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ABSTRACT
Invasive cardiac angiography (catheterization) is still the standard in clinical practice for diagnosing coronary artery disease
(CAD) but it involves a high amount of risk and cost. New generations of CT scanners can acquire high-quality images
of coronary arteries which allow for an accurate identification and delineation of stenoses. Recently, computational flow
dynamics (CFD) simulation has been applied to coronary blood flow using geometric lumen models extracted from CT
angiography (CTA). The computed pressure drop at stenoses proved to be indicative for ischemia-causing lesions, leading
to non-invasive Fractional Flow Reserve derived from CTA (FFRCT). Since the diagnostic value of non-invasive procedures
for diagnosing CAD relies on an accurate extraction of the lumen, a precise segmentation of the coronary arteries is crucial.
As manual segmentation is tedious, time-consuming and subjective, automatic procedures are desirable. We present a
novel fully-automatic method to accurately segment the lumen of coronary arteries in the presence of calcified and non-
calcified plaque. Our segmentation framework is based on three main steps: boundary detection, calcium exclusion and
surface optimization. A learning-based boundary detector enables a robust lumen contour detection via dense ray-casting.
The exclusion of calcified plaque is assured through a novel calcium exclusion technique which allows us to accurately
capture stenoses of diseased arteries. The boundary detection results are incorporated into a closed set formulation whose
minimization yields an optimized lumen surface. On standardized tests with clinical data, a segmentation accuracy is
achieved which is comparable to clinical experts and superior to current automatic methods.
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1. INTRODUCTION
Cardiovascular diseases, among which coronary artery disease (CAD) is most common, are the leading cause of death
worldwide according to the World Health Organization. The standard procedure for diagnosing CAD is catherization
which is invasive and involves high risk and costs. However, non-invasive computed tomography angiography (CTA)
of the coronary arteries can effectively rule out obstructive CAD. Newer generations of CT acquisition devices enable a
diagnostically conclusive accuracy similar to catheterization. Even in cases of severe coronary calcification, sensitivity
and specificity of CTA in comparison to invasive angiography for significant stenosis are high [1]. Furthermore, auto-
matic systems have been developed that enable the detection and grading of coronary stenoses based on accurate lumen
estimations [2]. Recent studies also show that the blood pressure analysis of coronary arteries is a better predictor for
ischemia-causing lesions than anatomically visible lumen obstructions. The Fractional Flow Reserve (FFR), which is the
blood pressure decline at a coronary stenosis, is typically measured by an invasive and costly catheterization. Only recently
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Figure 1: Coronary artery segmentation from CTA as obtained with our proposed method.

it is derived with similar accuracy from simulations on segmented coronary lumen from CTA data (FFRCT) [3, 4]. Thus,
both the automatic detection of vessel obstructions as well as the blood flow simulation require an accurate segmentation
of the coronary arteries (see Fig. 1). However, a manual segmentation is very time consuming (up to an hour per patient)
making automatic segmentation desirable.

Extracting the lumen robustly and with high precision is a challenging task as even the main coronary arteries have
diameters of only a few millimeters. In addition, the contrast of the vessel lumen, which is visually enhanced by contrast
dye, is in between the contrast of non-calcified and calcified plaque which complicates an accurate distinction. The seg-
mentation of diseased coronary lumen obtained by existing segmentation algorithms tends to be misled by calcifications
leading to over- or under-estimation of lesions. However, ensuring that plaque is properly excluded from the segmentation
is of paramount importance in order to allow for a diagnostically conclusive stenosis detection. Therefore, we developed
a new fully-automatic lumen segmentation algorithm that is able to extract the lumen surface reliably and accurately. A
novel calcium exclusion approach ensures a correct segmentation in the presence of calcified tissue.

2. RELATED WORK
There is a vast amount of literature on the segmentation of coronary arteries. Thus, we refer to the survey paper of Lesage
et al. [5] for a comprehensive overview on numerous lumen segmentation techniques including a variety of vessel models
and features. Within scope of our work are recent algorithms whose performance is assessed by standardized tests [6] and,
thus, can directly be compared to our proposed method (see Sec. 4). The best-ranking methods of the coronary lumen
segmentation challenge are level-set [7,8] and graph-cut [9] based algorithms. The semi-automatic algorithm by Shahzhad
et al. [9] implements a graph-cut approach using probabilities derived from sampling around the centerline to generate the
lumen segmentation. The typical graph-cut-induced problem of generating surfaces that are under-segmented is mitigated
by robust kernel regression. However, the lack of a special calcium treatment reflects in an inferior accuracy for diseased
arteries (compare Sec. 4.3). Wang et al. [8] use level-sets guided by a vessel-model that alternates between evolving the
level-set and re-estimating the vessel diameter in order to update the vessel model. As the contour propagation is regulated
on the basis of a single radius per cross-section, deformed or sharply changing contours that occur in the presence of plaque
might not be well captured. The best-performing challenge algorithm uses level-sets with additional tissue classification.
Similar to our approach, Mohr et al. [7] use an explicit calcium exclusion based on a data-driven intensity threshold.

