

4http://www.khronos.org/opencl/

http://www.khronos.org/opencl/
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Idea CUDA term OpenCL term

executing host host CPU host

core streaming multiprocessor compute unit

processing units scalar processor processing elements

program host thread host program

parallel program thread work-item

cluster of parallel programs thread block work-group

organization of these grid NDRange

communication memory shared memory local memory

constant memory constant memory

texture memory image memory

local indices thread index local id

global indices block & thread idx. global id

Table 2.3: Nomenclature similarities between CUDA and OpenCL. The table shows
clearly a conceptual analogousness, but the technical realization in software indi-
cates differences in performance.

1. The platform model consists of a host connected to one or more OpenCL de-
vices. An OpenCL device is divided into one or more compute units (CUs).
These are further divided into one or more processing elements (PEs) analog
to CUDA’s SP.

2. Like in CUDA, the execution of an OpenCL program occurs in two parts: a
host program that executes on the host and kernels that execute on one or
more OpenCL devices. The host program defines the context for the kernels
and manages their execution. The OpenCL execution model is defined by how
the kernels execute. When a kernel is submitted for execution by the host,
an index space is defined and an instance of the kernel executes for each
point in this index space. This kernel instance is called a work-item and is
identified by its point in the index space (analog to CUDA thread). Each
work-item executes the same code but the specific execution pathway through
the code and the data operated upon can vary per work-item. Work-items
are organized into work-groups (analog to CUDA thread blocks). The work-
groups provide a more coarse-grained decomposition of the index space.

3. Using the OpenCL memory model the kernel executing work-items have access
to distinct memory regions each with different restrictions and access speed
like in CUDA (see Section 2.3.3). However, not all memory types were ini-
tially fully supported. Another difference to CUDA is that OpenCL describes
platform specific features. For example, the usage of texture arrays is called
image object in OpenCL. This feature is not necessarily supported by all de-
vices that supports OpenCL. The developer has to keep that in mind if such
features – may giving significant performance benefits – are utilized.
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While CUDA is not an open industry standard and does not work with ATI or
Intel GPUs, it was readily available and far more mature and programmer friendly
than the other alternatives. For that reason, we focussed on CUDA in our research
for acceleration of medical image reconstruction. In order to cover the performance
difference between CUDA and OpenCL, we refer to the paper [Du 12] of by Du et
al. and provide an additional performance comparison in the Section 4.3.

2.4.2 DirectCompute

Another important parallel programming API for heterogeneous computing systems
is Microsoft’s DirectCompute. The API takes advantage of the massively parallel
processing power of modern GPUs to accelerate applications in Microsoft’s latest
operating systems [Kirk 10]. DirectCompute is part of Microsoft’s DirectX and was
released with DirectX 11 API. The DirectCompute architecture shares a range of
computational interfaces with CUDA and OpenCL.

2.4.3 CUDA x86

In September 2010, NVIDIA introduced CUDA x86’ at the GPU Technology Con-
ference (GTC) in San Jose, California. CUDA x86 was developed in collaboration
with PGI (The Portland Group). It enables CUDA applications to be accelerated on
basically any PC. In order to provide an alternative for non CUDA-capable systems,
the CUDA x86 compiler utilizes multiple cores and their SIMD units for parallel
execution.

Instead of returning that no CUDA device is found, the program decides dur-
ing runtime to execute on the CPU instead of the (missing) CUDA-capable GPU.
Therefore a single application can be used universally on a computer, but provides
a possibly higher performance for proper GPUs being present.

The CUDA x86 is in development, but with it NVIDIA could provide developers a
single parallel programming model to target many core GPUs as well as multi-core
CPUs.

2.4.4 Fermi

With the consecutive development of the GPU generations, G80 and GT200, NVIDIA
clearly stepped forward into the age of parallel computing. Both CUDA generations
dominated the GPGPU market and moreover made parallel computing and HPC
accessible for almost every developer – since CUDA is limited to NVIDIA GPUs.

From this success and expertise for future demands, NVIDIA developed their
3rd unified GPU architecture, code named “Fermi”. The implementation and opti-
mization for this architecture is beyond the scope of this work and hence we refer
to NVIDIA’s white paper [NVID 10b] on the “Fermi” architecture for further details.
Due to the fact that the architecture reveals a good impression about the develop-
ment of future GPU generations, we shortly discuss the architecture and relevant
changes.
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Figure 2.10: NVIDIA’s most advanced GPU architecture, “Fermi” [NVID 10b]. Cour-
tesy of NVIDIA.

The first Fermi based GPU architecture was designed to feature up to 512 SPs.
The whole chip therefore required up to 3.0 billion transistors. Each of the SPs
obtained several enhancements such that a floating point or integer instruction can
be executed per clock, pipelined for a thread. For Fermi NVIDIA changed the vector
width of its’ SIMT model from 8 to 32 in order to provide more performance. The
overall 512 SP’s are then partitioned into 16 SMs. Also the overall amount of DRAM
was increased from 4 up to 6 GB of GDDR5 memory. The chip design is depicted
in Figure 2.10. It illustrates six memory interfaces and the host interface. The
GigaThread global scheduler indicates the distribution of the thread blocks to the
SM thread schedulers.

Massively parallel executed programs often are limited by the memory band-
width. In this case, the Fermi architecture is of special interest, because of another
improvement. Fermi GPUs provide L1 and L2 cache. The 64 kB of on-chip memory
for each SM is configurable either to 16 kB shared memory and 48kB L1 cache or
the other way around. This provides more flexibility for programmers and improves
shared memory intensive applications as well as optimizes global memory accesses.
All SMs share the second level of 768 kB L2 cache. This cache level serves all clients
– meaning load, store as well as texture tasks.

For simulation and other numerical sensitive applications – depending on dou-
ble precision – NVIDIA provided a tremendous enhancement. Like for CPUs, double
precision computations can be performed up to half the floating point performance.
This reflects a performance increase of factor 8 compared to the GT200 chips. How-
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ever, in the beginning NVIDIA had problems with the temperature as well as the
power consumption of the chip. Therefore the first Fermi chips did not provide the
full capacity [Kant 09].

2.5 Conclusion

Modern high performance computing is heavily influenced by GPU technology as it
provides extreme computational power combined with extreme memory bandwidth
at the time being multiple times faster than CPUs. CUDA dramatically changed
GPGPU programming and empowered a broad range of developers to utilize the
GPUs’ computational power without the previously required knowledge about graph-
ics engines. Of particular importance for this parallel processing technology are the
key abstraction concepts of CUDA. The programming, execution and memory mod-
els enable a scaleable approach for a variety of NVIDIA GPUs, including future
generations which will provide even higher performance. This generic approach
allows different implementations for the parallelization of an algorithm, but not
necessarily all provide high performance. In order to achieve high performance it is
necessary to understand the underlying hardware as well as the exposed technical
features of the architecture in detail. Together with the important aspects for per-
formance optimization and future parallel programming, the basics for the CUDA
acceleration and GPU Programming are constituted. Thus, the high computational
power of NVIDIA GPUs can be utilized using CUDA.
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Medical Image Reconstruction
Algorithms

Medical imaging technology is not only founded on mechanical devices and
electronic systems like detectors and X-ray emitters. For decades, data processing
and specifically reconstruction algorithms have been in the focus of still ongoing
research and development.
In this chapter we would like to give an overview of the field of reconstruction algo-
rithms and a possible classification into different groups. Afterwards the considered
algorithms are introduced in order to provide the theoretical basis of our scientific
contribution. We will further utilize at least one algorithm of each introduced group
in Chapter 4. At the end of this chapter, we compare and evaluate their complexity
to understand the computational differences.

3.1 Reconstruction in General

The problem statement of reconstruction in general is to compute the composition
of an object from measurements. In medical imaging these objects are described
as a 3-D object, respectively a 2-D slice out of a 3-D object. The measurements for
CT are typically generated by a pair of an X-ray emitter and a detector measuring
the remaining radiation energy of the attenuated X-rays. For molecular imaging,
the measurements are generated by emitting radio-active substances. Different de-
tectors are used due the fact of a differing kind of radiation that is emitted. To
complete the main reconstruction fields in medical imaging, the wide field of re-
construction for Magnetic Resonance Imaging (MRI) needs to be named. This type
of reconstruction is not covered and hence we refer to the literature.

After describing the general geometry model used in this thesis, we give an
overview of the wide field of reconstruction methods with focus on Computed To-
mography and group these depending on their background.

3.1.1 Geometry and Acquisition

The geometry model used in this thesis is derived from a 3-D projection, shown
in Figure 3.1. The emitted ray intersects the 3-D object consisting of different
materials. Each material is characterized by its physical properties represented by

43
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WCS

s

x

3-D object

2-D projection

t

Figure 3.1: General geometry description used in this thesis. A ray is emitted at the
source s targeting the detector position t while intersecting the object at position
x. All three positions are described in a regular world coordinate system (WCS).

the attenuation coefficient at position x. This formulates the basis for measuring
X-rays.

Rays and Attenuation

An ideal ray is defined by a source position s ∈ R3 and a target position t ∈ R3

which corresponds to the 3-D coordinate where the ray hits the detector. The line
segment between s and t is described as [st]. Given a 3-D position x ∈ R3, the
attenuation coefficient of an object at this position is described as µ(x) ∈ R+

0 . The
measured intensities on the detector are described by the measurement function
dI. For a ray that is emitted from s with the intensity I0, the remaining respec-
tively measured intensity d̄I(s, t) at the target position t for the line segment [st] is
described in the mono-energetic case by the Beer–Lambert Law [Kak 88] for trans-
mission tomography as:

d̄I(s, t) = I0 · e
−

∫
x∈[st]

µ(x)dx

(3.1)

Detector Geometry

Since the second generation CT multiple detector elements are used for acquiring
measurements. A new coordinate system on the 2-D plane of the detector repre-
sents the coordinate u = (u1, u2)

T ∈ R2. The transform between t and the detector
coordinate u depends on the acquisition geometry as well as on the current projec-
tion and will be treated later. We define the total number of acquired projections
P and the projection index p ∈ {1, . . . , P}. Each projection index p correlates to a
specific source position s valid for all measurements of this projection.
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u1

u2

ũ= (2, 2)T

u= (2.8, 3.7)T

detector element / cell

Figure 3.2: Example for a two dimensional detector grid. The discrete detector el-
ement ũ represents the physical measurement of a cell centered coordinate system,
whereas the individual detector position u needs to be approximated by interpola-
tion.

Due to the fact that a detector acquires a fixed number of measurements respec-
tively readings for each projection we define a reading index r and the total amount
of readings R per projection. Then the 2-D layout of the detector measurements
allows a one-to-one mapping between the reading index r and any integer 2-D
detector position ũ = (ũ1, ũ2)

T ∈ N2. The 2-D detector consists of R detector ele-
ments, respectively R = U1 ·U2, such that ũ1 ∈ {1, . . . , U1} and ũ2 ∈ {1, . . . , U2}
as exemplarily illustrated in Figure 3.2. Here the number of detector channels is
defined by U1. The variable U2 represents the number of rows of the detector array.

Given the projection index p and the detector coordinates u, a one-to-one corre-
spondence – bijection – to a certain target t and its source position s can be estab-
lished, such that the measurement function dI(p, u) for projection p and detector
position u corresponds to the measurement function of the line segment d̄I(s, t).
Detector elements measure a discrete region, but not a infinitesimally small posi-
tion. Therefore, a real measurement at non-discrete indices u does not exist, only
at discrete detector elements ũ. This means that the acquisition data is only de-
fined for the measurement function dI(p, ũ). To overcome this limitation different
interpolation methods are practically used in the context of medical image pro-
cessing. The easiest and computationally inexpensive one is the nearest neighbor
interpolation. Instead of a non-discrete index, the closest discrete index is used.
Alternatively, higher order interpolation methods can be used, causing higher com-
putational costs.
The common interpolation method in the 2-D case is the bilinear interpolation. It
computes the linear approximation of the determined value at non-discrete position
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u using the four surrounding detector elements. The measurement function using
bilinear interpolation d̂I(p, u) is then defined as:

d̂I(p, u) = (1− ∆u2) ·
(
(1− ∆u1) · dI(p, (bu1c, bu2c)T)

+(∆u1) · dI(p, (bu1c+ 1, bu2c)T)
)

+∆u2 ·
(
(1− ∆u1) · dI(p, (bu1c, bu2c+ 1)T)

+(∆u1) · dI(p, (bu1c+ 1, bu2c+ 1)T)
)
, (3.2)

with ∆u1 = u1 − bu1c , ∆u2 = u2 − bu2c and the floor function bc.

More advanced interpolation methods utilize, for example, radial basis func-
tions for interpolation. An overview and details of popular interpolation methods
used in 3-D medical image processing are given by Xu et al. [Xu 06].

Despite the measured remaining intensity d̄I(s, t), reconstruction algorithms uti-
lize the measured attenuation integral d̄µ(s, t) defined as:

d̄µ(s, t) =
∫

x∈[st]

µ(x)dx = − ln
(

d̄I(s, t)
I0

)
(3.3)

Note that µ identifies that the measurement function dµ describes the remaining
attenuation. Analogous to dI(p, ũ) we define the measurement function dµ(p, ũ) by
applying the I0-correction defined in Equation 3.3, including the bilinearly inter-
polated value d̂µ(p, u) for non-discrete detector positions u. Due to the one-to-
one correspondence between the reading index r and the discrete detector po-
sitions ũ ∈ N2, we can define two more substitutions dI(p, r) ∼= dI(p, ũ) and
dµ(p, r) ∼= dµ(p, ũ), such that r corresponds to ũ = (ũ1, ũ2)

T.

Object

In order to reconstruct continuous objects for medical imaging, these objects are
represented as discretized volumes. Such a discretized 3-D volume consists of sep-
arated volume elements also named voxels. Each voxel x̃ ∈ N3 is indexed in each
dimension such that x̃1 ∈ {1, . . . , X1}, x̃2 ∈ {1, . . . , X2} and x̃3 ∈ {1, . . . , X3}.
While a volume consists of J = X1 · X2 · X3 voxels in total, we introduce a mapped
index j, such that j correlates to x̃. For the actual size of the volume we define a
voxelsize (δx1, δx2, δx3)

T in real world units. The volume size in each dimension is
then given by the row vector (X1 · δx1, X2 · δx2, X3 · δx3). An example of an object
discretization is illustrated in Figure 3.3.

Analogously to the discretization of the detector, the attenuation coefficients
µ(x) at non-integer index positions x ∈ R3 are not represented by the discretized
3-D volume. Therefore different interpolation methods are known, using the at-
tenuation coefficients at discrete positions x̃. The common interpolation method
in the 3-D case is the trilinear interpolation, by computing the linear approximated



3.1 Reconstruction in General 47

x2

x1

x3

x̃ = (5, 5, 1)T
j-th voxel

Figure 3.3: Example for an object discretization. The volume is indexed in each
dimension using vector x̃ of integer indices or equivalently indexed by j.

value between the eight voxels surrounding the non-discrete position. In this work,
it is assumed that the attenuation coefficients outside of the considered volume are
equal to zero. Therefore the truncation problem is not handled and we refer to the
literature for details [Hopp 08, Denn 13]. The trilinear interpolation function µ̂(x)
is then defined as

µ̂(x) = (1− ∆x3) ·
(
(1− ∆x2) ·

(
(1− ∆x1) · µ((bx1c, bx2c, bx3c)T)

+(∆x1) · µ((bx1c+ 1, bx2c, bx3c)T)
)

+∆x2 ·
(
(1− ∆x1) · µ((bx1c, bx2c+ 1, bx3c)T)

+(∆x1) · µ((bx1c+ 1, bx2c+ 1, bx3c)T)
))

+∆x3 ·
(
(1− ∆x2) ·

(
(1− ∆x1) · µ((bx1c, bx2c, bx3c+ 1)T)

+(∆x1) · µ((bx1c+ 1, bx2c, bx3c+ 1)T)
)

+∆x2 ·
(
(1− ∆x1) · µ((bx1c, bx2c+ 1, bx3c+ 1)T)

+(∆x1) · µ((bx1c+ 1, bx2c+ 1, bx3c+ 1)T)
))

, (3.4)

with ∆x1 = x1 − bx1c , ∆x2 = x2 − bx2c , ∆x3 = x3 − bx3c.
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System Matrix

In order to describe the mathematical relation between the 3-D object and the
acquired 2-D projections a so called system matrix is defined. This is of importance
for the theoretical background of many iterative reconstruction algorithms. Looking
at the relation between the object and the projection p explains the first step of
the overall concept. The discretized object description is based on the attenuation
coefficients µj for each voxel j:

µ =


µ1
...

µj
...

µJ

 , (3.5)

where µj
∼= µ(x̃). The symbol ∼= describes the bijection between both represen-

tations. The system matrix elements and its interpretation is illustrated later in
Section 3.3.1. The contribution a(p)

r,j of each voxel j to a specific detector measure-

ment dµ(p, r) is specified by the entries of a row of the following matrix A(p), such
that:



a(p)
1,1 . . . a(p)

1,J
...

...

a(p)
r,j

...
...

a(p)
R,1 . . . a(p)

R,J


︸ ︷︷ ︸

A(p)

·


µ1
...

µj
...

µJ


︸ ︷︷ ︸

µ

=


dµ(p, 1)

...
dµ(p, r)

...
dµ(p, R)


︸ ︷︷ ︸

d(p)
µ

(3.6)

Here a single row of this matrix can be substituted by the vector a(p)
r , defined as

follows:

a(p)
r =

(
a(p)

r,1 . . . a(p)
r,j . . . a(p)

r,J

)T
(3.7)

The specific system equation (Eq. 3.6) for a single projection p can also be written
in short form by substitution of the partial system matrix A(p) as:

A(p) · µ = d(p)
µ , (3.8)

where d(p)
µ represents the measurements of projection p. In order to extend this

relation for all projections P, we define the system matrix A and measurement
vector dµ as:
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A =


A(1)

...
A(p)

...
A(P)

 , dµ =



d(1)
µ
...

d(p)
µ
...

d(P)
µ


,

and state the final system of equations:

A · µ = dµ . (3.9)

Transformations

Given the two coordinate spaces – the detector and the discretized object – we need
to define the transformations between both coordinate systems. These transforma-
tions and their derivation is described by Galigekere et al. in detail in [Gali 03]. In
interest of calculating the projected detector coordinate of a specific voxel j and a
certain projection p – required for a voxel-based back-projection – we define the
projection matrix Bp used for the back-projection. The projection matrix Bp for a
homogeneous object index x̌, where

x̌ =

(
x
1

)
=


x1
x2
x3
1

 , (3.10)

is of size 3× 4. The projection of the object index x̌ onto the detector coordinate
system can then be computed by a simple matrix multiplication and normalization
of u using the inverse distance weight w−1: u1 · w

u2 · w
w

 = Bp · x̌ . (3.11)

The utilization of such projection matrices gives the flexibility for arbitrary geo-
metries and acquisition descriptions. For ideal geometries the projection matrices
can be directly derived (see [Gali 03]). For real system with non-ideal acquisitions
geometries – e.g., for a C-arm system – the projection matrices are typically ac-
quired by calibration. Details on the calibration and its advantages can be found
in Strobel et al. [Stro 03]. Incorporating the distance weight into the projection
matrix is a computational trick. Hence, we refer to the original paper by Wiesent et
al. [Wies 00] or the description in our reconstruction benchmark [Rohk 09].

In the geometrically inverse case, the ray direction needs to be computed from
the detector coordinate system for a specific projection index p. Therefore an in-
verse projection matrix F p for the forward-projection is defined. This matrix is of
size 3× 3 and is multiplied with a homogeneous vector ǔ that represent the detector
position u, such that
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l̂ = (t− s) = F p · ǔ = F p ·

 u1
u2
1

 (3.12)

where the resulting vector l̂ represents the direction from the source position
s to the target t respectively detector position u for projection p. According to
Galigekere et al. the inverse projection matrix F p as well the projection-specific
source position s can be calculated out of the projection matrix Bp. In general the
inverse projection matrix is defined by the inverse of the 3× 3 sub-matrix of the
projection matrix B – by removing the fourth column.

F =

 b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

−1

, b4 =

 b1,4
b2,4
b3,4


The vector b4 of the fourth column of B is then utilized to calculate the projection-
specific source position.

s = −F · b4 (3.13)

3.1.2 Reconstruction Methods Overview

To give an overview of medical image reconstruction algorithms is a quite complex
task. For decades an ongoing research in this field is ever-present and year by year
new or modified algorithms were introduced. Therefore, we focus on methods that
are well-known, in commercial use or likely to be used in the near future. State-
of-the-art research in this field, e.g., compressed sensing reconstruction methods,
are not considered. For different overviews respectively grouping of reconstruction
methods we refer to the literature [Kunz 07, Buzu 08, Fess 08, Zeng 10].

We divided the selected reconstruction algorithms into three different groups,
while the last two groups belong to a different class of algorithms namely iterative
methods. The overview is also illustrated in Figure 3.4.

The first group covers analytical reconstruction methods. The Filtered Back-
Projection (FBP) [Kak 88] is a direct application of the theory of Radon integral
transforms [Rado 17] in the case of the 1st generation CT providing a 2-D parallel
beam geometry. The Fourier Slice Theorem (see Sect. 3.2.1) as a special case of the
Radon integral transform is the basis of many analytical reconstruction methods.
Therefore the FBP can be applied also for 2-D fan-beam geometry in the 2nd gen-
eration of CTs. Extending this theory then to 3-D was more complex. For the 3rd

generation of CT and a helical geometry the Weighted Filtered Back-Projection was
introduced by Stierstorfer et al. [Stie 04] and is used in practice.

For C-arm CT – where helical acquisition is not the case – a 3-D extension of
the FBP method for cone-beam was introduced by Feldkamp, David and Kress com-
monly known as the FDK method [Feld 84]. The FDK method is used in transmis-
sion tomography for many years, since it delivers acceptable results with compara-
bly low computational efforts.
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Exact reconstruction methods – to be mentioned for completeness – form a
whole new category. The analytical group is completed by reconstruction meth-
ods based on the inverse Fourier transformation [Kats 02, Denn 05].

Analytical reconstruction methods are widespread and still extensively used in
many fields due to their computational performance benefits. However, they do also
have some drawbacks [Maco 83]. The measurement noise generally is ignored in
the problem formulation of analytical methods. In order to treat noise-related prob-
lems different kinds of pre- and post-filtering are often applied. Like the traditional
Fourier Slice Theorem, analytical formulations assume continuous measurements
and provide a closed form solution using continuous integrals. By discretizing these
solutions, sampling issues – e.g., in Fourier space – are treated and compensated
using pre- and post-processing or during interpolation on the detector. Another
drawback is that analytical methods require certain standard geometries – e.g., a
circular acquisition with complete sampling in radial direction and equidistant an-
gles.

This motivates the second class of reconstruction algorithms, namely iterative
methods, which can overcome these drawbacks. Also a transition to this class
is given by the last method of the first group, meaning Iterative Filtered Back-
Projection [Sunn 09]. We split the second class into two different groups. First the
group of algebraic reconstruction methods and second the statistical reconstruction
methods are introduced.

The oldest method of algebraic reconstruction is the Algebraic Reconstruction
Technique (ART) [Gord 70], which was also utilized by Hounsfield for the first CT
prototype. The ART was proposed by Gordon, Bender, and Herman in [Gord 70] as
a method for the reconstruction of 3-D objects from X-ray photographs or electron
microscopic scans. Instead of describing a continuous system and discretizing it
afterwards for its application, the ART defines the problem statement as a linear
algebra task. Most simplified it can be described as given a matrix A and a known
vector dµ, we want to compute the unknown vector µ, such that:

A · µ = dµ (3.14)

For invertible and moderately sized system matrices A the system can be solved
easily using direct methods. However, due to the tremendous size of the system
matrix in CT direct methods are not applicable.
Gordon et al. utilize the Kaczmarz method [Kacz 37] in order to iteratively solve
the system of equations. This method will be detailed in Section 3.3.

In 1972 Gilbert et al. introduced the Simultaneous Iterative Reconstruction
Technique (SIRT) [Gilb 72]. Instead of correcting µ with respect to a certain row
a(p)

r of the matrix A and a single measurement dµ(p, r), their algorithm performs
a correction of µ for all measurements dµ at a single iteration step. Therefore, at
each iteration step the correction term for all measurements has to be computed
and applied on µ. The performed corrections are smaller than for SART and ensure
the convergence behavior. Therefore, this method provides a slower convergence.

The next improvement on algebraic reconstruction was published by Andersen
and Kak in 1984 by the introduction of the Simultaneous Algebraic Reconstruction
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Technique (SART) [Ande 84]. They suggested to iteratively correct µ with respect
to multiple measurements d(p)

µ – respectively the corresponding rows of a(p)
r for a

single projection A(p) – at one iteration step. The authors argued, that this method
could suppress the striping artifacts that existed in reconstructions using ART. While
the Simultaneous Iterative Reconstruction Technique – published in 1972 by Gilbert
et al. – is also able to suppress these artifacts, the SART method still provided some
improvements due to a faster convergence. Hence, the convergence speed of SART
in general is right between the faster ART and slower SIRT.

The idea of performing a correction with respect to a certain number of equa-
tions respectively rows of A is already used in the SART method, but can also be
moved to the next step. For example instead of correcting µ for all measurements
of one projection, it can be corrected for some projections n at the same time.
If n equals the total amount of projections P this method becomes SIRT. Mueller
et al. named this method Ordered Subsets Simultaneous Iterative Reconstruction
Technique (OS-SIRT) [Xu 10], we used the term OS-SART [Keck 09a] instead. How-
ever, due to the history of ordered subset approaches coming from statistical recon-
struction methods, OS-SIRT seems the more appropriate nomenclature. Logically
the OS-SIRT method then provides a convergence speed between SART and SIRT.
For further details on algebraic reconstruction methods we refer to the literature
[Muel 98a].

Statistical reconstruction methods as the second group in the class of iterative
methods are motivated by modelling the physics of the creation, absorption and
detection of X-rays in a mathematical system. This statistical approach allows to
overcome suboptimal acquisition conditions, e.g., due to a limited acquisition an-
gle or very noisy data by low radiation dose. Limited data and very noisy data are
characteristically for emission tomography, where statistical reconstruction, e.g.,
the Maximum Likelihood (ML) reconstruction [Shep 82] by Shepp et al., is widely
used. Due to the variety of statistical reconstruction methods published over the
last three decades, we decided to focus on ML approaches in this work. Lange
et al. introduced the Expectation Maximization (EM) reconstruction algorithms
for emission and transmission tomography [Lang 84] in 1984. While many sta-
tistical reconstruction methods were introduced for transmission tomography over
the last decades, they are still hardly used in this field due to their computational
complexity. As an exceptional example we want to name the model-based iter-
ative reconstruction (MBIR) named VEO, introduced by GE Healthcare in 2011
[GE H 11, Inte 11], which utilizes an IBM Blade Center with up to 14 Blade servers
equipped with Intel Xeon CPUs. This supercomputer demonstrates the computa-
tional power required for such a product.

A complete introduction and comparison of the three named statistical recon-
struction methods in Figure 3.4 can be found in the paper [Lang 95] by Lange and
Fessler about globally convergent reconstruction algorithms. This paper builds the
basis for our research in high performance statistical reconstruction.
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This completes the overview of medical reconstruction methods in three dif-
ferent groups, of which selected algorithms are introduced in more detail in the
following sections.

3.2 Analytical Reconstruction Methods

The class of analytical reconstruction methods represents the common class of re-
construction algorithms used in medical imaging over the last four decades. The
problem to reconstruct a 2-D image from line integrals was first solved [Rado 17]
by Johann Radon in 1917. Of course Radon didn’t know the impact of his mathe-
matical solution to medical imaging fifty years later.

Looking at the simplest case of reconstruction – meaning 2-D image reconstruc-
tion out of parallel beam CT like in the 1st generation CT – the problem of inverting
the Radon transform raises. The solution of this problem is described by the Fourier
Slice Theorem shortly summarized in the next subsection.

3.2.1 Fourier Slice Theorem

The Fourier Slice Theorem is a fundamental (mathematical) theorem in the field
of medical imaging. Extensive text about this theorem as well as the derivation
can be widely found in the literature. For example it is detailed in Chapter 6.3 of
the book [Kak 88] by Kak and Slaney, as well as in the more recent book [Kram 07]
(Chapter 15.4.1) by Kramme et al. The Fourier Slice Theorem is also well explained
by Henrik Turbell in Chapter 2.1 of his dissertation [Turb 01].

The Fourier Slice Theorem can be summarized by the following main statement:

Given a parallel projection of a 2-D object, the values of the 1-D Fourier
Transform of this projection can then be found along a radial line – in
parallel to this projection – of the 2-D Fourier Transform of the given 2-D
object.

By representing the 2-D Fourier space of the object out of the measurements of
all projection angles, the reconstruction tasks leads to the inverse 2-D Fourier Trans-
form. But these kind of reconstruction methods utilizing the inverse (Fast) Fourier
Transformation – also called Direct Fourier Methods – are hardly used in practice
due to interpolation inaccuracies and computational costs [Kram 07]. Instead the
so called Filtered Back-Projection and its variants are the most common approach
in medical imaging.
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3.2.2 Filtered Back-Projection

Utilizing the Fourier Slice Theorem a reconstruction algorithm can be derived math-
ematically. Again we refer to the literature since we did neither introduce a con-
tinuous reconstruction space nor a continuous acquisition space. For example the
derivation can be found in the dissertation [Sunn 09] on Iterative Filtered Backpro-
jection Methods for Helical Cone-Beam CT by Johan Sunnegårdh (his Equation 2.5).

The Filtered Back-Projection approach is named after its implementation. Look-
ing at the mathematical formulation the reconstruction is based on two steps. First,
the projection data needs to be convolved with a high-pass kernel. Therefore this
step is called filtering. And secondly, the filtered projection data has to be projected
back – basically smeared along the projection direction – into the image space, the
so called back-projection. Many analytical reconstruction methods share this sim-
ple design.

In an implementation we focus on a non-continuous reconstruction space µ (see
Eq. 3.5) and a limited number of discretized projections dµ (see Sect. 3.1.1). For
the 2-D image reconstruction our third object dimension X3 equals 1, as well as the
number of detector rows U2 = 1. We then define the filtered projection data as

dg(p, u) = dµ(p, u)∗ g(p, u), (3.15)

where g(p, u) denotes the filtering kernel. Analogously to d̂µ(p, u) we define the
bilinearly interpolated version of the filtered projection data d̂g (p, u). Here, the
filter kernel is a band-limited and sampled version of the ideal – linear and spatially
invariant – ramp filter. Typically this filtering is applied by multiplication of the filter
kernel in the frequency domain. The frequency domain also entitles the filter name
by its ramp like shape.

By modifying the filtering kernel the visual impression of the reconstructed ob-
ject can be changed. E.g., with sharp edges and a higher noise level or a smoother
impression with less noise. For more details, we refer to the literature and research
mentioned above or [Buzu 08], since this is beyond the scope of this thesis.

For the sake of completeness, we first formulate the reconstruction algorithm of
the Filtered Back-Projection treating the case of 2-D image reconstruction for the
2-D parallel beam case and look into a 3-D extension for cone-beam in the next
subsection.

Using the defined geometry from Section 3.1.1 and the filtered projection data
dg(p, u) the FBP reconstruction algorithm in the 2-D case for a half-rotation acqui-
sition is defined as

µj =
P

∑
p=1

d̂g (p, u(p, j)) , (3.16)

where u(p, j) represents the detector coordinate for each pixel in each projection
using the projection matrix Bp – see Eq. 3.11 – and the corresponding homogeneous
coordinate x̌, see Eq. 3.10.
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Given Equation 3.16 we can formulate the instructions for a 2-D Filtered Back-
Projection reconstruction:

1. Filter the acquired projection data according to Equation 3.15.

2. For each pixel j compute the reconstruction formula for µj in Equation 3.16.

3.2.3 The FDK method

A 3-D extension of the FBP method was published as a Practical Cone-Beam Algo-
rithm [Feld 84] by Feldkamp, Davis and Kress in 1984. The method is commonly
known as FDK method. This 3-D cone-beam algorithm for circular acquisition geo-
metries is similar to the FBP method with minor differences.

In addition to the ramp filtering, the data needs to be weighted in order to
compensate for both magnification and demagnification [Turb 01]. This part is
called cosine weighting since the cosine of a specific angle is used. For details we
refer to the literature [Denn 08] as well as Chapter 2.2.1 [Sche 11] by Scherl et
al. This additional weighting can be easily integrated in the filtering step. In the
3-D case the number of detector rows is U2 > 1, but the filtering is applied for
each detector row u2 separately. We define the filtered data including the cosine
weighting for the FDK method equally to the FBP method for a fixed u2 as

dg(p, u) =
(
dµ(p, u) · w(p, u)

)∗ g(p, u), (3.17)

where g(p, u) describes the corresponding filter and w(p, u) the weighting for each
detector coordinate u of projection p. As a second difference to the FBP method the
back-projection step includes an additional distance weight for each voxel at each
projection. This distance weight can be incorporated into the projected detector co-
ordinate computation using the projection matrix Bp. Another difference depends
on the acquisition trajectory. If instead of a full-scan trajectory only a short-scan
acquisition is performed an additional Parker weighting has to be applied as part
of the filtering step (see [Park 82]). The FDK reconstruction method can then be
defined as

µj =
P

∑
p=1

w−2(p, j) · d̂g (p, u(p, j)) , (3.18)

where both the detector coordinate u and the computation of the distance
weight w(p, j) are computed for each voxel in each projection.
Again we formulate the instructions for a FDK reconstruction according to Equa-
tion 3.18:
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1. Perform cosine weighting and ramp filtering on the acquired projection data.

2. Compute for each voxel j the defined function for µj from Equation 3.18.

This widely used reconstruction algorithm concludes the short introduction on
analytical reconstruction methods in medical imaging. Additional this defines an
algorithmic basis for our high performance implementation detailed in the next
chapter. Before we will introduce the algebraic reconstruction methods utilized in
this thesis in the following section.

3.3 Algebraic Reconstruction Methods

Instead of an analytic derivation of the reconstruction problem, the problem state-
ment can also be formulated in a discrete mathematical formulation. These recon-
struction algorithms are implied by the group of algebraic reconstruction methods
as the first group in the class of iterative reconstruction methods.

In the following several algorithms are defined, which solve the mathematical
formulation of the image reconstruction problem. As described in Section 3.1.1,
the attenuation integrals dµ(p, r) are acquired and represented in the measurement
vector dµ. The discretized object is represented by the unknown vector µ. Given
the system matrix A describing the contribution of each voxel j to each attenua-
tion integral, the system equation is formulated as mathematical description of the
reconstruction problem.

A · µ = dµ

In order to solve the system of equations several different algorithms can be
used. Before, we shortly depict the system matrix elements.

3.3.1 Depiction of the System Matrix Elements

Each element a(p)
r,j of the system matrix describes the contribution of the voxel j to

the attenuation integral dµ(p, r). For a specific measurement, these elements are
mostly zeros, except along the measurement ray from the source s to the target t
for dµ(p, r) as described in Section 3.1.1. However, the exact contribution can be
interpreted differently.

In the simplest scenario, the matrix element is set to 1 if the ray passed through
the voxel j and to 0 otherwise. This was proposed [Gord 70] in 1970 by Gordon et
al., detailed in the next subsection. Later, Shepp and Logan [Shep 74] suggested
to compute the ratio between the actual intersection area or volume of the ray
measured by dµ(p, r) with the voxel j and the voxel area respectively voxel volume.
A 2-D illustration is depicted in Figure 3.5 on the right side.
Another interpretation was introduced as Fast calculation of the exact radiological
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voxel j
dµ(p, r)

d(p)
µ

a(p)
r,j =

voxel j
dµ(p, r)

d(p)
µ

a(p)
r,j =

Figure 3.5: Figurative sense of the system matrix elements. On the left, the in-
tersection length is used as system description, which was proposed by Siddon
[Sidd 85]. On the right side, the intersected area is set into relation with the voxel
size, proposed by Shepp and Logan [Shep 74].

path for a three-dimensional CT array [Sidd 85] by Siddon in 1985. As a system
matrix element, Siddon suggested to compute the intersection length of the ray
and the voxel. This is also illustrated in a 2-D example in Figure 3.5 on the left
side. Since many other interpretations exist, we refer to the literature [Muel 98a,
Xu 06, Kunz 07] for details and alternatives.

3.3.2 Algebraic Reconstruction Technique

The first algebraic reconstruction method was published in 1970 as an Algebraic
Reconstruction Technique (ART) [Gord 70] by Gordon, Bender, and Herman. The
authors suggest to compute the solution by iteratively solving the system of equa-
tions using a method published by Kaczmarz [Kacz 37] in 1937.

Due to noise in the measurement data and approximations for the system de-
scription an exact mathematical solution of Equation 3.3 typically does not exist.
Therefore, the problem statement is reformulated in order to find an approximate
solution to

argmin
µ
‖A · µ− dµ‖2 (3.19)

minimizing the error. This means that the vector µ is computed for each equation
and modified towards this partial solution. Overall it is proven that this row wise
correction of the unknown vector generally converges to the closest approximation
of the object for a certain relaxation factor λ [Muel 98a].
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We formulate the algorithmic update rule for a specific projection p and reading r
as

µ
(κ+1)
j = µ

(κ)
j + λ ·

dµ(p, r)−
J

∑
c=1

a(p)
r,c · µ

(κ)
c

J
∑

c=1
a(p)

r,c

· a(p)
r,j , (3.20)

where κ represents the update index. A single iteration k is achieved by updating µ
for R readings of P projections, such that

µ(k) = µ(κ), for k =
κ

P · R and κ mod (P · R) = 0 (3.21)

The instruction for the reconstruction algorithm of the ART method can now be
formulated according to the update rule:

1. First initialize ∀j: e.g., µ
(0)
j = 0.

2. Iterate for a specified number of K iterations or until convergence.

3. ∀p ∈ P, ∀r ∈ R: update µ
(κ+1)
j for all voxels j according the update rule in

Equation 3.20.

3.3.3 Simultaneous Algebraic Reconstruction Technique

The Simultaneous Algebraic Reconstruction Technique (SART) [Ande 84] repre-
sents another algebraic reconstruction methods and was introduced in 1984 by
Andersen and Kak. The authors suggest a similar approach to ART, but instead
of iteratively correcting µ with respect to a single row a(p)

r of the matrix A and a
single measurement dµ(p, r), µ should be corrected for multiple rows A(p) at once

respectively for a single projection d(p)
µ in one update step (see Eq. 3.8).

Their main argument states that this method could suppress the striping artifacts
that existed in the ART reconstructions. The approximate solution is iteratively
computed to the following update rule:

µ
(κ+1)
j = µ

(κ)
j + λ ·

R
∑

r=1

 dµ(p,r)−
J

∑
c=1

a(p)
r,c ·µ

(κ)
c

J
∑

c=1
a(p)

r,c

 · a(p)
r,j

R
∑

r=1
a(p)

r,j

(3.22)

For the SART method the update index κ is incremented for P projections in
each iteration, such that a single iteration is described by:

µ(k) = µ(κ), for k =
κ

P
and κ mod P = 0 (3.23)
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The SART method is defined by the following instructions according to the up-
date rule in Equation 3.22:

1. First initialize ∀j: µ
(0)
j = 0.

2. Iterate for a specified number of K iterations or until convergence.

3. ∀p ∈ P: update µ
(κ+1)
j for all voxels j according the update rule in Equa-

tion 3.22.

3.3.4 Simultaneous Iterative Reconstruction Technique

Before the SART publication the Simultaneous Iterative Reconstruction Technique
(SIRT) [Gilb 72] was already published in 1972 by Gilbert et al. The method is
also able to suppress the mentioned striping artifacts of the ART method. However,
compared to the SART method, the SIRT method provides a slower convergence.

The SIRT method performs a correction of µ for all measurements dµ in a single
update step. Therefore, at each iteration step the correction term for all measure-
ments has to be computed and applied on the approximated solution vector µ(k).

In order to ensure the convergence, the overall corrections of each voxel per
iteration are small. This results in a slow convergence. The iteratively applied
update rule of the SIRT method can be stated as:

µ
(k+1)
j = µ

(k)
j + λ ·

P
∑

p=1

R
∑

r=1

 dµ(p,r)−
J

∑
c=1

a(p)
r,c ·µ

(k)
c

J
∑

c=1
a(p)

r,c

 · a(p)
r,j

P
∑

p=1

R
∑

r=1
a(p)

r,j

(3.24)

As a single update is applied for all readings of all projections the update index
κ and iteration index k are equivalent in the case of the SIRT method. Therefore
the update index κ can be replaced by the iteration index k. The instructions for
the SIRT reconstruction algorithm are very similar to those of the SART method.
Now the subsequent loop over all projections is brought into the update rule in
Equation 3.24 such that the following steps need to be computed:

1. First initialize ∀j: µ
(0)
j = 0.

2. Iterate for a specified number of K iterations or until convergence.

3. Update µ
(k+1)
j for all voxels j according the update rule in Equation 3.24.
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3.3.5 Ordered Subsets for SIRT

Known from statistical reconstruction methods (see Sect. 3.4) – like the Ordered
Subsets Expectation Maximization (OS-EM) [Huds 94] – another approach similar
to the preceding algebraic reconstruction methods is described. Given the following
order of theoretical convergence speed, the ART method provides the fasted con-
vergence speed followed by the SART method and the slowest convergence speed
using the SIRT method.

We introduce Ordered Subsets for the Simultaneous Iterative Reconstruction
Technique (OS-SIRT) published in [Keck 09a]. The OS-SIRT method provides a con-
vergence speed between SART and SIRT. While this method theoretically provides
a slower convergence as the SART method, it provides computational performance
benefits due to the technical realization. In parallel Xu et al. found equivalent re-
sults [Xu 10]. The technical realization as well as performance benefits are detailed
in Section 4.2.2.

Instead of SART, where a projection-wise correction is performed, we specify
ordered subsets to be used in each single update. Each ordered subset POS includes
a specific number of projections. All ρ subsets then include a total of P projections.
Analogously to the SART and SIRT method, we can state the update rule used in
the OS-SIRT iterative algorithm:

µ
(κ+1)
j = µ

(κ)
j + λ ·

∑
p∈POS

R
∑

r=1

 dµ(p,r)−
J

∑
c=1

a(p)
r,c ·µ

(κ)
c

J
∑

c=1
a(p)

r,c

 · a(p)
r,j

∑
p∈POS

R
∑

r=1
a(p)

r,j

(3.25)

For one iteration µ is updated for all ordered subsets ρ such that:

µ(k) = µ(κ), for k =
κ

ρ
and κ mod ρ = 0 (3.26)

The OS-SIRT method is defined similar to the SART method by the following
reconstruction algorithm instructions according to the update rule in Equation 3.25:

1. First initialize ∀j: µ
(0)
j = 0.

2. Iterate for a specified number of K iterations or until convergence.

3. ∀ρ: update µ
(κ+1)
j for all voxels j according the update rule in Eq. 3.25.

Given the four introduced algebraic reconstruction methods and their mathe-
matical formulation, we conclude this section.
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Another group of iterative reconstruction methods is also mathematically mo-
tivated. Taking the statistical distribution of the noisy measurements into account
– e.g., by assuming Gaussian noise or Poisson statistics – the group of statistical
reconstruction methods is detailed in the next section.

3.4 Statistical Reconstruction Methods

The last introduced group of reconstruction algorithms belongs to the class of it-
erative reconstruction methods. Statistical reconstruction methods provide differ-
ent benefits, like modeling physical effects or incorporating measurement statistics.
The drawback of these methods is that they are more complicated and have high
computational costs. Therefore they are mostly used in applications where other
methods cannot meet the clinical requirements. Statistical reconstruction methods
are widely used in emission tomography and rarely in transmission tomography.
Compared to transmission tomography, emission tomography is usually limited to
a lower amount of measurement data which is corrupted by higher noise charac-
teristics.

In 1982 Shepp introduced a maximum likelihood reconstruction algorithm for
emission tomography, which started a significant interest in statistical reconstruc-
tion methods with applications in this field.