3. LUMEN SEGMENTATION FRAMEWORK
Our segmentation algorithm yields the 3D lumen surface of the coronary arteries in three main stages plus a pre-processing
where a set of previously traced arterial centerlines [10] serves as input (see Fig. 2). A region of interest around the
initial centerline path (warped volume) is extracted in a pre-processing step (Sec. 3.1). In the first stage, potential lumen
boundary positions are detected by casting rays in a cylindrical fashion. The boundary likelihood is estimated along
each ray using a robust machine learning algorithm (Sec. 3.2). Second, a new calcium exclusion approach is applied to
the potential boundary position. These are analyzed for calcified-plaque along the ray direction and are excluded from



(a) Orthogonal volume slice (b) Boundary detection (c) Exclusion of calcium (d) 3D Surface optimization

Figure 2: Orthogonal slices are extracted along consecutive centerline points (blue dot) (a). A cascade of classifiers
evaluates potential boundary positions radially (b). The boundary likelihood is visualized as a color-coded overlay within
blue (0) and red (1). Positions of calcified plaque are identified and used to eliminate incorrect boundary responses (c).
The lumen surface is computed by solving a 3D graph-based closed set optimization on the boundary probabilities (d).

further consideration if plaque is found (Sec. 3.3). Third, with respect to these potential boundary candidates and their
probabilities, an optimal lumen surface —constrained by predefined smoothness parameters— is computed by applying
the method of Li et al. [11] followed by a refinement step (Sec. 3.4).

3.1 Volumetric Warping
First, a warped and resampled version of the original CTA data, also known as orthogonal image stack, is generated to
simplify the subsequent segmentation. In order to get a homogeneous slice distance and thus avoid image distortion, the
provided centerline tree is resampled (inter-slice resolution e.g. 0.1 mm) using bi-cubic spline interpolation (see Fig. 3a).
The initial centerline that describes the path of the coronary arteries should not pass through calcified plaque in order to
guarantee a proper function of our algorithm. If this is not the case for the provided centerlines, a correction via orthogonal
shifts of the centerline points towards the lumen center can be applied to cure this problem. Then, for each point of the
centerline, a slice is extracted orthogonal to the vessel path using bi-linear interpolation. An interpolation consistent with
inter-slice resolution guarantees the generation of an isotropic warped volume which is basically a parallel stack of the
extracted slices (see Fig. 3b). Note, that the size of the extracted slice should be adjusted such that it covers at least an area
that is big enough to show a cross-section through a vessel with maximum diameter. Thus, the slice can safely be restricted
to 15 mm x 15 mm.

(a) Centerline Resampling (b) Orthogonal Image Stack

Figure 3: A warped volume (b) is generated by extracting orthogonal slices along a resampled centerline tree (a). Thus,
the centerline becomes a straight line in the warped space simplifying the subsequent segmentation.



k

r

k
z

k

r

z

(a) Cylindrical Coordinate System

Xk,z

3
4

5

1
2

3

XK z

X1,zX2,z

K,z

(b) Radial Sampling per Slice

Figure 4: (a) Cylindrical coordinate system for representing a tubular surface in the warped space. (b) Candidate boundary
points for slice z of the warped volume along the normal of the initial circular contour. The example shows K = 8 equi-
angular rays with each R = 5 equi-distant candidate points.

As a result, the centerline becomes a straight line in the warped image space and runs through the center of each slice
of the warped volume. Another advantage of this transformation step is that the lumen segmentation can now be performed
in a cylindrical coordinate system which is suitable for tubular structures such as blood vessels.