In this work we focus on the maximum likelihood reconstruction for transmis-
sion tomography. The presented implementation is based on the previous work
by Lange and Fessler. In their paper on Globally Convergent Algorithms for Max-
imum a Posteriori Transmission Tomography [Lang 95] the authors introduce and
compare maximum likelihood reconstructions by utilizing three different objective
functions. They detail the widely known Expectation Maximization (EM) approach,
a convex algorithm devised by De Pierro in the context of emission tomography, and
a gradient-decent-algorithm introduced by the authors. We will introduce all three
methods after motivating the maximum likelihood reconstruction. In this thesis we
focus on the maximum likelihood convex algorithm. Therefore, this method will be
derived in detail. For other statistical reconstruction methods and further details
we refer to the literature [De M 09].

Before describing the statistical background of these reconstruction methods,
we introduce a different notation of the forward projection, used by Lange et al.
and for this section. The discretized version of the line integral of Equation 3.3 can
also be written in inner product notation by:

〈
a(p)

r , µ
〉

=
J

∑
j=1

a(p)
r,j · µj (3.27)

For the statistical background, the unique pair (p, r) indicates each individual
measurement for the observed dI(p, r) photons of I0 Poisson distributed and ex-
pected photons going through the object represented by the attenuation volume µ.
The Poisson nature of X-ray generation and the discretized non-overlapping volume
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representation implies that the various measurements are independent and there-
fore follow a Poisson distribution. The intersection length for the measurement at
(p, r) and the j-th volume element of µ is defined by the system matrix element
a(p)

r,j . The likelihood function for the observed dI(p, r) photons is then defined as:

P

∏
p=1

R

∏
r=1

P(dI(p, r)|I0, µ) =
P

∏
p=1

R

∏
r=1

(
I0e−

〈
a(p)

r ,µ
〉)dI(p,r)

dI(p, r)!
e−I0e

−
〈

a
(p)
r ,µ

〉
, (3.28)

where
〈

a(p)
r , µ

〉
denotes the computation of a forward projection for the measure-

ment ray (p, r) and the volume estimate µ. Maximizing the likelihood function is
equivalent to maximizing the log-likelihood function as the log function is mono-
tone. For many reasons it is more convenient to use the log-likelihood function,
which can be derived from Equation 3.28 as:

L(µ) = ln
P

∏
p=1

R

∏
r=1

(
I0e−

〈
a(p)

r ,µ
〉)dI(p,r)

dI(p, r)!
e−I0e

−
〈

a
(p)
r ,µ

〉

=
P

∑
p=1

R

∑
r=1

{
ln

[(
I0e−

〈
a(p)

r ,µ
〉)dI(p,r)

]
+

(
−I0e−

〈
a(p)

r ,µ
〉)
− ln (dI(p, r)!)

}

=
P

∑
p=1

R

∑
r=1

{
dI(p, r)

[
ln (I0)−

〈
a(p)

r , µ
〉 ]
− I0e−

〈
a(p)

r ,µ
〉
− ln (dI(p, r)!)

}

=
P

∑
p=1

R

∑
r=1

{
−I0e−

〈
a(p)

r ,µ
〉
− dI(p, r)

〈
a(p)

r , µ
〉
+ dI(p, r) ln (I0)− ln (dI(p, r)!)

}

=
P

∑
p=1

R

∑
r=1

{
−I0e−

〈
a(p)

r ,µ
〉
− dI(p, r)

〈
a(p)

r , µ
〉}

+
P

∑
p=1

R

∑
r=1
{dI(p, r) ln (I0)− ln (dI(p, r)!)}︸ ︷︷ ︸

h

=
P

∑
p=1

R

∑
r=1

{
−I0e−

〈
a(p)

r ,µ
〉
− dI(p, r)

〈
a(p)

r , µ
〉}

+ h, (3.29)

where h represents the substitution of the µ-independent part of this equation. The
log-likelihood results in the following equation analogous to Equation 1982 in the
original paper [Lang 95], including the constant h, which can be neglected in the
optimization process:

L(µ) =
P

∑
p=1

R

∑
r=1

{
−I0e−

〈
a(p)

r ,µ
〉
− dI(p, r)

〈
a(p)

r , µ
〉}

+ h

By maximizing the log-likelihood we obtain the µ which maximizes the probability
for measuring the projections dI(p, r).
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3.4.1 Maximum Likelihood using Expectation Maximization

In their paper, Lange and Fessler [Lang 95] first review the Expectation Maximiza-
tion algorithm from the introduced maximum likelihood model. This reconstruc-
tion algorithm is derived in the paper by Lange and Carson [Lang 84]. It is ex-
plained in more details in Appendix B and is summarized in the following.

The complete data is defined as the number of photons entering Ψ(p)
r,j and leav-

ing Ω(p)
r,j each voxel j for each measurement. The authors then define the condi-

tional expectations X(p)
r,j = E(Ψ(p)

r,j |I0, µ(k)) and Y(p)
r,j = E(Ω(p)

r,j |I0, µ(k)) required for
the expectation step of the EM algorithm. They further detail that both conditional
expectations can be calculated by:

X(p)
r,j = dI(p, r) + I0e

−∑
c∈S(p)

r,j
a(p)

r,c µ
(k)
c

− I0e−
〈

a(p)
r ,µ(k)

〉
,

Y(p)
r,j = dI(p, r) + I0e

−∑
c∈S(p)

r,j ∪{j}
a(p)

r,c µ
(k)
c

− I0e−
〈

a(p)
r ,µ(k)

〉
,

where S(p)
r,j describes the set of voxels between the source s and the j-th voxel along

the measurement for reading r of projection p. Note that the j-th voxel is not
included in S(p)

r,j .
In order to compute the solution for the unknown µ they suggest an algorithm

by iteratively approximating the solution:

µ
(k+1)
j =

P
∑

p=1

R
∑

r=1

(
X(p)

r,j −Y(p)
r,j

)
1
2

P
∑

p=1

R
∑

r=1

(
X(p)

r,j + Y(p)
r,j

)
a(p)

r,j

(3.30)

The MLEM method is defined by the following instructions according to the
update rule in Equation 3.30:

1. First initialize µ
(0)
j ∀j, e.g., µ

(0)
j = const. > 0 .

2. Iterate for a specified number of K iterations or until convergence.

3. Update µ
(k+1)
j for all voxels j according the update rule in Equation 3.30.
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3.4.2 Maximum Likelihood using Gradient-based Optimization

The second introduced algorithm by Lange and Fessler is a scaled gradient algo-
rithm. This algorithm is more suitable for a higher performance than the MLEM
algorithm, because the MLEM algorithm entails a large number of exponentiations
[Lang 95]. The algorithm is motivated by heuristically maximizing the Likelihood.
Therefore, the update rule for the ML-Gradient algorithm suggested in Lange et al.
[Lang 87] corrects the unknown vector µ by:

µ
(k+1)
j = µ

(k)
j +

µ
(k)
j

P
∑

p=1

R
∑

r=1
dI(p, r)a(p)

r,j

∂

∂µj
L
(

µ
(k)
j

)

= µ
(k)
j

P
∑

p=1

R
∑

r=1
I0e−

〈
a(p)

r ,µ(k)
〉

a(p)
r,j

P
∑

p=1

R
∑

r=1
dI(p, r)a(p)

r,j

(3.31)

This introduced algorithm provides an improvement concerning the computational
cost, but comes with the lack of no guarantees for convergence of the log-likelihood
function or preserving the non-negativity constraint of the unknown vector µ.

The ML-Gradient method is defined equivalent to the MLEM instructions with
respect to the update rule in Equation 3.31:

1. First initialize µ
(0)
j ∀j, e.g., µ

(0)
j = const. > 0 .

2. Iterate for a specified number of K iterations.

3. Update µ
(k+1)
j for all voxels j according the update rule in Equation 3.31.

3.4.3 Maximum Likelihood Convex Algorithm

Third and last statistical reconstruction method we focus on is a maximum likeli-
hood reconstruction using a concave objective function. Lange and Fessler intro-
duced this method in their paper [Lang 95] as convex algorithm. This is due to
the fact that they rewrite the log-likelihood function by partly substitution with
a strictly convex function. The negative of this function is utilized in the objec-
tive function. Therefore the objective function is concave as expected for the log-
likelihood. In order to correlate this method to the convex algorithm, we refer to
it as ML-Convex method in this thesis. Lange et al. provide proof of convergence
for this method and argue that the method provides decreased computational cost
compared to the MLEM method. For this algorithm we detail the derivation as this
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is of importance for the implementation presented in Chapter 4.

The ML-Convex method is derived by rewriting the log-likelihood function from
Equation 3.29 as:

L(µ) = −
P

∑
p=1

R

∑
r=1

f (p,r)

(〈
a(p)

r , µ
〉 )

(3.32)

using the strictly convex function

f (p,r) (t) = I0e−t + dI(p, r) · t, (3.33)

where I0 and dI(p, r) state a specific measurement and t any arbitrary parameter
or parameterized function. This function is convex as it represents a linear combi-
nation of two non-negativ convex functions. In order to define a second objective
function the authors utilize a property of convex functions. This property is also
named as Jensen’s inequality and therefore it is repeated here:

The Jensen inequality [Kran 99, Weis]:

For a convex function f and positive λi such that
n
∑

i=1
λi = 1, then

f

(
n

∑
i=1

λixi

)
≤

n

∑
i=1

λi f (xi) (3.34)

Given the rewritten log-likelihood function L(µ), the following inequality can
be derived using De Pierro [De P 93, De P 95]:

L(µ) = −
P

∑
p=1

R

∑
r=1

f (p,r)

 J

∑
j=1

a(p)
r,j µ

(k)
j〈

a(p)
r , µ(k)

〉 µj

µ
(k)
j

〈
a(p)

r , µ(k)
〉 ∣∣∣ Jensen

≥? −
P

∑
p=1

R

∑
r=1

J

∑
j=1

a(p)
r,j µ

(k)
j〈

a(p)
r , µ(k)

〉 f (p,r)

 µj

µ
(k)
j

〈
a(p)

r , µ(k)
〉

= Q
(

µ | µ(k)
)

, (3.35)

where
J

∑
j=1

a(p)
r,j µ

(k)
j〈

a(p)
r ,µ(k)

〉 = 1 for all (p, r) . For the application? of the Jensen’s inequality

Eq. 3.34, note the negative sign in Equation 3.35 that reverses the inequality. Using
this inequality the authors derive the objective function Q

(
µ | µ(k)

)
as a lower

bound of L(µ). If this objective function is maximized with respect to µ(k), it is
proven by this inequality that this maximizes the log-likelihood L(µ). If µ = µ(k)

then the inequality in Equation 3.35 is an equality.
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Analogously to classical EM theory the function Q
(

µ | µ(k)
)

is specifically de-

signed such that the difference L(µ)−Q
(

µ | µ(k)
)

attains its global minimum of 0

at µ = µ(k). They choose µ(k+1) to maximize Q
(

µ | µ(k)
)

, where

Q
(

µ(k+1) | µ(k)
)
≥ Q

(
µ(k) | µ(k)

)
.

By selecting µ(k+1) for this function, the convergence can be indicated by

L
(

µ(k+1)
)

= L
(

µ(k+1)
)
−Q

(
µ(k+1) | µ(k)

)
︸ ︷︷ ︸

0

+Q
(

µ(k+1) | µ(k)
)

≥ L(µ(k))−Q
(

µ(k) | µ(k)
)

︸ ︷︷ ︸
0

+Q
(

µ(k) | µ(k)
)

= L(µ(k)) (3.36)

with strict inequality if µ(k+1) 6= µ(k).

In order to maximize Q
(

µ | µ(k)
)

instead of L
(

µ(k)
)

, the first derivative is
taken and set to zero:

0 =
∂

∂µj
Q
(

µ | µ(k)
)

(3.37)

= −
P

∑
p=1

R

∑
r=1

a(p)
r,j µ

(k)
j〈

a(p)
r , µ(k)

〉 ∂ f (p,r) (t)
∂t

∣∣∣∣∣
t=

 µj

µ
(k)
j

〈
a(p)

r ,µ(k)
〉 ·

〈
a(p)

r , µ(k)
〉

µ
(k)
j

= −
P

∑
p=1

R

∑
r=1

a(p)
r,j ·

∂ f (p,r) (t)
∂t

∣∣∣∣∣
t=

 µj

µ
(k)
j

〈
a(p)

r ,µ(k)
〉

= −
P

∑
p=1

R

∑
r=1

a(p)
r,j

−I0e
−

µj

µ
(k)
j

〈
a(p)

r ,µ(k)
〉
+ dI(p, r)


=

P

∑
p=1

R

∑
r=1

a(p)
r,j

I0e
−

µj

µ
(k)
j

〈
a(p)

r ,µ(k)
〉
− dI(p, r)


For the first derivative of Q

(
µ | µ(k)

)
with respect to µj, the authors use the

last representation:

∂

∂µj
Q
(

µ | µ(k)
)

=
P

∑
p=1

R

∑
r=1

a(p)
r,j

I0e
−

µj

µ
(k)
j
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Equation 3.37 can be solved using Newton’s method as
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Again they use the last representation from Equation 3.39 of the second derivative
of Q
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such that:
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For µ

(k)
j > 0 and given Equations 3.38 and 3.41 the solution of Equation 3.37

can be iteratively solved using Newton’s method. This solution maximizes Q
(

µ | µ(k)
)

– see Equation 3.35 – as well as the log-likelihood L(µ) in Equation 3.32. Looking
at a single step of the Newton’s method the iterative update rule is derived in detail:
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substitute the first derivative using Equation 3.40
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Now exclude 1
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j

in the denominator
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and bring it into the numerator. This states the update rule – compare [Lang 95]
Eq. 7 – formulated by Lange and Fessler.
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The update rule is further reformulated in order to make it applicable for our im-
plementation. Therefore insert Equation 3.37 for the first derivate
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. The ML-Convex update rule is then defined as
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As an alternative to the additive correction the update rule Eq. 3.43 can also be
written in a multiplicative form as
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The instructions for the ML-Convex reconstruction method with respect to the
update rules in Equation 3.43 and Equation 3.44 are defined as follows:
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1. First initialize µ
(0)
j ∀j, e.g., µ

(0)
j = const. > 0 .

2. Iterate for a specified number of K iterations or until convergence.

3. Update µ
(k+1)
j for all voxels j according the update rule in Equation 3.43 or

Equation 3.44.

Iterative reconstruction methods typically include a regularization in order to
incorporate prior knowledge. In the next section we shortly refer to possible con-
straints, which are not utilized in this work.

3.4.4 Regularization - Constraints Incorporating Priors

In order to incorporate prior knowledge or model specific physical effects, regular-
izations are subjoined into statistical reconstruction algorithms. These priors steer
the interim solution of each iteration towards a solution with a higher probability
of certain properties. E.g., high variations of the attenuation coefficients for a lo-
cal neighborhood are not preferred for the reconstructed objects. Therefore, Lange
and Fessler modify the introduced algorithms in order to take smoothing priors into
account.

We shortly point out the idea of how to incorporate the smoothing priors intro-
duced in the work by Lange and Fessler and refer to their paper [Lang 95] for a
detailed explanation.

The authors replace the log-likelihood derived in Equation 3.29 by the log-
posterior ∆(µ) = L(µ) − U(µ), where U(µ) is some energy function penalizing
large differences between neighboring pixels. The Gibbs priors introduced by Ge-
man and McClure [Gema 85, Gema 87] take the form

U(µ) = γ ∑
{j,c}∈O

wjcψ(µj − µc) (3.45)

where γ and the weights wjc are positive constants, O is a set of unordered pairs
{j, c} defining a neighborhood system and ψ(x) is a potential function. The con-
stant γ weights the overall strength of the prior. It is convenient to assume that
ψ(x) is even, twice continuously differentiable, and strictly convex with ψ′′(x) > 0
for all x. De Pierro proposed an elegant alternative to Green’s method [Gree 90] of
handling the energy function U(µ) when maximizing Q

(
µ | µ(k)

)
−U(µ).

Analogously to De Pierro’s treatment of the log-likelihood, here the maximization
of Q

(
µ | µ(k)

)
−U(µ) is reduced to a sequence of one-dimensional maximization

problems, described as V
(

µ | µ(k)
)

. Therefore it is possible to incorporate smooth-
ing priors into a parallel implementation, which is not treated in this thesis.
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3.5 Convergence and Complexity

We want to complete the third chapter with an overview of the complexity and the
convergence behaviour of the considered algorithms. Before we detail the complex-
ity calculation, we focus on the convergence behaviour.

The convergence of the analytical reconstruction algorithms is straightforward
as the computation result is determined. In contrast, the convergence behaviour of
iterative algorithms depends on different parameters. Most crucial is the objective
function. Despite this the initialization of the object is also of importance. The
better – in terms of similarity to the exact solution – the object is initialized for the
iterative reconstruction the fewer iterations are required to obtain a result that is
close to the ideal solution. The wide range of possible initialization strategies in
this field are disregarded and we refer to the literature [Kunz 07].

As a second parameter the relaxation factor is taken into consideration. The
relaxation factor is mainly used to stabilize the convergence behaviour. Smaller
relaxation factors introduce a higher stability, but they also slow down the conver-
gence. This results in a trade-off in selection of the relaxation factors for medical
image reconstruction such that the reconstruction can be performed stable and ef-
ficiently.

If additional regularizations are used in the iterative process, these influence the
convergence as well. The last influencing parameter is the data itself. Variations
in the data also effect the convergence behaviour. Therefore, an exact convergence
comparison can only be performed for the same geometry, examined object, and
used parameters. In the field of medical imaging this is rarely possible and we
therefore state our empirical knowledge for the considered algorithms.

In order to investigate the complexity of the considered algorithms we use the
following assumptions for simplicity. Assuming a reconstruction volume with equal
size in each dimension we utilize:

M = X1 = X2 = X3 (3.46)

Analogously to the volume we restrict each projection to a size of

N = U1 = U2 (3.47)

such that a single projection includes N2 = R = U1 ·U2 readings.
As the volume size M and the projections size N differs in each dimension only in
a linear scaling factor, we note that N = α · M. In the following we assume that
the volume consists of N3 elements. Looking at the back-projection operator N3

elements have to be incremented for each projection. Then the complexity of the
(filtered) back-projection for a total of P projections is O(PN3).

For iterative reconstruction methods the forward-projection operator has to be
additionally considered. Forward-projection algorithms vary in their complexity.
Differing examples can be found in literature [Xu 06] as well as in the dissertation
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(F)BP ART SART OS-SIRT SIRT ML-Convex

complexity O(PN3) O(KPN3) O(KPN3) O(KPN3) O(KPN3) O(KPN3)

iterations* 1 3− 5 5− 10 10− 20 > 20 > 30

volume updates 1 K · P · R K · P K · ρ K K

Table 3.1: The complexity of analytical and iterative reconstruction algorithms is
compared for the simplified case. Here each dimension of the reconstructed volume
as well as each dimension of the utilized projections are of size N. The total amount
of projections P is utilized for a total of K iterations. In the case of OS-SIRT the
projections are split into ρ ordered subsets. The convergence behaviour decreases
from left to right. Analogously, the suggested number of iterations* increases. In
order to depict another important parameter, the number of volume updates, is also
compared.

(p.43) [Kunz 07] by Holger Kunze. For our implementation we need to approxi-
mate the forward-projection complexity. In case of a ray casting we assume N2 rays
sampled at N volume elements. For P projections this results in a total complexity
of O(PNN2) = O(PN3).
Combining both operators in iterative algorithms results in a complexity ofO(PN3)
for each iteration. For K iterations the complexity can then be estimated asO(KPN3).

Concluding Chapter 3 on Medical Image Reconstruction Algorithms an overview
of the complexities, the required volume updates and the proposed number of iter-
ations as an indicator for the convergence is stated in Table 3.1.

3.6 Conclusion

In order to revise the utilized medical image reconstruction algorithms the nomen-
clature used in this thesis is introduced. It includes definitions of the geometry,
acquisition data, reconstruction object, system matrix, and the required transfor-
mations. An overview of the diversity of medical reconstruction algorithms and a
possible categorization is given. This three different categories of reconstruction
methods – namely analytical, algebraic and statistical reconstruction methods – are
further explained by several examples for each group. While the focus of this thesis
is on the class of iterative reconstruction algorithms, examples for the widely used
analytical reconstruction methods are introduced, too. This eases the comparison
of the described algorithms in terms of algorithmic complexity and computational
differences. The different introduced algorithms of each group build the basis of
the medical image reconstruction methods used in our research. Finally, a com-
parison of those highlights their important differences in terms of convergence and
algorithmic complexity.



C H A P T E R 4

High Performance Medical
Image Reconstruction

Given the technical and theoretical background of our research in Chapter 2 and
Chapter 3 the main scientific contribution in the field of high performance medical
image reconstruction is shown in this chapter.

In medical image reconstruction as well as medical image processing compli-
cated algorithms have to be computed with very strict time constraints. These
time constraints typically depend on the particular application. For example, in
interventional radiology delays are critical while surgeons operate. In case of emer-
gency medicine the patient treatment during the golden hour is vital [Nico 08].
For screening methods examination quality together with high patient throughput
builds the economical emphasis. In order to meet these time constraints vendors
draw on a variety of high performance computing solutions such as custom hard-
ware like field-programmable gate arrays (FPGAs), highly optimized CPU imple-
mentations or nowadays graphics cards. While all these platforms offer plenty of
parallel computing units, each has its own programming language and tool chain,
e.g., VHDL for FPGAs, SIMD intrinsics for CPUs, OpenGL or CUDA for GPUs.

In this work we accelerate dedicated operations of selected reconstruction algo-
rithms using the compute power of GPUs in combination with NVIDIA’s CUDA. The
first section details possible implementations, optimizations and important facts
for the parallelization of the utilized operators as well as available numerical li-
braries. Therefore each operator and its modification is detailed as well as evalu-
ated with respect to computational performance. The exemplary comparison shows
the fastest measurement out of several if not stated differently.

In Section 4.2 the realization scheme for each reconstruction algorithm is il-
lustrated. Here different compositions of the introduced operators with certain
extensions and specifically added operations manifest the scientific contribution of
our work.

The chapter is concluded with a performance comparison between CUDA and
the alternative OpenCL (see Sect. 2.4.1). The performance of both APIs is stated
for the introduced two operators – namely forward- and back-projection.

73
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4.1 High Performance CUDA Implementations

The Compute Unified Device Architecture offers a unified hardware and software
solution for parallel programming and computation on NVIDIA GPUs supporting
the standard C programming language (see Chapter 2). The difficulty in program-
ming GPUs using CUDA on one side is the problem parallelization as the algorithm
has to be divided into many – at best independent – sub-algorithms with similar
computations. The challenge on the other side is then to understand the underlying
hardware and modify or select a parallelization scheme such that high computation
rates respectively high performance can be achieved.

Starting with a numerical library example for the Fast Fourier Transformation,
the acceleration for pre- and post-processing algorithms is exemplified. Afterwards
our implementations of the focused operators – back- and forward-projection – are
introduced.

4.1.1 Fast Fourier Transformation

As part of their hardware and software development for CUDA, NVIDIA also in-
troduced GPU accelerated libraries. Part of those libraries are highly optimized
versions of commonly used algorithms such as matrix multiplication or the Fast
Fourier Transformation. As such algorithms are suitable for parallelizations they
are typically used to prove the achieved peak performance compute rates for the
underlying hardware.

In case of the FFT NVIDIA published the cufft-library [NVID 07b] offering ac-
celerated parallel computations of the discrete Fourier transforms for complex or
real-valued datasets. As the FFT is used twice in the filtering step of Section 4.2.1,
we reference the utilized library without further details. In this field we would like
to refer to the research of Vasily Volkov:
Volkov et al. did not only publish the research results on FFT implementations
for CUDA GPUs [Volk 08b] – which was 2.9 times faster than the available cufft-
library 1.1 – the results were also incorporated into newer versions of NVIDIAs
numerical libraries. One of the latest results on the parallel FFT [Volk 10] shows a
contradiction to NVIDIAs programming advice of trying to achieve a high multipro-
cessor warp occupancy as better performance could be achieved at lower occupancy
with higher workload.
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algorithm
smoothing

filter
Laplacian
decomp.

Laplacian
comp.

multiscale
filter

DMA
CPU↔GPU

overall

CPU 1-core 181.59 18.38 15.99 115.35 331.31
CPU 2-cores 91.57 9.88 7.91 58.94 168.30
GPU 3.90 0.86 0.48 0.74 1.26 7.24

speedup 46.6 21.4 33.3 155.9 45.8

Table 4.1: The measured computation times for each filtering step are given in
milliseconds for optimized programs on a single-core, a dual-core Intel Xeon 5150
CPU (2.66GHz) as well as for NVIDIAs GeForce 8800 GTX GPU. On the bottom the
achieved GPU acceleration is stated in comparison of the GPU and the single-core
CPU.

4.1.2 Pre- and Post-Processing

The parallel compute power of GPUs is well suited for pre- and post-processing
algorithms in Medical Image Processing. As part of our research a real-time multi-
scale time- and motion-dependent noise-reduction algorithm for angiographic pro-
jections was realized using CUDA [Buhr 09]. Due to the fact that this filter is typi-
cally applied during acquisition and not incorporated into the proposed reconstruc-
tion algorithms, only a short introduction as well as the achieved performance is
stated.

Real data measurements come along with the problem of noise. Therefore, noise
reduction methods are mandatory in medical imaging and can be applied in pre-
processing as well as post-processing steps. As an example for the GPU acceleration
in the area of pre- and post-processing we realized a compute-intensive filter for
real-time structure-preserving reduction of pixel noise in angiographic projection
images. The filter is composed of different algorithms. A single projection – in this
example of size 9602 pixels – is decomposed into different levels using the laplacian
pyramid [Burt 83]. Each level is then smoothed by an edge-preserving directional
variance-driven filter in a local neighborhood. Afterwards the multi-scale filter in-
corporates the pixel information from previous filtered projections depending on
the correlation for each level separately. As last step the final image results out of
the Laplacian composition.

The achieved performance measurements for a single CPU core, two CPU cores
and the GPU using CUDA for each filtering step as well as the data transfer towards
and from GPU memory are stated in Table 4.1. Given an overall performance of
7.24 ms per image for the GPU computation enables realtime processing of angio-
graphic projections. With an overall acceleration factor of 45.8 compared to a single
CPU core, this sets an encouraging example of GPUs parallel compute power using
CUDA. For further details we refer to our published research results [Buhr 09].
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4.1.3 Back-Projection

One of the main contributions of this thesis is the back-projection operator which is
similarly used in almost every medical image reconstruction algorithm. Therefore
the performance, flexibility and usability of this operator is crucial for high perfor-
mance medical image reconstruction.
In 2007 we presented a high performance back-projection [Sche 07b] as one of the
earliest approaches for GPU-based medical image reconstruction using CUDA. Look-
ing at the back-projection algorithm two different strategies can be implemented.
The Algebraic Reconstruction Technique proposed by Gordon et al. (see Sect. 3.3.2)
computes a ray-driven back-projection, where each affected voxel is increased by
the appropriate value (see Fig. 3.5). Alternatively the back-projection can be im-
plemented as a voxel-driven approach which is most common [Buzu 08] and our
choice in the proposed implementations.

Algorithm 4.1: Back-projection of the p-th projection image.

input : volume µ, projection-matrix Bp, measurements d(p)
µ

output: updated µ

// for each voxel x̃ resp. j in the volume µ
for x̃3 = 1 to X3 do

for x̃2 = 1 to X2 do
for x̃1 = 1 to X1 do

// compute u and w see Eq. 3.11(
w · u

w

)
∼= Bp · x̌ ;

// update the volume element see Eq. 3.18
µj = µj + d̂µ(p, u) ;

end
end

end

We think that in this context a ray-driven back-projection is less suitable for par-
allelization due to possible race conditions for the parallel voxel data access. Using
CUDA these race conditions can be prevented using atomic functions. However this
usage also reduces the performance significantly. Furthermore, these approaches
tend to introduce high-frequency artifacts that manifest as Moiré patterns in the
final reconstruction result [De M 02, De M 04].
Instead of the ray-driven back-projection the voxel-driven approach simulates a ray
through the center of each voxel hitting the detector at a non-discrete position u.
Using the bilinear interpolated measurement d̂µ(p, u) at the position u each voxel j
can be updated independently. This results in an ideal parallel problem as the mea-
surement values for each projection are accessed read-only.
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Looking at the voxel-driven back-projection of a single projection the algorithm
is stated in Algorithm 4.1. Given a volume µ that is defined at the whole-numbered
indices x̃, the measurement vector d(p)

µ for projection p and the transformation
given by the projection matrix Bp each volume element is updated with the bilinear
interpolated detector value at the corresponding position u. Both, u and w are
computed using the matrix-vector product Bp · x̌ of the projection matrix and the
homogeneous volume coordinate (see Eq. 3.11). Note that if a weighting w is
applied, – e.g., in case of the FDK algorithm – then u is computed by normalization
using w−1 and the increment is weighted before updating µj. If no weighting is
applied, the weight is defined as w = 1 and can be ignored. In Algorithm 4.1
no weighting is applied as this will be detailed for each reconstruction algorithm
separately in Section 4.2.

Implementation

Given NVIDIA’s grid- and block-layout for the parallelization of an algorithm using
CUDA, different parallelization schemes are possible. A naive approach is the par-
allelization over all target elements. Meaning each CUDA thread computes a single
back-projection for one-voxel such that all inner loops over x1, x2, x3 are realized
using this parallelization scheme (see Sect. 2.3.1). As this has a major performance
drawback, we propose a different scheme in the following. The comparison for
both approaches is evaluated in Section 4.3.

The example code for the voxel-driven CUDA implementation is shown in the
listing of Figure 4.2. Our parallelization scheme suggests a partitioning over the
x1, x3 axes as illustrated in Figure 4.1. The x2-axis is then executed as innermost
loop for each kernel (see line 23) providing the following two benefits. Key ad-
vantage of this scheme is that neighboring threads in first dimension always access
the volume data coalesced. This coalesced memory access is necessary in order to
maximize the achieved memory bandwidth (see Sect. 2.3.5). As a second benefit
the major part of the geometric computation – matrix-vector product – can be fur-
ther reduced as only x2 is varying in the for-loop of the kernel. This allows the
implementation of an incremental version of the back-projection kernel reducing
the required number of instructions inside the innermost loop (see line 19− 21 and
26− 28). Saving six multiply-add operations by incrementing the homogeneous co-
ordinates with the appropriate column of Bp for neighboring voxels in x2-direction
represents a reduction of ∼ 39% of the innermost loop instructions.[Sche 11, p.81]

Accessing the discrete measurement data at arbitrary positions requires inter-
polation as discussed in Section 3.1.1. As GPUs provide specific texture units the
interpolation scheme for a bilinear interpolation of the measurement data d̂µ(p, u)
is preferable. Such an implementation using the texture units can provide addi-
tional performance benefits [Schw 11]. For each back-projection the measurement
data is copied into a 2-D texture array and accessed via the CUDA texture fetching
function tex2D() (see line 37). This enables the implicit bilinear interpolation by
the texture units as well as automatic usage of the existing texture cache.
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object µ

projection p

u1

u2

s

x1 x2

x3

Figure 4.1: Back-projection geometry and suggested parallelization scheme. The
x1-x3-plane illustrates the partitioning into the CUDA grid and a CUDA thread-
block (colored in red). Each parallel thread then computes all updates along the
x2-axis.

Using textures for the measurement data also introduces further benefits. If the
computed texture coordinate u is out of the defined size, no measurement data
exists. In this case the computed coordinate has to be checked before each texture
access and dismissed if not defined. Setting the specific addressMode – defining
how out-of-range texture coordinates are handled – to cudaAddressModeClamp out-
of-range texture coordinates are clamped to the valid range. Enlarging the mea-
surement data by one element at each edge and setting each element’s value to
zero, totally avoids any coordinate checks for out-of-range texture accesses.
If the measurement data at the edges contains values greater than zero, this imple-
mentation trick has a minor drawback of introducing possible errors. The texture
units will then compute the bilinear interpolated value between zero and the edge
values for positions u directly at the edges with a lower measurement value then
might be expected. As the measurement data is truncated in such case, different
possibilities exist which are not discussed here.

The dimensions of texture coordinates for GPU programming are defined from
[0, . . . , U]. Each measurement value is defined at .5 positions. In order to compen-
sate the 0.5-offset this can be easily included inside the texture fetching function as
tex2D(texture, u1+.5f, u2+.5f). Though this introduces two additional add opera-
tions for each texture fetch, which can be smartly saved. The out-of-range texture
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clamping introduces another offset of 1.0 for the position u. Both, out-of-range
texture clamping offset and the 0.5 coordinate offset for texture access are incor-
porated into the homogeneous part of the projection matrix Bp and thus included
into the geometric computation without any additional operations (see line 19-21).

The last implementation detail describes the access of the projection matrix Bp
for the geometric computation. Each parallel thread has to access the projection
matrix several times. Looking at Table 2.1 two possible implementations with high
performance are suitable as a low register usage is mandatory. The obvious method
uses constant memory (see line 1) in order to store twelve elements of the pro-
jection matrix in a globally defined array. The elements are copied into constant
memory using the CUDA function cudaMemcpyToSymbol() before kernel execution.
Inside the kernel the matrix elements then can be accessed by the defined array
variable. We found that the usage of shared memory instead can provide mini-
mal performance benefits. Here the projection matrix is copied into global memory
before kernel execution using the CUDA function cudaMemcpy with the attribute
cudaMemcpyHostToDevice. At the very beginning of the kernel execution the first
twelve threads of each CUDA block read one element of the projection matrix and
store it into the defined shared memory. Before the kernel continues with the com-
mon implementation, all threads of each block have to be synchronized using the
CUDA function __syncthreads() which acts as a barrier as described in Section 2.3.2.
Similar to the constant memory the matrix elements stored in shared memory can
be accessed through the array variable of the declared shared memory. At spe-
cific instruction addresses each thread reads the same matrix element from shared
memory. This broadcast access reduces bank conflicts for the shared memory access
[NVID 10a].
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1 __constant__ float kpBp [3*4]; // constant memory
2

3 texture <float , 2, cudaReadModeElementType > Texture;
4

5 __global__ void kernelBackProjectIncremental(
6 float* dpVolume ,
7 const int X2,
8 const int volumeStrideX1 ,
9 const int volumeStrideX2)

10 {
11 // compute volume index x1 and x3
12 int x1 = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
13 int x3 = __umul24(blockIdx.y, blockDim.y) + threadIdx.y;
14

15 // compute memory index to first voxel in x2 column
16 int idx = __umul24(x3, volumeStrideX2) + x1;
17

18 // compute static part of matrix vector product
19 float u1tmp = kpBp [0] * x1 + kpBp [6] * x3 + kpBp [9] ;
20 float u2tmp = kpBp [1] * x1 + kpBp [7] * x3 + kpBp [10];
21 float wtmp = kpBp [2] * x1 + kpBp [8] * x3 + kpBp [11];
22

23 for (int x2=0; x2 < X2; x2++, idx += volumeStrideX1)
24 {
25 // compute incremental matrix vector product
26 float u1 = u1tmp + kpBp [3] * x2;
27 float u2 = u2tmp + kpBp [4] * x2;
28 float w = wtmp + kpBp [5] * x2;
29

30 // compute projection coordinates
31 float norm = 1.0f / w;
32 u1 = u1 * norm;
33 u2 = u2 * norm;
34

35 // compute weight if utilized
36 float weight = norm*norm;
37

38 // fetch measured value
39 float val = tex2D(Texture , u1, u2);
40

41 // increment voxel value
42 dpVolume[idx] += weight * val;
43 }
44 return;
45 } // kernelBackProjectIncremental

Figure 4.2: Back-projection kernel code for NVIDIA GPU using CUDA. Loop over all
elements of one line in x2-direction, parallelization over the x1-x3-plane.
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Performance

In order to exemplary evaluate the achieved performance we used a dataset from
an angiographic C-arm system (see Fig. 1.4). The dataset consists of 414 projections
of 10242 pixels each. For a volume consisting of 5123 voxels, we have chosen a voxel
size of 0.263 mm3 in order to ensure that all voxels reside inside the field-of-view.
Further on we refer to this dataset as DataSet A (see Sect. A.1).
The corresponding kernel program of our CUDA implementation results in a to-
tal register usage of only 10 registers. This is owed not least to the incremental
approach that also reduces the register usage. Looking at the CUDA occupancy
calculator, we could achieve the maximal multiprocessor warp occupancy for the
G80 GPU generation, which was mandatory to hide memory latencies. By imple-
menting the back-projection in the innermost loop for two projections instead of a
single projection we achieved a register usage as low as 11 registers. As this is not
optimal the resulting occupancy and performance achievement on the G80 is lower
and therefore not discussed.
For the CUDA programming model the grid- and block-configuration influences
both the global memory access pattern and the texture cache usage. Therefore it is
recommended to evaluate the performance for different configurations separately.
Table 4.3 clearly indicates the performance differences for the selected grid- and
block-configurations. In our experience the configuration of a block-size of 128× 2
threads was optimal for most reconstructions and therefore used in our evaluation
results.

[s]

block-size

0 1 2 3 4 5 6 7 8 9 10

8.2032× 8

7.6564× 1

7.0964× 2

7.0664× 4

7.14128× 1

7.06128× 2

Figure 4.3: Exemplary back-projection performance on the GeForce 8800 GTX for
different grid- and block-configurations. The overall back-projection time of uti-
lized evaluation dataset is stated in seconds for the different block-sizes. Out of
multiple runs the fastest achieved time is stated.

Before NVIDIA introduced the GeForce 8800 GTX GPU together with the CUDA
framework, the highest single chip computational performance in the field of medi-
cal image reconstruction was achieved using the IBM CELL processor. Therefore we
compared a single CELL processor with the GeForce 8800 GTX on back-projection
performance. The GPU could achieve almost a factor of 3 times better performance
than the CELL processor. Here the bilinear interpolation is weighty on the resulting
performance as the CELL processor lacks for texture units. Without bilinear interpo-
lation, instead using nearest-neighbor interpolation the performance benefits of the
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GPU is narrowed to a factor of 1.6, which is almost exact the ratio of the theoretical
peak performance of both devices.

As this holds also for the CPU, we give another example for the reconstruction
performance. Here the exemplary angiographic C-arm dataset is slightly differ-
ent using 543 projections each 1240× 960 pixels (see Sect. A.2). For comparison
an Intel Core2Duo Conroe CPU @2.4 GHz (E6600) is compared with the NVIDIA
QuadroFX 5600 GPU. For optimization the CPU implementation was vectorized us-
ing SSE intrinsics as well as multi-threading. The achieved results of both highly
optimized CPU and GPU implementations are stated in Table 4.2. Without the cost
of bilinear interpolation the GPU can perform the total of 543 back-projections up
to 16.9 times faster than the dual-core CPU. Including the bilinear interpolation into
the CPU-GPU comparison again state the massive parallel compute power of GPUs.

BP performance CPU GPU speedup
bilinear interpolation 362 s 12.4 s 29.2
nearest-neighbor 210 s 12.4 s 16.9

Table 4.2: Back-projection comparison example for an Intel Core2Duo Conroe CPU
(E6600) with 2 cores (2.4 GHz) and a NVIDIA QuadroFX 5600 GPU. For the mea-
surement 543 projections each 1240× 960 pixels were back-projected onto a 5123

volume. The measurement includes both times for back-projection with bilinear
and nearest-neighbor interpolation.

Bandwidth limitation

The massive parallelism of GPUs requires a much higher memory bandwidth com-
pared to CPUs (see Fig. 2.2). We show that our proposed CUDA implementation is
bandwidth limited [Sche 10], even given a memory bandwidth of 86.4 GB/s for the
GeForce 8800 GTX.
In Table 4.3 three different GPUs from the G80 generation are compared. Look-
ing at the shader clock frequencies the compute performance increases from left
to right. The GeForce 8800 GTX runs at 1350 MHz. This is slightly increased by
50 MHz for the QuadroFX 5600 to 1400 MHz. With 1.5 GHz the highest shader
clock frequencies are given by the GeForce 8800 Ultra graphics card. Looking at the
back-projection performance some would expect that with increasing shader clock
frequency the performance increases, respectively measured computation time de-
creases. In case of comparing the computation time for both GeForce GPUs this
seems correct. But looking at the NVIDIA QuadroFX 5600 the opposite happens.
With additional 50 MHz of shader clock frequency the computational time is al-
most one second slower. Focussing at the memory bandwidth of the QuadroFX it
is noticed that the bandwidth decreased compared to both opponents. This indi-
cates that our implementation is limited by memory bandwidth and can be further
supported by the following simple calculation:

7.19s · 900MHz
800MHz

= 8.09s (4.1)
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Taken the 7.19s computation time and scale it by the ratio of both memory frequen-
cies, the expected computation for the QuadroFX 5600 of 8.09 seconds is almost
achieved with an average of 8.14 seconds. Repeating this theoretical experiment,
the NVIDIA GeForce 8800 Ultra graphics card should achieve a computation time
of 5.99 seconds. We experimentally measured a slightly faster computation time of
5.93 seconds. This indicates that other parameters like the shader clock marginally
influence the overall performance. For the proposed CUDA implementation the
highest influence is given by memory bandwidth of the utilized graphics cards.
This concludes the implementation of the back-projector operator, looking at the
forward projection next.

graphics

cards

GeForce

8800 GTX

QuadroFX

5600

GeForce

8800 Ultra

chip clock 575 MHz 600 MHz 612 MHz

shader clock 1350 MHz 1400 MHz 1500 MHz

db. memory cl. 900 MHz 800 MHz 1080 MHz

memory BW 86.4 GB/s 76.8 GB/s 103.7 GB/s

BP performance 7.19 s 8.14 s 5.93 s

Table 4.3: The properties of three different G80 chips are listed. For the perfor-
mance measurement 414 projections each 10242 pixels were back-projected onto a
5123 volume (see Sect. A.1).

4.1.4 Forward-Projection

The second main contribution of this thesis is the forward-projection operator which
is required in addition to the back-projection operator for all iterative reconstruc-
tion algorithms. In this case, the implementation’s performance, flexibility as well
as accuracy are of high impact for high performance iterative medical image recon-
struction.
In 2008, we presented the first comparison of high-speed forward-projection im-
plementations on GPUs utilizing OpenGL and CUDA [Wein 08]. The presented
ray casting approach was realized using the OpenGL as well as the CUDA 1.1 and
CUDA 2.0 APIs. Before detailing our implementations, optimization and evaluation
results, the preference to the ray casting approach as forward-projection operator
is discussed.

Iterative medical image reconstruction approaches utilize the forward-projection
operator for the simulation of the Beer-Lambert law (see Eq. 3.1) using a discrete
object respectively the estimated reconstruction result. In Chapter 3 this forward-
projection was mathematically defined for both algebraic and statistical reconstruc-
tion methods using the system matrix (see Eq. 3.8). Therefore the continuous line-
integral of ray r for projection p is approximated with a discrete sum given by:
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∫
x∈r

µ(x)dx ≈
〈

a(p)
r , µ

〉
=

J

∑
j=1

a(p)
r,j · µj . (4.2)

Depending on the depiction of the system matrix elements (see Sect. 3.3.1) this
results in different operators, e.g., the Siddon method [Sidd 85]. As many other
popular methods exists, e.g., the Joseph method [Jose 82], we decided to use the
ray casting method based on the following arguments. The ray casting approach
was first published and used in the field of computer graphics. There it is used
for several applications like the computation of object intersections as well as for
volume rendering. Since the graphics processing unit is optimized for computer
graphics in the first place, the ray casting approach is very suitable for a GPU im-
plementation. Siddon’s method needs to compute the intersection length for each
ray with each intersected voxel. This drawback results in a high computational ef-
fort since these values cannot be stored efficiently. The ray casting approach instead
provides a more simpler solution that is easy to parallelize.

For iterative reconstruction approaches the accuracy of the forward-projection
operator is important. Therefore, we refer to the work of Xu et al. on a comparative
study of popular interpolation and integration methods for use in computed tomogra-
phy [Xu 06]. Xu et al. uses a different notation for many integration strategies
and therefore is difficult to correlate to this thesis. The important ones are stated
here in order to optionally prepare the reader for the paper. The slice-interpolated
strategy is equivalent to the Joseph method. The Siddon method is simply called
siddon-line and the box-beam-integrated strategy represents the method proposed by
Shepp and Logan [Shep 74] as depictured in Figure 3.5. Important for this work, is
the grid-interpolated method, which represents the ray-casting approach in 3-D as
trilinear. That’s because that sample points are evaluated using a trilinear interpo-
lation function. Looking at Figure b in [Xu 06] the Siddon-line and slice strategies
provide a very similar error profile. The trilinear strategy performs slightly better,
but highlighting the trilinear 2× strategy that is superior to the previous mentioned
strategies by applying a higher sampling rate. Xu et al. also compared interpolation
methods with lower error rate by utilizing basis functions. These methods are not
discussed as they require high computational efforts and therefore are less suitable
for high performance implementations on GPUs.