3.2 Boundary Detection
Next, potential candidates for the lumen boundary are sampled cylindrically and evaluated using a machine learning ap-
proach. For effectively representing the sought tubular surface in the warped image volume we use a cylindrical coordinate
system (Fig. 4a). Hereby, a slice in the warped volume is expressed by the coordinate z, whereas the angle k and the radial
distance r determine a point in the cross-sectional plane (i.e. slice) in polar coordinates. Boundary candidate points are
then generated for an equidistant selection of slices z ∈ [1, Z] of the warped volume, e.g., for every 5th slice. In each such
slice, R equidistant points along K rays are generated as depicted in Fig. 4b. This way, Z × K × R directed candidate
boundary points are generated.

Each such directed candidate boundary point is then evaluated for its likelihood to lie on the lumen boundary. There
are various applicable models such as weighted intensity differences, gradient magnitudes or probabilities determined by
previously trained classifiers. Primarily, they should yield a higher score at positions that are close to the true lumen
boundary. For reasons of robustness, we recommend using boundary classifiers as described in the following subsection.

For convenience, the obtained likelihood values can be stored in a volume l(z, k, r) of dimension Z ×K ×R.

Learning-based Ray Detection

Within the context of machine learning, boundary detection is commonly formulated as a binary classification problem.
Given adequate ground-truth annotations, a binary classifier can be trained to predict whether a candidate position is part
of the lumen border or not. While any binary classifier can be used, we tested the probabilistic boosting tree (PBT) [12]
and the random forest (RF) [13] classifiers, which both gave similar results.

In this approach, the prediction for a point at location (z, k, r) is based on low-level image features F (z, k, r) which
are extracted from a local neighborhood. For each point in question, an image feature sampling pattern is defined by the
local orientation of the ray connecting the center point and the potential boundary point as shown in Fig. 5. These so-called
steerable features [14], which are the combination of low-level image features such as gradients computed at each position
of the sampling pattern, yield a discriminative high-dimensional feature vector ~x. Thus, the prediction and training of the
boundary classifier is based on the evaluation of ~x for each candidate position.

Training is based on available ground-truth annotations (i.e. contour or surface describing the lumen border) from which
positive and negative samples are extracted. For each orientation (i.e. ray), the intersecting point between the ray and the
ground-truth annotation is considered as positive and the remaining points on the ray are negative training samples (see
Fig. 5b). This yields the locations of the lumen on which positive and negative feature sample sets (T0, T1) are calculated.
Randomly selected samples are used for training of two cascading classifiers (P1, P2). This is done in a bootstrapping



Fig. 1 A ray hypothesis and the 
associated image feature sampling 

pattern.

Fig. 3 The probability map output 
from the trained classifier 

Fig. 2 Positive and negative samples 
on one orientation for training. 

For each hypothesis boundary point, an image feature sampling pattern is defined based on the local orientation determined by the line
connecting the center point and the potential boundary point, as shown in Fig 1. At each sampling position, low‐level image features
such as intensity and gradient are computed. A PBT classifier is trained using these features to determine the probability of the point
being on the boundary.

In training, for each orientation, the intersecting point between the ray and the ground truth annotation is considered as positive and
the remaining points on the ray are negatives, as shown in Fig.2. Fig.3 shows the probability map computed from the trained classifier.

(a) Directed Sampling Pattern (b) Training Sample Generation (c) Classifier Probability Output

Figure 5: (a) A ray and the associated image feature sampling pattern. (b) Extraction of positive (blue) and negative (green)
samples for one ray given an annotated contour (red).

approach: while the first classifier gets to see the full training data set (T0, T1), the second classifier is trained with the
same positive samples T1 but negative samples T̂0 where only false positives of the first classifier (P1 ≥ θp = 0.52) are
used. With that technique, we make the second classifier more robust against complex boundaries and conflicting features.

Likewise for detection, a previously trained cascade of classifiers is used to generate the boundary probability PB (see
Fig. 5c). More precisely, the boundary probability PB for a feature sample ~x is produced by combining the two cascaded
classifiers in the following way:

PB(~x) =

{
P2(~x), if P1(~x) ≥ θp,

0, otherwise.
(1)

That is, PB is zero, unless the first classifier meets a certain degree of belief θp, then the final probability is that of the
second classifier.

3.3 Calcium Exclusion
For an accurate lumen segmentation, the correct handling of calcified plaque is mandatory. Due to the fact that calcium in
CTA images is characterized by high intensity values and is, hence, similar to intensities captured inside the lumen, it is
often erroneously classified as lumen tissue. Thus, boundaries are often detected between plaque and vessel background
rather than lumen and plaque. However, calcified regions in coronary arteries are not part of the blood-flowed lumen and
therefore, have to be excluded from the segmentation results. Otherwise the segmentation cannot be used for a reliable
analysis of stenoses. Even though we generated the boundary likelihood with a robust machine-learning approach (see
Sec. 3.2), the obtained boundary probabilities tend to show false responses for calcified vessels due to high intensity
differences at calcium spots.