Using the inverse projection matrix F p ∈ R3×3 the ray casting approach pro-
vides a flexible solution, see Equation 3.12. In addition, it provides a trade-off
between accuracy and performance as this can be partially controlled via the sam-
pling step-size. Therefore this algorithm is our first choice for the implementation
on GPUs using CUDA.

Our ray casting approach using CUDA is based on the OpenGL counterpart de-
tailed by Engel et al. in Chapter 7 of the book Real-time Volume Graphics [Enge 06].
In the field of computer graphics ray casting is applied for the computation of
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volume-rendering integrals and described (see book listing 7.1) in the following
main steps:

Determine volume entry position
Compute ray direction
While (ray position in volume)

Access data value at current position
Compositing of color and opacity
Advance position along ray

End While

In order to apply this approach as forward-projection operator in the field of
medical image reconstruction, it has to be modified. Here the forward-projection
needs to compute the line-integral of the object attenuation. Therefore, the compu-
tation of the color composition and opacity values of a graphics scene is needless.
Instead only the evaluated attenuation values at the sampling positions are required
to accumulate.

Algorithm 4.2: Forward-Projection for the p-th projection image.
input : volume µ, matrix F p, source position s, step-size ∆l

output: forward-projection
〈

a(p)
r , µ

〉
for ũ1 = 1 to U1 do

for ũ2 = 1 to U2 do
// calculate normalized direction vector from source s to
// target t from ǔ, see Equation 3.12

l̂ = F p·ǔ
‖F p·ǔ‖2

// initialize attenuation value with zero
m = 0
// sample along the ray
for each i representing the sample point x(i) ∈ st do

// compute sample position
x(i) = s + i · ∆l · l̂
// evaluate sample position and accumulate
m = m + µ̂(x(i))

end
// scale attenuation value according step size
// and storing the result for the ray r resp. ũ〈

a(p)
r , µ

〉
..= m · ∆l

end
end
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The applied ray casting algorithm is stated in Algorithm 4.2. Using a two dimen-
sional example an intuitive description can be found in Figure 4.4. To determine
the attenuation integral for a certain detector element, a straight line – respectively
ray – needs to be calculated from the source position s of projection p towards
the corresponding target position t of the measurement element r. The direction
vector l̂ is calculated using the product of the inverse projection matrix F p and
the homogeneous detector position ǔ, afterwards normalized to unit length. The
shared source position s as well as the inverse projection matrix F p for each projec-
tion p are extracted from the corresponding projection matrix Bp (see [Gali 03]).
This facilitates a very flexible approach for arbitrary acquisitions geometries.
This operation is followed by the equidistant evaluation of each sample point along
the ray, which is accumulated to the initialized objective value. The specific amount
of sample points is determined by the defined sampling step size ∆l. Finally, the ob-
jective value has to be scaled with respect to the sampling step size ∆l. Computing
all measurement values of projection p results in the perspective forward-projection
of the volume data.

volume

sample point

∆l sampling step size

rays

detector

entrance point

exit point

Figure 4.4: Ray casting principle visualized in 2-D for three rays. Each ray inter-
secting the volume is continuously sampled towards the detector element. The first
sample point is defined by the position of the ray hitting the volume. Afterwards
the next sample point is defined in distance by the sampling step size until the ray
exits the volume.
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Implementation

For the GPU implementation of the forward-projection operator using CUDA we
suggested a straight forward parallelization scheme. An example for the imple-
mentation details and optimizations of the forward-projection is stated as CUDA
kernel in the listings of Figure 4.5 and the utilized device function for the ray cast-
ing in Figure 4.6. In this example a 3-D texture including the 0.5 offset – required
for correct textures access – is utilized to evaluate the sample positions.

Since each projection measurement is simulated with a single ray the CUDA
grid- and block-layout is partitioned along the u1, u2 axes. Each CUDA kernel
thread then approximates the line integral using an optimized version of the ray
casting approach in Algorithm 4.2.
In the first step the normalized direction vector needs to be computed (see Fig. 4.5
line 14− 16). This is done using the inverse projection matrix F p and the detector
position identified by block- and thread-index. Similar to the back-projection ap-
proach the inverse projection matrix F p of size 3× 3 elements, can be either stored
in constant memory (see line 1) or loaded into shared memory at the very begin-
ning. After the computation of the matrix-vector product, the resulting direction
vector is normalized using the L2-norm (see line 18− 21). Given the shared source
position s and sampling step size ∆l provided as kernel parameter or using constant
memory, the ray casting device function can be executed (see line 23− 24), which
is explained in detail afterwards. The final unit normalization using L2-norm and
the voxel size in each dimension – δx1, δx2, δx3 – (see line 26− 28) is required in
order to adapt for unisotropic voxel sizes and world coordinate units.
Providing a flexible implementation the ray casting itself is defined in a device
function ray_cast(), accessible by CUDA kernels only (see Fig. 4.6). In order to ef-
ficiently evaluate the sample points along the ray, only the computation of sample
points inside the defined volume is required. Before the ray is equidistantly sam-
pled inside the volume, the entrance and exit points for the ray hitting the volume
are computed according to Siddon [Sidd 85]. Instead of a concrete position the
distance to the source position s along the ray is used and defined as l ∈ R+

0 . Here
the entrance position is defined using lmin as

xentrance = s + lmin · l̂ (4.3)

and the exit position using lmax by:

xexit = s + lmax · l̂ (4.4)

To compute the corresponding lmin and lmax for the given ray, the distance to
the intersection of the ray with each side of the volume is calculated for non-zero
elements of the direction vector l̂. Therefore the volume’s minimal and maximal po-
sition in each dimension are required and stored in constant memory. This enables
arbitrary volume positions including common ones, e.g., starting at the origin:

Volmin =

 0
0
0

 , Volmax =

 X1 − 1
X2 − 1
X3 − 1

 (4.5)
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Computing the maximal mininum-value and minimal maximum-value of the
computed l values represents the shortest distance through the volume (see line
13− 30). This equals the ray-volume intersection. Note that if an element of the
direction vector l̂ equals to zero, then the vector is in parallel to the corresponding
volume sides. In this case, no intersection points exist and therefore can be ignored.
Given the computed lmin and lmax the ray casting itself is computed after initializa-
tion of the accumulation value. Inside the Traversal Loop (see line 33) the main
component traverses along the ray and evaluates it at the calculated sample posi-
tions. As long as these sample positions lie between lmin and lmax the following four
elemental computations are repeated, starting with l = lmin:

1. Compute the current sampling position according to: x = s + (lmin + i · ∆l) · l̂

2. Compute resp. read the attenuation coefficient for the current sampling posi-
tion

3. Accumulate the evaluated value to the resulting value

4. Increment i resp. the current source distance with the given step size ∆l

As the ray casting exits the Traversal Loop after the last sample point inside
the volume was evaluated (see line 37), the resulting accumulated value needs to
be scaled with the sampling step size ∆l before returning the ray_cast()-function.
Back in the forward-projection kernel, after scaling to world coordinate units the
resulting value can be finally stored in global memory at the corresponding mem-
ory address.

The evaluation of the attenuation coefficient for each sampling position repre-
sents an import performance aspect due to the possible texture usage. Next, several
different approaches for the evaluation are detailed and discussed before stating
performance examples.



4.1 High Performance CUDA Implementations 89

1 __constant__ float kpFp [3*3]; // projection matrix
2 __constant__ float kpSource [3]; // source position
3 __constant__ float delta_x [3]; // voxel size
4

5 __global__ void kernelForwardProject(
6 float* dpProj ,
7 const int U1,
8 const float stepsize)
9 {

10 // compute projection coordinate
11 int u1 = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
12 int u2 = __umul24(blockIdx.y, blockDim.y) + threadIdx.y;
13 // compute ray direction
14 float l1 = kpFp [0] * u1 + kpFp [3] * u2 + kpFp [6];
15 float l2 = kpFp [1] * u1 + kpFp [4] * u2 + kpFp [7];
16 float l3 = kpFp [2] * u1 + kpFp [5] * u2 + kpFp [8];
17 // normalize ray direction
18 float norm = 1.0f / sqrtf( (l1*l1) + (l2*l2) + (l3*l3) );
19 l1 *= norm;
20 l2 *= norm;
21 l3 *= norm;
22 // compute forward projection using device function
23 float m = ray_cast(kpSource [0], kpSource [1], kpSource [2],
24 l1, l2, l3, stepsize);
25 // normalize to world coordinate units using L2 - norm
26 m *= sqrtf( (l1 * delta_x [0]) * (l1 * delta_x [0])
27 + (l2 * delta_x [1]) * (l2 * delta_x [1])
28 + (l3 * delta_x [2]) * (l3 * delta_x [2]) );
29 // compute storage position
30 unsigned int idx = __umul24(u2, U1) + u1;
31 // store result
32 dpProj[idx] = m;
33 return;
34 } // kernelForwardProject

Figure 4.5: Forward-projection kernel code for NVIDIA GPU using CUDA. The in-
verse projection matrix is accessed using constant memory for geometry computa-
tion. The ray casting is called separately using the defined device function. The
problem is parallelized over u1-u2-plane.
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1 __constant__ float kpVolMin [3]; // minimal volume position
2 __constant__ float kpVolMax [3]; // maximal volume position
3 texture <float , 3, cudaReadModeElementType > Vol;
4 // device function for ray casting
5 inline static __device__ float ray_cast(
6 float s1, float s2, float s3, // source position
7 float l1, float l2, float l3, // ray direction
8 float stepsize) // sampling step size
9 {

10 // compute l_min and l_max , entry and exit point
11 float l_min = MAXFLOAT; float l_max = 0;
12 // for each plane compute intersections
13 if (0.0f != l1) {
14 float reci = 1.0f / l1;
15 float temp0 = (kpVolMin [0] - s1) * reci;
16 float temp1 = (kpVolMax [0] - s1) * reci;
17 l_min = fminf(temp0 , temp1);
18 l_max = fmaxf(temp0 , temp1); }
19 if (0.0f != l2) {
20 float reci = 1.0f / l2;
21 float temp0 = (kpVolMin [1] - s2) * reci;
22 float temp1 = (kpVolMax [1] - s2) * reci;
23 l_min = fmaxf(l_min , fminf(temp0 , temp1));
24 l_max = fminf(l_max , fmaxf(temp0 , temp1)); }
25 if (0.0f != l3) {
26 float reci = 1.0f / l3;
27 float temp0 = (kpVolMin [2] - s3) * reci;
28 float temp1 = (kpVolMax [2] - s3) * reci;
29 l_min = fmaxf(l_min , fminf(temp0 , temp1));
30 l_max = fminf(l_max , fmaxf(temp0 , temp1)); }
31 // cast ray if it intersects the volume
32 float m = 0.0f;
33 while (l_min < l_max) {
34 float x1 = s1 + l_min * l1;
35 float x2 = s2 + l_min * l2;
36 float x3 = s3 + l_min * l3;
37 m += tex3D(Vol , x1+0.5f, x2+0.5f, x3+0.5f);
38 l_min += stepsize; }
39 // normalize to step size and return
40 m *= stepsize;
41 return m;
42 } // ray_cast

Figure 4.6: Ray casting device function code for NVIDIA GPU used in the forward-
projection kernel. In this example the 3-D texture is used to represent the volume
and evaluate the sample positions.
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Sample point evaluation using different textures

One basic argument for the ray casting approach as a GPU implementation is the
sample point evaluation and provided hardware acceleration using textures. Look-
ing at the second step of the ray casting device function (see Fig. 4.6), the attenua-
tion coefficients are evaluated for each sampling position. Therefore the CUDA API
provides different memory models as discussed in Section 2.3.3. Due to the evo-
lution of the CUDA API the presented approaches make use of the three different
textures, introduced by NVIDIA one after another:

• 2-D texture array
available with the first CUDA 0.8 API, starting in February 2007

• 3-D texture array
provided by the CUDA 2.0 API, which was released in August 2008

• 2-D texture from pitch-linear memory
in May 2009 introduced with the CUDA 2.2 API

2-D texture array

With the first release of the CUDA API – version 0.8 – NVIDIA did not provide any
three dimensional textures. Compared to the OpenGL API at that time this was a
clear drawback looking at the presented ray casting approach. To evaluate each
sample point of the volume using a trilinear interpolation function (see Eq. 3.4) we
applied the following workaround in the first realization.

Instead of a trilinear interpolation, we utilized two hardware accelerated bilin-
ear interpolations using the 2-D texture array and performed the missing linear
interpolation manually. Therefore the volume was distributed into a 2-D texture ar-
ray slice-by-slice. This texture atlas [Enge 06] introduces additional computations
as the offset for each slice inside the texture atlas has to be computed for each sam-
ple point. An illustration of the texture atlas is shown in Figure 4.7 as well as an
exemplary device function for the workaround stated in the listing of Figure 4.8.
Note that here three additional parameters are required. The number of volume el-
ements in the x1-x2-plane represented by X1 and X2. The third parameter is defined
by the total number of volume slices contained in one column of the texture atlas.
Given a maximum texture height of 215 elements, as many slices as possible are
distributed into one column of the texture atlas before extending the texture with
another column. Here many possible distribution schemes exist, all given different
advantages and disadvantages.

All schemes in common is a maximal volume size limitation of 2 GB for the
2-D texture array approach using floating point elements. If the volume exceeds
2 GB, one could use another texture instead of only one. However, this is not
recommended as it introduces additional complexity. Furthermore, the partition
of the volume into several parts for ray casting approach can introduce sampling
artifacts respectively inaccuracies at the partitioning edges. Thus, we aimed for a
one-texture solution. Looking at the initialization of the texture atlas each volume
slice has to be copied into the 2-D texture array according to the selected scheme. In
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the suggested approach each slice is copied separately with the appropriate position
and offsets using the CUDA API function cudaMemcpy2DToArray(). As this does not
look of importance, it has a significant contribution to the overall reconstruction
performance, which we will detail later.

In summary, the 2-D texture array approach introduces additional complexity,
additional computations, a complicated initialization, but enables almost arbitrary
volume representation up to a size of 2 GB for 32-bit values.

2-D
texture
atlas

volume

Figure 4.7: In order to represent a volume using at 2-D texture array each slice is
spread onto a 2-D texture atlas. The exact order can be realized differently and
therefore is exemplified.

3-D texture array

In August 2008 NVIDIA introduced their second major release of the CUDA API.
With CUDA 2.0 NVIDIA also supported 3-D texture arrays besides OpenGL using
their GPUs. For the ray casting approach this technical feature provided several
benefits. On one side the sample point evaluation could be simplified to the CUDA
API function call tex3D() providing a hardware accelerated trilinear interpolation
as stated in the example in Figure 4.6. This eliminated the required additional
computations. On the other side the initialization procedure could be trimmed
from multiple CUDA API function calls for the volume slices to a single call using
the CUDA API function cudaMemcpy3D() for the whole volume.

The 3-D texture array size for the utilized NVIDIA graphics cards is limited up
to 2048 elements for each dimension. In total this allows a theoretical volume size
of 32 GB for 32-bit float values which unfortunately cannot be provided by any
graphics card yet.



4.1 High Performance CUDA Implementations 93

1 // 3-D texfetch from texture atlas .
2 static __device__ float texfetch3D(
3 texture <float , 2, cudaReadModeElementType > Tex ,
4 int StackHeight , int X1, int X2,
5 float x1, float x2, float x3)
6 {
7 int x1off , x2off;
8 float x_low , x_up;
9 // compute integer and fractional part of x3

10 int x3int = (int) x3;
11 float frac = x3 - x3int;
12 // compute and fetch value of lower slice
13 x1off = (x3int / StackHeight) * X1;
14 x2off = (x3int % StackHeight) * X2;
15 x_low = tex2D(Tex , x1 + (float)x1off , x2 + (float)x2off);
16 // compute and fetch value of upper slice
17 ++x3int;
18 x1off = (x3int / StackHeight) * X1;
19 x2off = (x3int % StackHeight) * X2;
20 x_up = tex2D(Tex , x1 + (float)x1off , x2 + (float)x2off);
21 // interpolate linear and return
22 return (x_low * (1.0f - frac)) + (x_up * frac);
23

24 } // texfetch3D

Figure 4.8: CUDA device function code for manual trilinear interpolation using
a 2-D texture array. This is realized by two hardware accelerated bilinear inter-
polations combined with a linear interpolation in software. In this example the
StackHeight represents the maximal number of volume slices inside a column of the
texture atlas.

2-D texture from pitch-linear memory

CUDA 2-D and 3-D texture arrays have in common that they all are read-only (see
Table 2.1) and cannot be accessed by a kernel in order to write data into. For
the ray casting approach itself this is unproblematic, but is of importance to the
proposed reconstruction approaches. Therefore another texture is utilized in the
last approach. With the CUDA API 2.2 NVIDIA introduced 2-D textures from pitch-
linear memory in May 2009. Compared to the swizzled memory structure of texture
arrays, this type of texture provides a linear memory structure. Instead of the
CUDA API function cudaMallocArray() the function cudaMallocPitch() is utilized to
allocate the required memory.

In practice this memory does not differ from global memory. Thus it is also
write-able with one limitation. As texture caches are not providing any coherency,
this memory can be either used for writing or reading during a kernel execution.
Despite the memory allocation the ray casting approach using a 2-D texture from
pitch-linear memory does not differ from the proposed 2-D texture array approach.
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Therefore the texture atlas and manual linear interpolation need to be utilized for
the sample point evaluation. The initialization process is almost equivalent to the
2-D texture array approach. The only difference is that here the CUDA API function
cudaMemcpy2D() is required to copy the data into the pitch-linear memory. The
size limitations for this 2-D texture is equal to the one of the texture array, so the
volume representation is limited for 32-bit values to a size of 2 GB. Given these three
different approaches – using different textures – for the realization of the CUDA
forward-projection operator based on ray casting, the performance measurement
results are detailed next.

Performance

The presented performance results for the proposed ray casting approach are part of
our published research [Wein 08]. As we could not identify significant performance
differences between the approach using a 2-D texture array and the alternative us-
ing a 2-D texture from pitch-linear memory, we assume that both correlate strongly.
Such both 2-D approaches are not distinguished in the following and referred as
2-D approach.

block-size 5122 pixels 10242 pixels 20482 pixels

16× 16 48.2 106 409

32× 8 50.5 109 412

32× 16 46.4 107 411

64× 4 59.8 109 424

64× 8 54.4 111 415

128× 2 74.0 121 425

128× 4 57.8 115 431

256× 1 98.2 169 449

256× 2 68.9 122 448

512× 1 100 167 441

Table 4.4: Comparison of different block-sizes given by runtimes in seconds using
the 3-D texture approach on the NVIDIA GeForce 8800 GTX. 400 projections and
three different projection sizes at a step size of 0.25 of the voxel size and a total
volume size of 5123 elements are compared.

Analogously to the back-projection approach, we start with setting the CUDA
grid- and block-size for an optimal performance of this parallelization. As this set-
ting has significant influence on the overall performance different settings need to
be evaluated. A comparison of the ray casting performance for different block-sizes
is stated in Table 4.4. Here, we utilized three different projection sizes for the com-
parison of the 3-D texture approach using CUDA 2.0. The performance results for
ten different possible block-sizes are stated in seconds for 400 projections in total.
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This reduces measurement inaccuracies and states an average value as different
projection directions are used for each projection. The results for the 5123 volume
indicate that in most cases the best performance could be achieved using a block-
size of 16× 16. We are going to use this block-size setting in this thesis when not
stated differently.

In order to evaluate the drawback of the missing 3-D texture of early CUDA
APIs we also implemented the ray casting approach using the OpenGL API. This
was of main interest for performance comparison. Details about this implemen-
tation can be found in our paper [Wein 08]. In Table 4.5 the performance results
between the 2-D and 3-D approach using CUDA as well as the 3-D approach using
OpenGL combined with a NVIDIA QuadroFX 5600 GPU are detailed. The runtime
comparison in seconds are stated for three different projection sizes as well as four
different amounts of projections. The runtimes clearly show the initial overhead
required for a single forward projection, especially for the graphics API of OpenGL.
At this sampling step size the 2-D approach using CUDA 1.1 takes at least twice the
time compared to the 3-D approach using CUDA 2.0. The results suggest the 2-D
approach is limited by shader computation and not by texture performance. More
important the results prove that the performance for our 3-D texture ray casting
approach using CUDA 2.0 is not only on par with the OpenGL API, it performs even
slightly better.

5122 pixels 10242 pixels 20482 pixels

# proj. CUDA 1.1 CUDA 2.0 OpenGL CUDA 1.1 CUDA 2.0 OpenGL CUDA 1.1 CUDA 2.0 OpenGL

1 6.22 1.60 3.25 6.38 1.60 3.22 7.70 1.59 3.27

16 14.2 3.30 5.32 16.2 5.16 6.94 37.7 15.8 17.7

100 55.5 13.1 21.7 70.5 25.1 27.4 208 95.4 98

400 145 41.8 47.0 245 99.8 103 841 392 397

Table 4.5: Comparison of runtimes using the NVIDIA QuadroFX 5600 in seconds
for a different number of projections as well as different projection sizes at a ray
casting step size of 0.25 of the voxel size. CUDA 1.1 represents the 2-D texture
approach. CUDA 2.0 as well as OpenGL utilize a 3-D texture. In all cases CUDA 2.0
performs best.

The G80 as well as the GT200 GPU architecture provide additional significant com-
putation power in texture units as Schwarz showed in [Schw 11]. Looking at the
performance differences, this is clearly demonstrated by the comparison of the 2-D
and 3-D approaches. As CUDA provides a scalable parallel programming approach
[Lueb 08] the comparison of the 3-D approach using the CUDA 2.0 and OpenGL
API is illustrated in Figure 4.9. This highlights the linear scaling of the processing
time depending on the projection count as well as the constant offset for the slightly
slower OpenGL API. The different projection sizes can also be nicely differentiated
by the performance slope as the computational complexity for twice the projection
resolution quadruples.
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Figure 4.9: OpenGL and CUDA 2.0 API comparison with similar execution time
behavior for varying projection count and size on a NVIDIA QuadroFX 5600. On
the upper part the comparison is illustrated in total. The lower part shows the
magnification for lower projection counts.
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4.2 High Performance Medical Image Reconstruction
Approaches

Given the introduced operators the realization scheme for the reconstruction algo-
rithms is now focussed. With certain extensions and specifically added operations
the introduced operators are combined to implement certain reconstruction algo-
rithms detailed in Chapter 3. As this thesis focuses on high performance iterative
reconstruction approaches, the implementation of the analytical reconstruction ap-
proach is repeated for completeness before introducing the realization scheme for
the iterative approaches. Here the focus is on different realizations of the simulta-
neous algebraic reconstruction method and its variants, finishing with a well suited
iterative statistical reconstruction approach.

4.2.1 Filtered Back-Projection and the FDK method

One of our earliest results in the field of high performance medical image recon-
struction using the Compute Unified Device Architecture [Sche 07b] was the imple-
mentation of a practical cone-beam reconstruction algorithm by Feldkamp, Davis
and Kress (Sect. 3.2.3), which is mostly used in angiographic imaging for 3-D re-
constructions. From an implementation perspective the FDK method is very similar
to the filtered back-projection reconstruction approach (Sect. 3.2.2). Therefore
both implementations are handled together. The minor difference is due to a more
advanced filtering step, applying a cosine weighting and a distance weight included
in the back-projection.

FFT × FFT−1 BP

weighting

projectionsprojectionsprojectionsprojectionsprojections

FT(filter)

volume

Figure 4.10: FDK block diagram example

Method

Looking at the realization scheme two operators are utilized for this reconstruc-
tion approach. For medical imaging the acquired measurement data is typically
of sizes in which a filtering by convolution is of higher computational cost than
performing the filtering step by multiplication in the frequency space. Therefore
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the first operator used in this realization is the implementation of the Fast Fourier
Transformation provided by NVIDIA in their accelerated libraries (Sect. 4.1.1) in-
cluding the inverse FFT. The second operator is our optimized implementation of
the voxel-based back-projection operator (Sect. 4.1.3).

The realization scheme is depicted in the block diagram shown in Figure 4.10.
For the introduced approach the volume data remains on the GPU within global
memory, while the projection data is transferred onto the GPU for each projection
also into global memory. After transferring each projection onto the GPU, the ap-
propriate weighting is applied and the cufft-library is used to transform each row
of the projection data into frequency space. Here, the filtering can be applied by a
simple multiplication of the Fourier transformed filter kernel. Afterwards the cufft-
library is used again to invert the FFT and finally copying the filtered projection
into the 2-D texture array using the CUDA function cudaMemcpy2DToArray. Given
the filtered projection data as well as geometry information Bp the projection is
back-projected on the objective volume – as described in the back-projection oper-
ator implementation. This process is then repeated for all projections and results in
the aimed reconstruction approach detailed in Section 3.2.3 by Equation 3.18.

time [s] pps fps
filtering

NVIDIA GeForce 8800 GTX (CUDA) 3.00 138.00
CELL processor 3.2 GHz (CBEA) 0.82 503.03
back-projection

NVIDIA GeForce 8800 GTX (CUDA, NN/LI) 7.06 58.64 72.52
CELL processor 3.2 GHz (CBEA, NN) 11.85 34.94 43.21
CELL processor 3.2 GHz (CBEA, LI) 20.99 19.73 24.40
data transfer (load projections / store volume)

NVIDIA GeForce 8800 GTX (CUDA) 1.07 / 0.89
CELL processor 3.2 GHz (CBEA) 0.00 / 0.00
overall execution (filtering, back-projection and data transfer)

NVIDIA GeForce 8800 GTX (CUDA, NN/LI) 12.02 34.44 42.60
CELL processor 3.2 GHz (CBEA, NN) 13.60 30.44 37.64
CELL processor 3.2 GHz (CBEA, LI) 24.04 17.22 21.30

Table 4.6: Performance results of filtering and back-projection in nearest neighbor
interpolation (NN) and bi-linear (LI) interpolation mode.

Performance

Looking at the achieved performance results in Table 4.6 the original [Sche 07b]
comparison of the NVIDIA GeForce 8800 GTX GPU and CELL processor is stated.
Before NVIDIA introduced the Compute Unified Device Architecture in 2007, the
CELL processor was leading the fastest implementation on a commercial off-the-
shelf hardware. Important to notice is that the main difference here was not only
the performance, but also difference in development time. The development of
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the first CUDA implementation was achieved in about three months whereas the
development of the CELL processor implementation took more than one year.

Similar to the CPU results the CELL processors suffers from the missing texture
units comparing the back-projection performance. Without the bilinear interpo-
lation the performance difference shrinks to less than 68%. But the situation is
different looking at the realized FFT performance. As the FFT does not require any
interpolation the CELL processor could outperform the first CUDA capable devices
by a factor of 3.65 in this application.

The advantages of the GPU can be really seen in the achieved performance re-
sults as well as the reduced development time. For further comparisons and details
we refer to our results in [Sche 10, Sche 12] as well as [Hofm 09a, Hofm 10b]. Af-
ter giving this motivating example for a GPU accelerated analytical reconstruction
approach, the possible accelerations for SART and its variations are introduced.

4.2.2 Simultaneous Algebraic Reconstruction and its Variations

In 2009, we presented the first published performance results on CUDA-based 3-D
iterative reconstruction using SART in the field of high performance medical image
reconstruction [Keck 09a]. Later that year, extended results were published using
new technical features for higher resolutions as well as lower memory requirements
[Keck 09b].

Method

The key for high performance computations on the GPU – as described in Sec-
tion 4.1 – lies inside the problem parallelization, such that computations are exe-
cuted in a data-parallel fashion with optimal usage of the computational resources.
Looking at the Algebraic Reconstruction Technique (see Sect. 3.3.2) such an opti-
mal problem parallelization does not exist. This is due to the specific update rule
that cannot be parallelized without a complicated computational sequence as well
as introducing race conditions.

Instead the Simultaneous Algebraic Reconstruction Technique (see Sect. 3.3.3)
seems well suited. Revisiting Equation 3.22 shows

µ
(k+1)
j = µ

(k)
j + λ ·

R
∑

r=1

 dµ(p,r)−
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∑
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(k)
c

J
∑

c=1
a(p)

r,c
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r,j

R
∑

r=1
a(p)

r,j

,

that the update rule can be divided into several parts. Mueller showed [Muel 98a]
that the inner part of the SART update rule describes the forward-projection for
each reading of projection p using Siddon’s method [Sidd 85] (see Fig. 3.5). The
difference to the measured attenuation dµ(p, r) then states the corrective term that
is finally back-projected onto the volume element µj. Looking at the presented (see
Sect. 4.1.3) optimized voxel-based back-projection operator the corrective terms



100 High Performance Medical Image Reconstruction

for all voxels can be substituted as a corrective projection, such that each correc-
tive projection needs to be back-projected onto the volume. For the computation
of the corrective projection itself, the optimized ray-driven forward-projection op-
erator (see Sect. 4.1.4) can be easily extended. Instead of storing the resulting
value in global memory, this memory is initialized with the measured attenuation
dµ(p, r) such that in the final step of the forward-projection each thread computes
the difference to this read value and multiplies the result with the relaxation factor
λ before storing the result at the same corresponding memory address.

2-D
texture
array

FP

− × BPprojectionsprojectionsprojectionsprojectionsprojections

volume

λ

TU

Figure 4.11: SART 2-D block diagram example

Given the voxel-based back-projection operator and our ray-driven forward-
projection operator, the first realization scheme for CUDA 1.1 is depicted in the
block diagram shown in Figure 4.11. This unmatched forward- and back-projector
pair for iterative reconstruction was already investigated in research and hence we
refer to the literature [Zeng 00]. Similar to the FDK method, the volume data used
for the back-projection remains on the GPU within global memory. As the forward-
projection operator utilizes textures, the volume data needs to be additionally kept
in texture memory as well. For the CUDA 1.1 approach a 2-D texture array was uti-
lized. In order to synchronize the texture to the global memory the Texture Update
(TU) operator is used. For this approach copying slice by slice out of the volume re-
maining in global memory into the 2-D texture atlas (see Fig. 4.7) using the CUDA
function cudaMemcpy2DToArray [NVID 07a]. As a drawback, this approach requires
at least the doubled amount of memory for volume data on the GPU. Looking at the
block diagram (Fig. 4.11) the SART is realized in the following steps.
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For all projections, ∀p ∈ P:

1. Copy projection d(p)
µ from host memory to global memory.

2. Compute corrective projection by performing FP with corresponding inverse
projection matrix F p, including final difference to d(p)

µ and scaling using λ.

3. Copy corrective projection into 2-D texture array.

4. Perform BP of the corrective projection onto the volume using the correspond-
ing projection matrix Bp.

5. Synchronize the 2-D texture atlas with the volume using the TU operator.

Repeating these steps for all projections P results in a single iteration of the
aimed reconstruction approach detailed in Section 3.3.3 by Equation 3.22.

Looking at the variations of the SART the same approach can be used to realize
the SIRT (Sect. 3.3.4) as well as the OS-SIRT (Sect. 3.3.5) by minor changes. For
the SIRT realization the texture update in step 5 has to be skipped for all projec-
tions with respect to the last projection. During the computations the texture then
represents µ

(k)
j while the volume contains the intermediate result of µ

(k+1)
j (see

Eq. 3.24).
Analogously the OS-SIRT can be accomplished by modifying step 5 to be exe-

cuted only at the last projection of each subset POS, such that the method imple-
ments Equation 3.25. Similar to the SIRT realization µ

(κ)
j is represented by the

texture and the intermediate result of µ
(κ+1)
j contained in the volume.

Our first approach utilizes a 2-D texture array for the representation of the vol-
ume used in the forward-projection operator. As described in Section 4.1.4 we
introduced three different approaches for the sample point evaluation of forward-
projection operators using different textures. Therefore, two additional approaches
for the SART and its variations are introduced.
Using the 3-D texture array instead of the 2-D texture array simplifies not only
the sample point evaluation by utilizing hardware accelerated trilinear interpola-
tion, but also the texture update operator could be improved noticeably. Instead of
copying slice by slice, a single call of the CUDA function cudaMemcpy3D performs
the synchronization of the 3-D texture array with the volume data. Combining the
voxel-based back-projection operator and the forward-projection operator utilizing
a 3-D texture array the second realization scheme for CUDA 2.0 is depicted in the
block diagram shown in Figure 4.12.

Similar to the first realization scheme by modifying the texture update step the
SART variations – namely SIRT and OS-SIRT – can be accomplished with the 3-D
texture array approach.
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FP

3-D
texture

− × BPprojectionsprojectionsprojectionsprojectionsprojections

volume

λ

TU

Figure 4.12: SART 3-D block diagram example

The last introduced methology for the SART utilizes a 2-D texture from pitch-linear
memory – introduced in May 2009 with the CUDA 2.2 API – inside the forward-
projection operator. Analogously to the 2-D texture array approach the volume
is represented inside a 2-D texture atlas (see Fig. 4.7) for the forward-projection.
But in contrast to the CUDA 1.1 approach the back-projection operator is modified
to utilize the same texture memory that can be write-able accessed in the global
memory. Consequently, the computation of memory index to the first voxel of the
x2-column has to be adapted for the texture-atlas layout. The few additional param-
eters and computations for this adaption are incorporated similar to the 3-D texfetch
from texture atlas as stated in the listing shown in Figure 4.8. Due to the fact that
the back-projection operator as well as the forward-projection operator are exe-
cuted with separated kernel calls, GPUs texture caches are invalidated in-between
and therefore the non-provided cache coherency of the texture is unproblematic.
The introduced texture update operator in this case is non-existent and the result-
ing third realization scheme of the SART using CUDA 2.2 and a 2-D texture from
pitch-linear memory is illustrated in the block diagram of Figure 4.13. Using a 2-D
texture from pitch-linear memory allows higher volume resolutions, e.g., exceeding
a slice resolution of 20482. Additionally, the memory requirements – compared to
the previous approaches – can be reduced.

Looking at the possible implementations of SIRT and OS-SIRT our last approach
has pros and cons, as the texture update operator is missing. Compared to the
above presented, this approach demands only half of the volume memory require-
ments. On the other side, a simple modification by the texture update operator
to implement the SART variations is not easily possible using a 2-D texture from
pitch-linear memory. Hence these variations are not treated here.

Performance

Given these three different approaches for SART and its variations the performance
results are elaborated. The first performance results cover the CPU-GPU compar-
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Figure 4.13: SART reconstruction block diagram using a 2-D texture from pitch-
linear memory

ison as published in [Keck 09a]. For the comparison an existing multi-core based
Reconstruction Framework by Holger Kunze [Kunz 07] was utilized for CPU per-
formance measurements. On the GPU side the reconstruction is performed on a
NVIDIA QuadroFX 5600 graphics card providing 1.5 GB memory (see Table 2.2).
The phantom dataset consists of simulated projections, generated with the DRASIM
simulation tool [Stie 00]. A short-scan of a C-arm-CT system is represented by
228 projections each size of 256× 128 pixels and the iterative reconstruction yields
a 512× 512× 350 volume. In order to achieve a sub-voxel sampling in the forward-
projection step we used a step-size of 0.3 of the isotropic voxel-size as described in
the test dataset description in Appendix A.3.

One of the major results of our contribution besides the GPU acceleration is that
a significant amount of time for the first two approaches – using texture arrays – is
spent on the texture update operator. As this operator is required in order to use
the hardware-accelerated interpolation provided by textures, the time spent on the
texture update operator can be significantly reduced by switching to the OS-SIRT
method. Table 4.7 shows the achieved performance for 20 iterations of the CPU-
based SART reconstruction as well as our optimized GPU implementations using
CUDA 1.1 and CUDA 2.0. Further improvements are observed for the reconstruction
times for the OS-SIRT method using different subset sizes and 20 iterations alike.
As the CPU implementation cannot utilize textures, they do not need additional
memory for the forward-projection operator nor require a texture update operator.
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Therefore, reconstruction times for the SART and all OS-SIRT measurements are
identical.

hardware/

method

Intel Core2Duo

DualCore 2 GHz

2×Intel Xeon

QuadCore 2.33 GHz

QuadroFX 5600

CUDA 1.1

QuadroFX 5600

CUDA 2.0

SART 32968 6630 4234 844

OS-SIRT(2proj.) ” ” 2435 661

OS-SIRT(5proj.) ” ” 1359 551

OS-SIRT(7proj.) ” ” 1156 530

OS-SIRT(10proj.) ” ” 998 514

Table 4.7: Comparison of iterative reconstruction times in seconds for SART and
OS-SIRT (for 20 iterations each). Two different CPU systems as well as one GPU
with two different CUDA versions.

For the CUDA 1.1 approach, the texture update operator represents a non-
negligible share of the computational time. We measured 476 seconds to synchro-
nize a 5123 volume 414 times with the 2-D texture atlas (see Fig. 4.7). This results
in approximately 1.15 seconds for a single texture update for this volume size. Us-
ing a 3-D texture array instead in our CUDA 2.0 approach, this can be improved by
a factor of 10 as a texture update can be performed in approximately 0.11 seconds.

In comparison to the CUDA 2.0 API our SART implementation using CUDA 1.1
wastes approximately 1 second per texture update for a typical volume size of 5123

floating point volume elements. If the number of forward- and back-projections
between two texture updates is increased slightly, the reconstruction speed is im-
proved while the convergence rate remains almost at the same level, but won’t be
as fast as for the SART (see Sect. 3.1.2). The novelty that a reconstruction al-
gorithm with a slower convergence can actually beat another algorithm with
a faster convergence in terms of reconstruction performance is one of the im-
portant results of our research. The trade-off between convergence and speedup
was also examined by Xu et al. They come to the same result, that the algorithm
with a slower convergence can actually be computed much faster. We refer to the
literature [Xu 10] for a detailed analysis of the convergency behaviour for SART
and OS-SIRT in CT.

In Table 4.7 we compared the reconstruction times on three different systems.
First, an off-the-shelf PC equipped with an Intel Core2Duo E6600 processor running
at 2 GHz, second, a workstation with two Intel Xeon E5410 QuadCore processors
at 2.33 GHz and a NVIDIA QuadroFX 5600 running CUDA 1.1 and CUDA 2.0 are
utilized. The SART implementation using CUDA 1.1 is the slowest implementation
on the GPU. Yet it is more than 7.5 times faster than the PC and 50% faster than the
workstation. Employing the ordered subsets optimization yields another speedup
of over 4. SART using a 3-D texture array for interpolation (CUDA 2.0) is even
a bit faster. Using the OS-SIRT approaches again results in a total speedup of up
to 64 times and 12 times faster compared to the PC (2 cores) and the workstation
(8 cores) respectively.
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The second performance results cover the extension to high resolution itera-
tive CT reconstruction using the GPU as published [Keck 09b]. The fastest itera-
tive implementations on graphics cards use 3-D texture arrays to exploit hardware-
accelerated trilinear interpolation. However, the size of textures arrays is subject to
technical limitations (see Table 2.1). As particular applications of computed tomo-
graphy require high slice resolutions, e.g., in 3-D mammography (see Sect. 1.1.2),
3-D texture arrays are inapplicable for such applications. Alternatively a 2-D tex-
ture array can be used instead of the 3-D texture array as in the first realization
scheme, but the texture update operator causes a significant loss of performance.

In our third realization scheme we utilize a new feature – 2-D pitch-linear tex-
ture – of the released CUDA 2.2 framework to improve the Simultaneous Alge-
braic Reconstruction Technique on GPUs. In order to compare the performance of
the last scheme we extend the experiment from our first results [Keck 09a]. The
achieved performance results are stated in Table 4.8 in extension with the benefits
and technical limitations of the three presented realization schemes. Additionally
the performance results for NVIDIA’s second generation of CUDA-capable devices
(see Table 2.2) are stated for the NVIDIA Tesla C1060 graphics card.

volume 5123 voxels

hardware QuadroFX 5600 Tesla C1060

volume

repres. (FP)

2-D

texture array

3-D

texture array

2-D pitch-

linear texture

2-D pitch-

linear texture

volume

repres. (BP)

global mem.

linear

global mem.

linear

global mem.

texture atlas

global mem.

texture atlas

device mem. [MB] 700 700 350 350

TU yes yes no no

CUDA version ≥CUDA 1.1 ≥CUDA 2.0 ≥CUDA 2.2 ≥CUDA 2.2

SART 4234 844 1488 955

Table 4.8: Comparison of iterative reconstruction times in seconds (for 20 iterations
each).

Compared to the 3-D texture array approach, the third realization scheme is
about 76% slower. Using NVIDIA’s 2nd Tesla generation, the Tesla C1060, the re-
construction time for the last approach can be further reduced from 1488 to 955
seconds. Overall, the third realization scheme states a new balance between per-
formance, limitations in resolution and memory requirements. Specific applications
with higher resolutions as well as performance results for this approach will be de-
tailed in Chapter 5.

Given these performance results for SART and its variations, we conclude the
section on algebraic reconstruction techniques. The optimized reconstruction per-
formance for our realization scheme was outlined. The advantage of using the tex-
ture memory of current graphics cards to perform the most time-consuming parts



106 High Performance Medical Image Reconstruction

of an iterative reconstruction technique effectively on the GPU using CUDA 1.1 and
CUDA 2.0 was compared. Apparently, in CUDA 1.1 the time consuming texture up-
date operator dominates the overall reconstruction time. This can be dramatically
relieved using 3-D texture arrays as introduced in the CUDA 2.0 API. Therefore, the
impact on a Ordered Subset approach using a 3-D texture array is lower, compared
to the 2-D texture array approach. For higher resolutions, the advantage of using
2-D texture lookups from pitch-linear memory to overcome the 3-D texture size
limitation for volume representation are exemplary stated.

4.2.3 Maximum Likelihood Reconstruction

Another contribution in the field of high performance medical image reconstruction
covers the third group of reconstruction algorithms – namely statistical reconstruc-
tion methods – detailed in Section 3.4. As described our work is based on the paper
[Lang 95] by Lange et al. Looking at the introduced approaches of statistical recon-
struction, we focus on the high performance realization of the maximum likelihood
convex algorithm as detailed in Section 3.4.3 and suggested by Lange et al. in the
discussion, see Section IV.

Method

For a high performance realization scheme, it is essential to optimally dissect this
algorithm, such that the computations are executed in a data-parallel fashion with
optimal usage of the computational resources. Revisiting the update rule of the
ML-Convex algorithm in Equation 3.43:

µ
(k+1)
j = µ

(k)
j +

µ
(k)
j

P
∑

p=1

R
∑

r=1
a(p)

r,j

[
I0e−

〈
a(p)

r ,µ(k)
〉
− dI(p, r)

]
P
∑

p=1

R
∑

r=1
a(p)

r,j

〈
a(p)

r , µ(k)
〉

I0e−
〈

a(p)
r ,µ(k)

〉 ,

shows the required computations to be realized. Before detailing our efficient re-
alization, numerical details of this equation are treated. In our experiments we
determined that this equation introduces numerical instabilities for floating-point
implementations, which resulted in image artifacts. Furthermore, the multiplicative
version of the ML-Convex in Equation 3.44 also indicated numerical instabilities.
Therefore, an important result of our research on high performance statis-
tical reconstruction is a mathematical transformation of Equation 3.43 that
provides higher and sufficient numerical stability for the GPU implementation
using floating-point arithmetics. The numerical problem in the update rule is

caused by the product of the intensity I0 and the exponential term e−
〈

a(p)
r ,µ(k)

〉
. As

the intensity value is typically of a high value and the exponential term can result in
a very small value for high attenuation integrals. The multiplication then is numeri-
cal not stable. In the suggested solution, the intensity value is raised into the power



4.2 High Performance Medical Image Reconstruction Approaches 107

term as log I0. This provides higher numerical stability as the logarithmic inten-
sity is much smaller and incorporated as a sum in the exponent. The transformed
update rule as implemented then states:

µ
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j = µ

(k)
j +

µ
(k)
j ∑

p
∑
r

a(p)
r,j

[
elog I0−

〈
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〉
− dI(p, r)

]

∑
p

∑
r

a(p)
r,j

〈
a(p)

r , µ(k)
〉

elog I0−
〈

a(p)
r ,µ(k)

〉 (4.6)

This update rule is different to the update rule of the SART, but also shows
important similarities. Here, the forward-projection as described in Section 4.2.2
is used in the numerator as well as twice in the denominator of Equation 4.6. In the
numerator the difference to the measured intensity is computed as a corrective term
as well as a normalization value in the denominator. Both values are then back-
projected, but not directly as in the realization scheme of our SART approach.