This issue becomes obvious with the following representative example. As depicted at the bottom of Fig. 6, profiles
for the lumen likelihood and the boundary likelihood can be extracted for a slice z and a ray at angle k along the radial
direction r. For that, the lumen likelihood was estimated by computing the normal distribution of the lumen intensity
(mean µl and variance σl measured in HU) from samples extracted along the centerline. For rays passing through calcified
plaque (Fig. 6d), these curves are characteristically different from the normal, healthy case (Fig. 6c). While in the healthy
case a boundary likelihood profile with only one peak can be expected, the profile through a calcified plaque may exhibit
multiple peaks. In the right example in Fig. 6 the most likely boundary candidate point (at about 3.5 mm) would in fact
erroneously include the calcified plaque. Thus, a heuristic approach is proposed for removing boundary likelihood peaks
that are beyond calcified plaques.

First, the calcified plaque is identified by determining the positions of the intensity profile that are above a certain
threshold tCAL. The radial position r0 which is closest to the center line and which extends up to a position r1 with a
certain minimum length lCAL = r1 − r0 (e.g. lCAL = 0.3 mm) is regarded as the relevant calcified range. Then, the
corrected boundary likelihood along the ray is obtained as

lc(z, k, r) =

{
l(z, k, r) r < r0

l(z, k, r) · d(r−r0)/∆r
CAL r ≥ r0

(2)
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Figure 6: Characteristic ray profiles of the lumen and boundary probabilities are shown for normal (c) and calcified tissue
(d) along with the corresponding ray directions in a cross-sectional view. While the boundary profile through healthy tissue
has maximum response correctly at about 1.3 mm, the profile through calcium erroneously has multiple peaks with a global
maximum at about 3.5 mm which would include the calcified region (r0 − r1). The calcium corrected profile (magenta)
cures this problem by applying a probability damping along the ray for positions that exceed a data-dependent intensity
threshold (d).

where ∆r is the radial sampling resolution (∆r = 0.1 mm) and dCAL is a damping factor which determines the speed of
decay of the boundary likelihood profile proportional to distance from the starting radius r0 (e.g. dCAL = 0.6). Thus, the
boundary response gets exponentially damped along the ray starting from the first relevant calcified position.

As depicted in the graph of Fig. 6d, this strategy leads to a boundary likelihood profile with only one peak that describes
a boundary which correctly excludes the calcified plaque (see also Fig. 7).

While the calcium intensity threshold can be chosen constant (e.g. tCAL = 576HU), an adaptive threshold based on
the lumen intensity distribution improves the effectiveness of the proposed heuristic. To this end we propose using the
maximum of a fixed threshold (e.g. tf = 576 HU) and the mean lumen intensity µl plus twice its variance σl:

tCAL = max (tf , µl + 2σl) . (3)

3.4 Surface Optimization
For surface construction, the lumen segmentation problem is turned into a constrained optimization problem: out of all
potential boundaries the best suiting option needs to be selected. This has to be done in respect to decisions for neighboring
rays and slices in order to avoid unsteady contours and accomplish a smooth 3D lumen surface.



Figure 7: Calcifications can be excluded from the segmentation by altering erroneous boundary responses along the ray.
Please note that the boundary likelihood is visualized color-coded between blue (0) and red (1).

(a) Segmented Contour (b) Refined Contour

Figure 8: A post-smoothing on the noisy segmentation output yields the refined contours.

We apply the surface optimization scheme of Li et al. [11] in order to determine the optimal radial positions for each
slice and ray of the warped volume. To this end, negative logarithmic boundary probabilities that are evaluated in cylindrical
positions are forming the cost function for Li’s tubular surface optimization algorithm. Thus, for each evaluated candidate
position (z, k, r), a cost-weighted node is added to a 3D directed graph structure. The constructed graph represents the
sought tubular surface by unfolding it into a volumetric representation. Then, a minimum closed set formulation on this
graph yields the optimal radial position r∗z,k for each slice z and orientation k (determining the sought lumen surface) using
s-t cut minimization. The smoothness constraints for this optimization scheme are the maximum tolerated deviations of
radii along slice and ray directions, respectively. Surfaces violating those smoothness constraint are infeasible as this is
limited by the graph construction with infinite arc weights. Since jumps within the tolerated deviations are not penalized,
the obtained solutions are very well adapted to the underlying data. But since coronary CTA images are rather noisy, the
resulting surface contours are quite noisy, too. This makes a post-refinement of the surface necessary which is a smoothing
of the radius r∗z,k along neighboring rays and slices (see Fig. 8).