Analogously to our SART implementation, we depict the problem in a projection-
wise fashion. Looking at all readings R of projection p, the corrective term of the
numerator can be interpreted as a corrective projection named as numerator projec-
tion. Similar the normalization values for projection p in the denominator are de-
clared as denominator projection. As we distinguish between the upper and lower
part of the fraction in Equation 4.6 a numerator and a denominator volume is uti-
lized besides the volume residing in the texture array. For the realization scheme,
we use the introduced operators for the forward-projection (see Sect. 4.1.4) and the
back-projection (see Sect. 4.1.3) and modify both according to the following. For a
projection p, the parallel kernel of the forward-projection is extended to compute
each corrective term of the numerator projection similar to the SART. In addition
the computed forward-projection is used to compute and store the normalization
value in parallel in the denominator projection. The required log I0 is appended
into the kernel call. Both resulting projections are copied afterwards into a 2-D
texture array each.

While both projections could be independently back-projected onto the respec-
tive volume, the performance can be improved by modifying our back-projection
operator such that the numerator and denominator projection are back-projected
using a single kernel onto the appropriate volume. Therefore, the geometrical com-
putations are minimal and a higher workload for the back-projection kernel can be
achieved.

Similar to SIRT the ML-Convex is a non-successive method, meaning that the
update for each pixels is computed using all projections. Therefore, the alternating
computations of the FP and BP operator are repeated for all projections P. After the
last projection the actual update value including the fraction is computed by a new
update operator (UP). The update operator is parallelized identically to the back-
projection operator. For each voxel the update operator reads the original value µ

(k)
j

from the texture array, as well as the appropriate value from the numerator and de-
nominator volume out of global memory. Using these input values the update rule
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Figure 4.14: ML-Convex 3-D block diagram example.

from Equation 4.6 then is computed for each voxel and µ
(k+1)
j stored in a target vol-

ume, e.g., using the denominator volume. Following this, the texture update (TU)
operator synchronizes the target volume to the utilized texture, completing one
iteration of the ML-Convex algorithm. As a drawback, this approach requires at
least three times the volume data on the GPU. Statistical reconstructions require
certain conditions like the non-negativity constraint. These constraints as well as a
relaxation factor λ can be easily incorporated into the update operator.

The first realization scheme using a 3-D texture arrays is depicted in the block
diagram shown in Figure 4.14. One iteration of the ML-Convex reconstruction is
realized in the following steps.

For all projections, ∀p ∈ P:

1. Copy intensity projection d(p)
I to global memory of the numerator projection

from host memory.

2. Compute numerator projection and denominator projection by performing
the forward-projection with corresponding inverse projection matrix F p. This
includes the computation of the corrective term and normalization value (see
Eq. 4.6).

3. Copy numerator and denominator projection into the corresponding 2-D tex-
ture array.

4. Perform BP of both projections onto the appropriate volume using the corre-
sponding projection matrix Bp.

5. For the last projection P, perform the UP operator that computes µ
(k+1)
j using

µ
(k)
j from the texture memory as well as the corresponding value from the
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numerator and denominator volume. Store µ
(k+1)
j in the target volume in

global memory.

6. For the last projection P, synchronize the texture with the target volume using
the TU operator.

Due to the fact that the 3-D texture array may limit the resolution, we also
present a second approach for higher resolutions similar to the SART approach.
Here, it is of minor difference if a 2-D texture array or a 2-D texture from pitch-
linear is used. On the one hand, the memory requirements cannot be reduced as it is
necessary to provide three times the volume on the GPU for our realization scheme.
The back-projection cannot utilize the pitch-linear memory as the original memory
µ
(k)
j resides in the texture memory that is required for the update operator. On the

other hand, the texture update operator is used only once for all projections and
therefore the performance difference is marginal. The second realization scheme
for higher resolutions using a 2-D texture atlas is depicted in the block diagram
shown in Figure 4.15.

projectionsprojectionsprojectionsprojectionsprojections

2-D
texture
atlas

num. proj.

denom. proj.

num.
vol-
ume

denom.
vol-
ume

FP

BP

BP

TU UP

Figure 4.15: ML-Convex 2-D block diagram example

Performance

Given these two realization schemes for the maximum likelihood convex algorithm,
a first look at the performance results is stated. In Section 3.5 we discussed that
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SART and ML-Convex have the same complexity, but differ in the amount of re-
quired volume updates. The performance benefit of the GPU versus CPU was al-
ready stated in the last section. Hence, we compare our SART implementation with
the ML-Convex approach for a simulated data head phantom in this performance
evaluation. The dataset consists of 90 projections over 180◦. Each projection has
a size 10242 readings. The target volume was set to a size of 5123 floating-point
elements. Details for this test dataset are stated in Appendix A.4. Repeating the
SART experiment, the reconstruction times in total of 20 iterations were measured
to compare the average performance of the ML-Convex algorithm.

volume 5123 voxels

hardware Tesla C1060

volume repres. (FP) 3-D texture array 3-D texture array

req. device mem. [MB] 1024 1536

approach SART ML-Convex

reconstruction time 600 452

Table 4.9: Comparison of iterative reconstruction times for the SART and ML-
Convex approach in seconds (for 20 iterations each).

As discussed in Section 3.5 the ML-Convex has a slower convergence than the
SART and therefore in practice requires more iterations for the reconstruction. As
the computational performance is compared in Table 4.9, both measurements state
the same number of iterations. Looking at the achieved performance for both ap-
proaches using a NVIDIA Tesla C1060 GPU, the ML-Convex realization scheme is
almost 25% faster than our SART approach using a 3-D texture array. This is mostly
due to the highly reduced number of texture updates. On the other side, this indi-
cates that the additional computations for both corrective projections as well as the
twofold back-projections are implemented very efficiently as the update operator
itself represents only a small part of the required computations.

This concludes the high performance implementation of the maximum likeli-
hood convex algorithm as well as the section on high performance medical image
reconstruction approaches.
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4.3 OpenCL Comparison

As part of our research the Open Computing Language (see Sect. 2.4.1) was also
investigated. This was not the main focus of this research and therefore our experi-
ence in OpenCL in comparison to CUDA is summarized. Details on the comparison
and analysis can be found in our research results, presented at the annual SPIE
Medical Imaging Conference [Sieg 11b] and the German workshop BVM – Bildver-
arbeitung für die Medizin – on medical image processing [Sieg 11a].

The results additionally detail the comparison for the proposed back-projection
and forward-projection operators for a Multi-core CPU system as well as a AMD/ATI
GPU. Here, we want to focus on the difference between the OpenCL implementa-
tion, portability as well as performance differences for NVIDIA GPUs.

Looking at the performance results for the NVIDIA Tesla C1060 stated in Fig-
ure 4.16, both operators can be accelerated with the GPU compared to a CPU im-
plementation. In detail, a general portable implementation of the back-projection
operator is possible using OpenCL with the drawback of a highly reduced perfor-
mance. Here the underlying hardware is not fully taken into account. Similar to
our CUDA implementation the OpenCL implementation can be improved if the par-
allelization scheme is adapted, but these optimization techniques (see Sect. 4.1.3)
are introduced together with the lack of portability. The OpenCL implementation
with such optimizations is 2.7 times faster than without adaptions, but 10% slower
compared to the analog CUDA implementation of the back-projection operator. For
the forward-projection operator this difference is only about 4 percent.

[s]
0 10 20 30 40 50 60

44.7OpenCL (g, 3-D)
38.6OpenCL (c, 2-D, y)

18.3OpenCL (t, 3-D)
16.3OpenCL (c, t, 2-D, y)

14.7CUDA [s]
0 50 100 150

146.3OpenCL

140.9CUDA

Figure 4.16: OpenCL vs. CUDA performance comparison in seconds on a NVIDIA
Tesla C1060. Left: Back-projection runtimes using four different OpenCL and an op-
timized CUDA implementation. For the OpenCL implementation (g) means generic,
(c) coalesced, (t) textures units, (v) vectorized. (x) and (y) denote the index of the
innermost loop. Right: Forward-projection operator using a 3-D texture comparing
OpenCL and CUDA.

This indicates that OpenCL in general can be used as a language for acceleration
using GPUs. In order to achieve high performance this comes to a lack of a main
claim of OpenCL namely portability1. Without the portability – between different
GPU manufacturers and CPUs – CUDA instead can be used on NVIDIA GPUs pro-
viding a slightly higher performance. As NVIDIA stepped back for future OpenCL
development and support of their GPUs, clearly CUDA is the only viable solution
for high performance implementations using NVIDIA graphics cards.

1http://en.wikipedia.org/wiki/OpenCL
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This concludes the chapter on high performance medical image reconstruction
that depicts the main research contribution of this thesis. Next, the value of our
contribution is conveyed in form of two clinical applications with focus on perfor-
mance and image quality considerations.

4.4 Conclusion

In practice, medical image reconstruction algorithms often have to be executed with
very strict time constraints. GPU technology proved to provide sufficient computa-
tional power for the implementation of analytical reconstruction methods and can
meet those time constraints. For the class of iterative algorithms the computational
demand is a multiple of analytical ones and therefore it is questionable whether
those more complex algorithms can be practically applied. GPU acceleration can
be utilized for medical pre- and post-processing algorithms. For the realization of
GPU-accelerated iterative image reconstruction, the introduced operators for back-
projection and forward-projection are key. In order to achieve high performance
these operators are implemented taking different aspects into account. Each al-
gorithm is divided into lightweight and independent tasks which can be executed
in parallel. Different technical features of the GPU hardware are utilized. The im-
plementation pays attention to the underlying hardware and GPU architecture such
that a suitable parallelization scheme for high performance is achieved. Given those
operators the key for the actual realization of the iterative reconstruction methods
is the presented suitable decomposition of the algorithms. Consequently, the opera-
tors are properly combined to implement the reconstruction algorithm. Therefore,
the forward- and back-projection operators are modified and additional operators
introduced.

In terms of performance, the SART implementation and its variants highly de-
pend on the available technical features of the GPU such as 3-D texture arrays or
2-D textures from pitch-linear memory. Using these technical features a significant
speedup can be achieved on a single GPU compared to a desktop CPU or dual CPU
workstation.

An implementation of the statistical reconstruction algorithm which achieves
high performance on the GPU is most challenging. In addition to the selection
of an appropriate decomposition and parallelization also numerical issues have to
be considered. Hence, the presented approach is based on the decomposition of
a reformulated update rule and a tricky combination into sequences of parallel
implementations. This is key for the achieved high performance results.

Finally, we can state that the usage of OpenCL as an alternative to CUDA in
general is possible. OpenCL also allows execution on CPUs as well as GPUs from
AMD/ATI. However, performance comparable to the CUDA implementations is only
achievable if the underlying hardware is taken into account. This leads to a lack
of portability, one of the major claims of OpenCL. The achieved acceleration using
CUDA as well as the presented performance results demonstrate the possible appli-
cation of iterative reconstruction methods using the high computational power of
off-the-shelf hardware.



C H A P T E R 5

Clinical Applications

Given the technical and theoretical background as well as a detailed descrip-
tion of the different scientific contributions, clinical applications are the main focus
of this chapter. In order to emphasize the impact and relevance of this thesis, we
exemplarily show two clinical applications including performance comparison and
image quality aspects.

In focus of the first clinical application is the interventional C-arm imaging as
described in Section 1.1.2. Afterwards 3-D mammography is covered as the second
clinical application, where breasts are imaged using a limited angular scan range
(see Fig. 1.6).

5.1 Interventional C-arm CT

In interventional C-arm CT digital flat-panel detectors are used to acquire digital
X-ray projections for image guided treatment as well as rotational projections in
order to compute cross-sectional images supporting the interventional procedure.
Therefore, manufacturers provide different imaging systems, all given different ca-
pabilities. With the modern C-arm CT system, the Siemens Artis ZeeGo, an indus-
trial joint-arm robot is used to move a pair of X-ray emitter and a detector mounted
on a C-like structure with a high degree of freedom. This allows traditional image
acquisition trajectories like a circular arc, but also enables non-standard trajectories
(see [Denn 08]).

The datasets utilized in Section 4.2 were based on a geometry typical for C-
arm CT. As shown in Section 4.2.1 high performance implementations using the
GPU enabled reconstruction times of a few seconds for analytical reconstruction
methods with application in C-arm CT. In this field the CELL processor already
enabled on-the-fly reconstruction for different analytical reconstructions [Kach 07,
Sche 07c, Sche 07a] before. As sufficient performance could be achieved within
this clinical application, more advanced reconstruction methods may be facilitated
if clinical benefits can be provided.

Looking at the simultaneous algebraic reconstruction technique, this is still
in focus of research and was investigated also by H. Kunze (see Section 7.2 of
[Kunz 07]). In order to demonstrate this reconstruction technique, different exam-
ples for simulated data motivate possible applications.

The first example presented is based on the high resolution approach for itera-
tive CT detailed in Section 4.2.2. As published in [Keck 09b], we utilized simulated

113
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phantom projections of the Catphan CTP528 phantom in order to assess the image
quality of our approach. Therefore, 400 projections of 1024× 128 pixels each were
generated with DRASIM [Stie 00], given a pixel size of 0.3× 0.7 millimeters. Details
for the datasets can be found in Appendix A.4. The iterative reconstruction of the
CTP528 phantom is illustrated in Figure 5.1 showing all 21 line-pairs.

Figure 5.1: Iterative reconstruction of the Catphan CTP528 phantom using simu-
lated projections and 20 iterations of the SART using the GPU. The 16th line pair is
marked with the rectangle. Greyscale window [−1000 HU; 1000 HU].

In order to compare the image quality as well as reconstruction performance, the
phantom was reconstructed using different resolutions and reconstruction setups as
stated in Table 5.1 all with SART. The table also includes the achieved performance
as measured for 20 iterations each. Due to the 2 GB memory limitation of a 2-D
texture from pitch-linear memory, the number of slices for the highest resolution of
3072× 2048 pixels was reduced to 50.
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hardware Tesla C1060

volume 512× 512 1024× 1024 2048× 2048 3072× 2048

size ×100 ×100 ×100 ×50

voxel size 0.4× 0.4 0.2× 0.2 0.1× 0.1 0.075× 0.1

in mm ×0.1 ×0.1 ×0.1 ×0.1

device memory

required [MB]
100 400 1600 1200

SART

rec. time
1166 2407 11353 4951

Table 5.1: Comparison of iterative reconstruction times in seconds for SART for
high resolutions (20 iterations each).

Figure 5.2: Iterative reconstructions details of the 16th line pair of the Catphan
CTP528 for different slice resolutions from left to right: 5122 pixels, 10242 pixels,
20482 pixels and the highest resolution of 3072× 2048 pixels. The visualized yellow
line across the elements illustrates the measurement line used for the line profiles.

The increased reconstruction resolution suggests an increase in image quality.
For comparison, the reconstruction results of the 16th line pair of the phantom are
illustrated for each setup in Figure 5.2 together with the measured lines (marked
yellow). These attenuation coefficient on these lines are additionally visualized for
comparison as line profiles in Figure 5.3.

The shown reconstruction examples and corresponding line profiles clearly in-
dicate the benefit for higher resolutions. As stated in Table 5.1 the presented en-
hanced GPU accelerated SART reconstruction for high resolution volumes can be
performed in a similar performance range as our first SART approach using a 3-D
texture array. In contrast the memory requirement for the high resolution approach
is lower. Also the reconstruction can provide an improved image quality if higher
resolutions can be utilized. However, a total reconstruction time of up to 190 min-
utes still points out the limitation for clinical use. For certain research applications
this techniques can be utilized with extensive reconstruction times, but clearly not
for clinical routine, yet.
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Figure 5.3: Different line profiles of the line across the 16th line pair of the Catphan
CTP528 phantom are compared. The profiles correspond to different reconstruction
resolutions using SART.

hardware Tesla C1060

algorithm FDK SART ML-Convex

number of iterations n.a. 20 20 50 200

reconstruction time 3 566 461 1142 4549

Table 5.2: Performance comparison for different reconstruction methods using the
Tesla C1060 GPU. The dataset consists of only 90 projections over a limited angle
of 180◦. The performance results are given in seconds.

Another example to motivate iterative reconstruction methods, is given by the
following experiment. Using a head phantom and the DRASIM simulation tool a
C-arm CT acquisition over a limited angle of 180◦ for the low number of 90 projec-
tions was simulated (see Sect. A.5). Using this data the reconstruction results are
compared for a single slice of a 5123 volume in Figure 5.4. Therefore, the refer-
ence phantom as well as a standard FDK reconstruction are shown together with
different iterative results. Looking at the centered top of the head phantom the
FDK reconstruction clearly indicates the missing data of the circular arc as these ac-
quisitions are typically using an trajectory over 220◦ (depending on the fan-angle).
The SART can provide only a minor improvement in this area. Looking at the ML-
Convex a clear improvement is visible compared to the other methods and there-
fore provides a better reconstruction in this area. Given the performance results
as stated in Table 5.2, the drawback of these methods is clear. The reconstruction
time reaches from a few seconds up to 75 minutes for 200 iterations of the sta-
tistical reconstruction method. The statistical reconstruction provides the slowest
convergence and therefore requires most iterations.
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Figure 5.4: Slice 258 of the reconstructed head phantom. Left images from top
to bottom: Phantom reference slice, FDK reconstruction and SART reconstruction
with 20 iterations. Right side from top to bottom is the ML-Convex reconstruction
with 20, 50 and 200 iterations. Greyscale window [−1000 HU; 1000 HU].
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5.2 3-D Mammography

The second clinical application is motivated by advanced screening methods for
breast cancer. In 3-D mammography the digital breast tomosynthesis technique
aims to provide depth information by the acquisition of several projections over
a limited angle for the reconstruction of focussed slices respectively a 3-D volume.
However, it suffers from incomplete data and poor quantum statistics limited by the
total dose absorbed by the breast. Breast tissue has a relatively high sensitivity to
radiation and therefore the total dose needs to be as low as possible. Our research
in this field was in close collaboration with clinical experts. A clinical discussion of
the results is out of scope of this thesis and the reader is referred to the publications
by Jerebko et al. [Jere 10a, Jere 10b] for further details, analysis of the achieved
image quality as well as the advantages of iterative reconstruction techniques in
this field.

Jerebko et al. showed the image quality advantages [Jere 10b] of the ML-
Convex algorithm for 3-D Mammography. The ML-Convex algorithm [Lang 95] is
identical to our presented approach in Section 4.2.3. Thus, we motivate a possible
clinical application by the achieved performance results and comparison. Further-
more, a few image examples of the presented realizations are stated to illustrate
the underlying modality as well as give an insight into the challenges and possible
solutions.

unfiltered BP FDK SART 
(5 iterations)

ML-convex 
(5 iterations)

ML-convex 
(25 iterations)

Figure 5.5: 3-D mammography reconstructions for different algorithms. From left
to right. The unfiltered back-projection is stated as a possible initialization for iter-
ative reconstruction methods. The FDK reconstruction is elevated due to the differ-
ent impression caused by the filtering step and the specific filter. This is followed
by two iterative reconstructions, the SART and ML-Convex reconstruction results
after 5 iterations. On the right side the reconstruction result after 25 iterations of
the ML-Convex is illustrated. Greyscale window [−900 HU; 300 HU].



5.2 3-D Mammography 119

All presented reconstruction approaches of Section 4.2 can be applied in the
field of 3-D mammography. Figure 5.5 shows the different impressions of the breast
tissue structures achieved by analytical, algebraic and statistical reconstruction al-
gorithms. The FDK approach uses a Mammography specific filter kernel to provide
better sensitivity in terms of contrast resolution, but looses information about the
true tissue density. The unfiltered back-projection can be used for an improved ini-
tialization for iterative reconstruction methods. In order to impart the difference to
a constant initialization, the unfiltered back-projection is also illustrated.

hardware
2×Intel Xeon

QuadCore 2.33 GHz
QuadroFX 5600

Tesla

C1060

resolution high normal normal high high

texture n.a. 3-D 2-D lin. 2-D lin. 2-D lin.

rec. time 2:12 h:m 102s 232s 290s 198s

Table 5.3: SART reconstruction performance comparison between CPU and GPUs
for two different resolutions. The times stated are measured for 5 iterations. Due
to size limitations different texture approaches are used in the GPU results.

With the benefits of GPU acceleration analytical reconstructions in 3-D mam-
mography can be achieved within a few seconds. Therefore, we look into the com-
putational more advanced SART for performance comparison in the field of breast
tomosynthesis. We described in Section 1.1.3 that 25 projections à 2816 × 3584
pixels are acquired by the Mammomat system. For the reconstructions two typ-
ical resolutions are used. The normal resolution uses a voxel size of 0.17mm ×
0.17mm × 1mm, resulting in a total volume of 829× 1435× 60 voxels. The high
resolution setting applies a voxel size of 0.085mm× 0.085mm× 1mm such that an
identical size requires 1658 × 2870 × 60 voxels (Sect. A.5). The achieved recon-
struction performance is compared in Table 5.3 for 5 iterations of the SART.

In order to underline the proposed high resolution approaches, we look into the
following 3-D mammography example. Figure 5.6 shows two SART reconstructions
both with the same amount of iterations. On the left side the typically resolution
for the clinical environment is used. On the right side the full detector resolution is
utilized for the reconstruction as introduced beforehand.
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Figure 5.6: SART comparison for regular and high resolution. On the left side
a slice with the typical clinical resolution is shown. On the right side the high
resolution was used for the reconstruction. In both images the rectangles mark the
same magnification areas. Greyscale window [−650 HU; 50 HU].

For non-experts both images seem to be identical. Therefore, two magnifica-
tions are used in combination with a different window in order to illustrate the
important differences. First, looking at the bright nodule in the lower right of the
image center, the magnification in Figure 5.7 clearly states an improved illustration
of the shape of this calcification.

Even more interesting is the second example. Looking at the magnification
in Figure 5.8 of the center image region using a different window, some micro-
calcification can be indicated for the typical resolution. Looking at the high reso-
lution reconstruction the two right-handed small micro-calcification turn out to be
a cluster of many tiny micro-calcifications. This is important as a cluster of micro-
calcifications can be an important indicator for an expanding breast cancer.
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Figure 5.7: Magnification of the SART resolution comparison for the bright calci-
fication. On the left the typical resolution was used. On the right side the high
resolution SART reconstruction was applied. Greyscale window [−650 HU; 50 HU].

Figure 5.8: Magnification of the SART resolution comparison for micro-calcification
using a different visualization window. The high resolution on the right side clearly
indicates the benefits compared to the typical resolution on the left. Greyscale
window [−200 HU; 200 HU].
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Given these benefits of the SART and higher resolutions the second iterative
algorithm is investigated. Jerebko et al. presented a detailed analysis on the im-
age quality of the ML-Convex algorithm in [Jere 10b]. The proposed ML-Convex
approach requires more iterations due to a slower convergence (see Sect. 3.5).
However, the performance per iteration compared to the SART approach is slightly
faster due to the reduced amount of texture updates. In Table 5.4 the performance
results are stated for a clinical 3-D mammography with a reconstructed voxel size
of 0.085mm× 0.085mm× 1mm and thereby defined resolution of 1144× 2048× 38
voxels (see Sect. A.6). Note that this enables the 3-D texture approach.

hardware Tesla C1060

algorithm SART ML-Convex

number of iterations 5 5 25

reconstruction time 36 29 138

Table 5.4: 3-D mammography SART vs. ML-Convex performance comparison. Re-
construction performance in seconds.

The convergence of the ML-Convex depends on various factors and therefore
the required amount of iterations cannot be defined. In our experience with a good
initialization 5 iterations often are sufficient. However, even 25 iterations with a
reconstruction time of 2.5 minutes are still applicable for clinical routine. The
proposed approach can be easily extended in the forward projection operator to
compute the log-likelihood defined in Equation 3.29. This enables a comparison
of the convergence behaviour with a fixed dataset and different initializations. In
Figure 5.9 four different initializations are compared over 50 iterations of the ML-
Convex using a plot of the log-likelihood. Three different constant initializations
are compared with an initialization using an unfiltered back-projection. The plot
and magnification indicate the benefits of the unfiltered back-projection initializa-
tion as well as the convergence for each iteration. For a higher number of iterations
the advantages become minor.
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Figure 5.9: Log-likelihood for the ML-Convex reconstruction over 50 iterations is
plotted on the top. The different initializations influence the appropriate starting
points of the log-likelihood. An unfiltered back-projection (BP-init) initialization is
more similar to the aimed reconstruction result and therefore shows a much higher
log-likelihood than the constant initializations. On the bottom the comparison is
plotted starting with 5 iterations. This details the log-likelihood slope as well as
details the decreasing differences between the different initializations. The log-
likelihood is computed according to Equation 3.29.
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5.3 Conclusion

In this chapter we have shown two clinical applications of iterative X-Ray CT, both
requiring high performance reconstruction. With interventional C-arm CT and 3-D
mammography two clinical applications are exemplified for the performance and
image quality aspects of the presented research. For interventional C-arm CT the
ML-Convex algorithm can improve image quality in case of missing data. However,
the actual computational cost in this case is still prohibitively high for implemen-
tation in clinical routine, yet it enables further clinical research on this method. In
case of algebraic reconstruction the higher resolution approaches are verified with
the reconstruction of a simulated Catphan phantom. The performance comparison
of our approaches underlines the high performance of GPUs as well as motivates
the use of this class of reconstruction methods for interventional C-arm CT.

In the second clinical application, 3-D Mammography, the image quality aspects
have already been investigated by Jerebko et al.. Our presented approaches can
provide a significant performance improvement and therefore enable iterative re-
construction for this time sensitive screening method. The higher resolutions are
justified with the illustration of reconstructed micro-calcifications. This exemplifies
the possible application of iterative reconstruction methods in practice. In the last
chapter this work is summarized and an outlook on future medical image process-
ing on GPUs is given.
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Summary and Outlook

In order to provide an outlook for GPU accelerated medical image processing
the essence of the first five chapters is summarized. This includes the main contri-
butions as well as conclusions of this work. The thesis is then finished with a more
general outlook for GPU acceleration and recent developments within the field of
high performance computing related to medical image processing.

6.1 Summary

The relevance of this work is introduced in correlation to the history of CT and
its rising usage and complexity. The exponential increase of measured signals per
seconds over the last four decades (see Sect. 1.7) illustrates the first substantial
motivation. Additionally, this is reaffirmed by the manufacturers’ development and
introduction of specialized acceleration cards in the field of medical image process-
ing over the last decades (see Sect. 1.2.1).

With the introduction of unified shaders and the CUDA programming language
in 2007, GPGPU quickly has drawn interest from researchers and developers. The
immense compute power and enormous memory bandwidth of GPUs together with
a parallel programming approach enabled the utilization of high computational
power from off-the-shelf hardware. Since then GPU accelerated medical image
processing strongly increased its share in many fields of application including med-
ical image reconstruction.
The second substantial motivation is founded on the algorithmic complexity of re-
construction algorithms (see Sect. 3.5). The trend towards iterative reconstruction
algorithms expresses an additional demand of higher computational power in order
to meet performance requirements of numerous medical imaging systems.

In the interest of presenting our scientific contribution, the basic knowledge
of our research is detailed in the second chapter on GPU Programming and in
the third chapter on Medical Image Reconstruction. In the first section of Chap-
ter 4 two different examples of GPU acceleration using CUDA are demonstrated.
This is followed by the two important basic operators for iterative reconstruction
methods. Hence the forward- and back-projection are detailed. The proposed im-
plementations, variants, optimization techniques and resulting performance exam-
ples demonstrate the achieved high performance. In example our presented back-
projection implementation running on a NVIDIA QuadroFX 5600 GPU is 29 times
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faster than a highly optimized CPU implementation running on an Intel Core2Duo
Conroe CPU (2 Cores at 2.4 GHz). These GPU accelerated algorithms using CUDA
proof their advantages against other processors – like the CPU and the CELL pro-
cessor – as well as to other GPU APIs, like OpenGL. This points out the suitability
of GPUs in combination with CUDA for medical image reconstruction algorithms.
Afterwards the presented high performance reconstructions are detailed in com-
bination of the proposed operators together with modifications and additionally
required operators. As a representative of analytical reconstruction methods, the
FDK approach was realized combining the GPU accelerated FFT together with the
presented back-projection operator. The resulting approach could improve the per-
formance compared to the CELL broadband engine by a factor of 2 (see Sect. 4.2.1).
While this seems modest, the difference has to be seen in the development time and
efforts spent for such performance results as well as the fact that the CELL processor
was one of the most efficient and powerful processors at that time.

Looking at iterative algorithms, the Simultaneous Algebraic Reconstruction Tech-
nique and its variations were realized combining the two main operators – with
minor modifications of the forward-projection – together with an additional update
operator. Three realizations detail differences in performance as well as technical
limitations (see Sect. 4.2.2) using the GPU. Again our approaches demonstrate the
achieved high performance for these iterative algorithms using different technical
features and circumventing texture size limitations. Comparing a single GPU with a
multi-core CPU system states a significant performance improvement of a factor of
12 by the introduction of GPU acceleration within this field of – iterative – algebraic
reconstruction.

Considering the more advanced reconstruction group of statistical reconstruc-
tion algorithms, we were able to present the ML-Convex reconstruction approach
also utilizing the accelerated operators. Through use of specific partitioning of
the required computations together with minor modifications the algorithm was
successfully realized on the GPU. In order to achieve this, the mathematical back-
ground is of importance. Numerical instabilities could be circumvented by mathe-
matical conversion. While the theoretical computational complexity is equivalent
to SART, the achieved performance clarifies the high performance statement. The
direct comparison to SART shows that the algorithm can slightly perform better
than the accelerated SART due to reduced execution of the additional update op-
erator as well as an introduced higher computation load for the modified parallel
kernels and further optimizations. In total the ML-Convex provides a slower con-
vergence and therefore requires more iterations, reducing the benefit in terms of
total reconstruction time.



6.2 Outlook 127

Besides the main scientific contributions, the clinical application of the pre-
sented approaches is exemplified in the fifth chapter. For two different modalities
the performance results are stated together with image quality aspects. These ex-
amples indicate the possible usage of GPU accelerated reconstruction approaches
for medical imaging products. Especially for 3-D mammography the presented high
resolution approach for the SART demonstrates clinical usability as well as diagnos-
tically benefits in case of micro-calcifications.

In summary we demonstrated the immense performance benefits of GPUs in the
field of iterative medical image reconstruction. Minor technical limitations were
indicated and technical developments were incorporated to further improve perfor-
mance or circumvent limitations. In order to realize medical image reconstruction
algorithms using CUDA, we indicated the importance of a suitable partitioning and
parallelization of these algorithms as well as highly optimized implementations in
our presented research.

6.2 Outlook

Giving an outlook for the future of medical image processing on GPUs is a quite
difficult task, but also important to lead further research directions in this field.
Many different economical aspects influence future development of GPUs as well
as CPUs. However, we can identify a clear trend for these technologies.

Looking at the evolution of CPUs the central processing unit was designed to
process dozens of different tasks simultaneously with a low latency. The graph-
ics processing unit instead was designed to process hundreds of the same tasks in
parallel accepting a higher latency with respect of displaying the result. High per-
formance computing in the range from simple acceleration of an algorithm running
on a notebook up to the incorporation in todays super computers heavily influenced
both developments over the last years.

The CPUs tend to provide higher memory bandwidth and more parallelism.
Here, more parallelism is not restricted to multiple CPU cores. Multiple CPU cores
were used in the past to overcome the frequency problem (see Sect. 2.1) and
achieve higher performance. More parallelism is also achieved by the trend of
wider vector units on CPUs like the Intel AVX technology.

What started for Intel as a ”GPU” development, code name Larrabee, is called
Xeon Phi since 2012. After several iterations – Knights Ferry and Knights Corner –
Intel introduced in late 2012 its first product for super computing to compete with
the GPU manufacturers in this field. The addressed trend is clearly shown by the
Many Integrated Core (MIC) architecture that provides more than 60 cores with a
vector width of 512-bit.

On the GPU side, GPGPU started with a very strict pipeline. This was changed by
bringing more flexibility and easier programming with the introduction of unified
shaders and CUDA. But still the underlying problems had to fit the highly data par-
allel pattern in order to achieve high performance. While this flexibility was missing
in first CUDA capable device, NVIDIA more and more introduced new technologies
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to solve these problems. The trend towards more flexibility is shown with NVIDIAs
introduction of a more sophisticated caching system in their Fermi architecture.
This is progressed in the Kepler architecture by the introduction of technologies
like Dynamic Parallelism and Hyper-Q [Jone 12, NVID 12]. In the long term both
technologies – CPUs as well as GPUs – tend to converge towards a flexible and
highly parallel processors in order to keep continuing performance improvements.

Giving this general trend the question raises what this means for medical image
processing. Therefore, we look at the research on high performance CPU based
medical image processing by Hofmann et al. In 2009, we showed the general idea
how to implement the back-projection operator on Intel’s Larrabee [Hofm 09b].
Due to the fact that this acceleration card was never revealed, Hofmann focussed
on multi-core CPU systems. The performance results for different applications indi-
cate [Hofm 09a, Hofm 10a, Hofm 10b, Hofm 11] that CPUs follow and try to reduce
the gap.

For example Treibig et al. showed [Trei 12] an impressive multicore implemen-
tation of the FDK approach using the RabbitCT benchmark [Rohk 09]. Utilizing a
quad socket system providing 40 CPU cores, the reconstruction time was about 20%
faster than those of the four year older GPUs. Even so, a single clear drawback of
CPUs as well as the Intel Xeon Phi is still prominent: the lack of texture units. In our
approaches the back-projection as well as the forward-projection operator heavily
benefit from the GPU provided texture units – analog to Schwarz [Schw 11]. For
those algorithms that do not utilize texture units the performance benefits of GPUs
compared to the Xeon Phi decrease noticeable and may be seen as comparable.

Answering the above-mentioned question, GPUs will continue to have a signif-
icant impact on medical image processing, at least for those algorithms that can
utilize texture units – assuming that future GPUs are still equipped with those. For
algorithms that cannot take advantage of this computational power, the gap be-
tween CPUs and GPUs will close, such that both architectures will be utilized in
medical products in the future. In the end it will not be a matter of slightly higher
computational performance. The availability in long-term, quality, flexibility, appli-
cation scope, reusability will be the base arguments. In addition it will be a matter
of the provided development environment and tools.
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Datasets

Different datasets and acquisition systems were used in the thesis in order to
evaluate computational performance as well as image quality aspects. Therefore,
the important parameters for these datasets are detailed in this Appendix. Note
that for product systems the data was already preprocessed by the manufacturers.

A.1 DataSet A – Human Head

DataSet A was acquired with a short scan acquisition using a C-arm system (Siemens
AG, Artis Zee). The dataset consists of 414 projections with an angular increment
of 0.5◦ per projection. In total the C-arm rotated over 207◦ degree. Each projec-
tion provides 10242 pixels at an isotropic resolution of 0.32 mm/pixel. The scanned
object is a human head. The data was provided with courtesy of the Siemens AG.

A.2 DataSet B – Human Hip

The second dataset referred to as DataSet B was also acquired with a C-arm system.
The scanned object is a human hip. The dataset consists of 543 projection also at
an isotropic resolution of 0.32 mm/pixel. The acquisition was performed in total
over 217◦ with a projectional increment of 0.4 degree. Each projection provides
1240× 960 pixels. The data was provided with courtesy of the Siemens AG.

A.3 DataSet C – Simulated Head

For the iterative algorithms a simulated dataset was utilized and consists of 228
projections. The dataset simulates a short-scan acquisition of a notional C-arm sys-
tem over 205◦ with a projectional increment of 0.9 degree. Each projection provides
256× 128 pixels at an isotropic resolution of 2.0 mm/pixel. The data was provided
with courtesy of Dr. Holger Kunze. For the iterative reconstruction 20 iterations
with the following additional parameters were performed:

• Volume: 512× 512× 350; isotropic voxel resolution of 0.5× 0.5× 0.5mm3

• Forward-projector sampling step size: ∆l = 0.3 · 0.5mm

• Relaxation factor: λ = 0.3
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A.4 DataSet D – Catphan CTP 528

The fourth dataset was simulated using the Catphan CTP528 phantom that provides
21 line-pairs with different resolutions. DataSet D consists of 400 projections over
360◦ each providing 1024× 128 pixels. These projections provide a resolution of
0.3× 0.7 mm/pixel. The data was provided with courtesy of Dr. Michael Balda. For
the iterative reconstruction the following additional parameters were used:

• Volume: different resolutions, see Table 5.1

• Forward-projector sampling step size: ∆l = 0.3 · δx1

• Relaxation factor: λ = 0.3

A.5 DataSet E – Simulated Head

The last angiographic dataset utilizes the head phantom by Dr. G. Lauritsch and
Dr. H. Bruder (as available electronically1). Here, the simulated C-arm acquisition
was performed over a limited angle of 180◦ for a low number of only 90 projections.
Each projection provides 10242 pixels at an isotropic resolution of 0.4 mm/pixel. For
the SART as well as the ML-Convex iterative reconstruction the following additional
parameters were used:

• Volume: 5123; isotropic voxel resolution of 0.5× 0.5× 0.5mm3

• Forward-projector sampling step size: ∆l = 0.3 · 0.5mm

• Relaxation factor: λ = 0.5

A.6 DataSet F – Female Breasts

Besides the angiographic datasets we utilized a mammography system (Siemens
AG, Mammomat Inspiration) for data acquisition. DataSet F represents two datasets
acquired over a limited angle of 50◦. The 25 projection with a projectional incre-
ment of 2◦ consist of 2816× 3584 at an isotropic resolution of only 0.085 mm/pixel.
Both scanned objects are a female breast. Differences are only given in the utilized
volume resolution. The two datasets were provided with courtesy of the Siemens
AG. The following additional parameters were used for the iterative reconstruction:

• Volume: different resolutions, see Section 5.2

• Forward-projector sampling step size: ∆l = 0.3 · 0.5mm

• Relaxation factor: λ = 0.3

1http://www.imp.uni-erlangen.de/phantoms
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EM Reconstruction for
Computed Tomography

Lange et al. states [Lang 95] that the reconstruction using the EM algorithm
is cumbersome because in entails a large number of exponentiations. Additionally
it introduces partial forward-projections for each ray, which multiplies the number
of projections to be calculated. This also complicates a parallel implementation
of the EM algorithm on GPUs. Therefore this algorithm is less suitable for a high
performance implementation and was not considered for the presented research.

In the following we want to summarize the background of the expectation max-
imization reconstruction for CT. In literature the EM algorithm is well explained
and derived from the hidden information principle that states that:

observed information = complete information−missing information (B.1)

This simple equation is then translated into the statistical framework and spe-
cific model. We therefore refer in general to the literature [Demp 77, Paul 03] for
the derivation of the EM algorithm. Next, we summarize the ML-EM algorithm and
the suggested approximation by Lange et al. for transmission tomography.

B.1 Maximum Likelihood - Expectation Maximization

The EM algorithm as an iterative technique for optimizing the maximum likelihood
estimates was first stated [Demp 77] in its full generality by Dempster et al.

Given an simple experiment – e.g., coin flipping – the complete information
consists on the exact coin type and its probability to land on heads [Do 08]. For a
single coin with unknown probability to land on heads, this can be examined by the
maximum likelihood estimation. By repeating the coin flipping experiment a signif-
icant amount of times with the same coin and counting the heads, the probability
can be estimated respectively determined by the ratio of number of heads divided
by total amount of flips.
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Expanding this experiment to two or more coins with unknown probability and
unknown coin type for each experiment the EM algorithm can be applied. The EM
algorithm can be interpreted as a generalization of the maximum likelihood esti-
mation to the incomplete data case [Do 08]. Therefore the EM algorithm attempts
to find the parameters – in this case the probabilities of each coin type – that max-
imize the probability of the observed data meaning the observation of head counts
of the different experiments with unknown coin type.

In general the EM algorithm is an iterative method for incomplete data estima-
tion based on two steps. The expectation step and the maximization step. The EM
algorithm starts with an initial guess of the parameters. E.g., for the coin example
a certain probability to land on heads for each coin. Using this initial parameters a
probability distribution over possible completions of each experiment for each coin
is computed in the expectation step.

In the maximization step new parameters are then computed using the current
completions. Repeating these two steps leads to a convergence of the parameters
respectively the missing information. This principle can also be applied to the med-
ical reconstruction case, which is treated next.

B.2 EM Algorithms for Transmission Tomography

In their paper [Lang 84] Lange et al. derive the expectation maximization recon-
struction algorithm for emission and transmission tomography. In the following the
transmission case is summarized and detailed as an extension to Section 3.4.1.

The authors start with describing Poisson distribution and some of its proper-
ties. Especially that the collection of independent random variables that follow
the Poisson distribution is again a Poisson distribution. For the case of image re-
construction they state that the amount of particles (photons) – respectively the
measured energy dI(p, r) – for the various readings and projections are indepen-
dent random variables. They argue that this is due to the fact that each reading
either occur over disjoint time intervals or involve different angular directions. The
likelihood for all readings and all projections reduces to the product of the separate
likelihoods for each reading. Therefore the log-likelihood over all readings and all
projections reduces to Equation 3.29. In addition they show the strict concavity of
the log-likelihood.

Looking at the likelihood for a single reading resp. ray r of a single projection,
the expectation step of the EM algorithm is then derived. In particular the set vox-
els between the source s and the j-th voxel along the measurement for reading r of
projection p is defined as S(p)

r,j , where the j-th voxel is not included.



B.2 EM Algorithms for Transmission Tomography 133

Given the missing information principle the authors select the numbers of pho-
tons entering Ψ(p)

r,j each voxel j along the single ray as the complete information.
They further describe the key for writing the correct complete data likelihood is
to note that the number of photons leaving Ω(p)

r,j each voxel j depends only on the

photons entering Ψ(p)
r,j and on the product a(p)

r,j µj of the corresponding system ma-
trix element and the attenuation coefficient of voxel j.

Further the authors derive that the expectation step requires the conditional ex-
pectations X(p)

r,j = E(Ψ(p)
r,j |I0, µ(k)) and Y(p)

r,j = E(Ω(p)
r,j |I0, µ(k)) and prove that both

conditional expectations can be calculated by:

X(p)
r,j = dI(p, r) + I0e

−∑
c∈S(p)

r,j
a(p)

r,c µ
(k)
c

− I0e−
〈

a(p)
r ,µ(k)

〉
, (B.2)

Y(p)
r,j = dI(p, r) + I0e

−∑
c∈S(p)

r,j ∪{j}
a(p)

r,c µ
(k)
c

− I0e−
〈

a(p)
r ,µ(k)

〉
. (B.3)

Note that the difference for Y(p)
r,j to X(p)

r,j is that the voxel j is included in Y(p)
r,j .

For the maximization step Lange et al. continue to derive the objective function
Q
(

µ | µ(k)
)

of the EM algorithm [Demp 77] out of the partial log-likelihoods, such
that:

Q
(

µ | µ(k)
)

=
P

∑
p=1

R

∑
r=1

J

∑
j=1

[
−Y(p)

r,j a(p)
r,j µj +

(
X(p)

r,j −Y(p)
r,j

)
· ln
(

1− e−a(p)
r,j µj

)]
(B.4)

Q
(

µ | µ(k)
)

is then maximized with respect to µ by taken the partial derivative of

Q
(

µ | µ(k)
)

with respect to µj and setting it equal to 0. This yields to the transcen-
dental equation

0 =
P

∑
p=1

R

∑
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(
−Y(p)
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+

P
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. (B.5)
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Due to the fact that this transcendental equation cannot be solved exactly, Lange
and Carson suggest an approximation. They argue that all practical application will
have sufficiently small voxels so that each term such as a(p)

r,j µj will be small. The
solution for the unknown µ then can be iteratively approximated - derived from the
approximation of the Tayler series – by the following equation (see Eq. 3.30):

µ
(k+1)
j =

P
∑

p=1

R
∑

r=1

(
X(p)

r,j −Y(p)
r,j

)
1
2

P
∑

p=1

R
∑

r=1

(
X(p)

r,j + Y(p)
r,j

)
a(p)

r,j

. (B.6)

This concludes the summary of the maximum likelihood reconstruction algorithm
using the expectation maximization approach for transmission tomography sug-
gested [Lang 84] by Lange and Carson.
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