4. EVALUATION
4.1 Data
Quantitative and qualitative evaluations have been performed on a number of clinical contrast-enhanced CTA data. For
that, two different databases were employed.

The first utilized database D1 is provided by the authors of the coronary artery segmentation and stenoses detection
evaluation framework1 and is publicly available for anyone who registers [6]. The database consists of 48 multi-vendor
CTA datasets that were acquired from a representative selection of CAD symptomatic patients using several cardiac CT
scanners with varying protocols and reconstruction algorithms. Ground-truth lumen annotations (cross-sectional contours)
were created for the first 18 datasets by three different medical experts. Those were used for parameter tuning while the

1http://coronary.bigr.nl/stenoses/about.php



Figure 9: Segmented lumen of calcified arteries for two patients (top/bottom) as obtained by the proposed algorithm
visualized from different projections (left: CPR, right: cross-section along red arrow in CPR through a stenosis).

remaining 30 datasets were for testing only. Optionally, there were sets of traced centerlines provided that could be used to
initialize the segmentation. In our experiments we employed centerlines that were extracted by the combined model-driven
and data-driven tracing algorithm described in reference [10].

The second clinical database D2 is compiled from a clinical study that targets the investigation of blood flow from
CTA datasets. Data was acquired from 24 symptomatic patients on the same cardiac CT scanner. Every scan typically
consisted of 200 - 300 slices with an intra-slice resolution ranging between 0.3 - 0.5 mm and an inter-slice resolution of less
than 0.4 mm. Each of the CTA volumes was annotated by a medical expert such that for a large set of coronary arteries
ground-truth is available.

Fig. 9 shows two representative examples from the publicly available database D1 with lumen segmentations of dis-
eased patients using our approach (dataset #11 and #14).

4.2 Accuracy Measures
For measuring the accuracy of the proposed segmentation method, three different error metrics were used in order to
analyze the difference between the ground-truth and the computed segmentation. The applied metrics are a variant of the
Dice coefficient, the mean surface distance (MSD) and the Hausdorff surface distance (MAXSD). Please note that DICE is
measured between 0 - 1 (total overlap) whereas MSD/MAXSD is the mean/maximal distance to the ground-truth in mm.
See [6] for definitions and further details.

4.3 Results
The segmentation accuracy averaged over the ground-truth annotations of three medical experts is assessed separately
on diseased and healthy arteries of D1. Table 1 shows the results as reported from the online evaluation framework [6]
and lists our method along with those of the medical experts and three other (semi-)automatic algorithms (the currently
best-ranking teams of the challenge). Fully-automatic methods are marked with an asterisk next to their method name.
Results are averaged over 30 (18 training) datasets and sorted according to their overall ranking on testing data (listing
order “testing/training”). The overall avg. ranking is computed as the average of the ranks obtained for the three accuracy
measures DICE, MSD and MAXSD. Among automatic methods, the best achieved result for each accuracy measure is
marked boldface. Expert1-3 denote three medical experts that annotated the lumen surface manually. All accuracies were
created by comparing the segmentation with each of the three ground-truth annotations and averaging the results. For more
details, please refer to Kirisli et al. [6].

In order to rule out potential over-fitting due to training of the boundary detector or parameter tuning we tested two
different detector models on the training dataset. One boundary detector model was trained on the 18 training datasets



of D1 (Proposed) while the other was trained only from annotations of another clinical database D2 (Proposed-D2). A
comparison of both models on training data shows that the obtained results are very consistent which indicates that no over-
fitting occurred. Hence, similar results can be expected on other sets of data. However, only the first model participated
in the challenge where evaluation was performed against unseen ground-truth which is the reason of missing data for
Proposed-D2 (n.a.).

The following discussion solely considers results on testing data. Our method yields accuracies that are roughly within
the range of accuracies achieved by the medical experts. An exception are the noticeably inferior MSD/MAXSD measures
for healthy vessels. They seem to be accounted for by a mix-up of the centerlines obtained by the employed tracking
algorithm and ground-truth vessels. In comparison to the other automatic methods, our approach goes head to head with
the best-ranking system by Mohr et al. [7]. While they achieve slightly better results for healthy vessels, our method yields
higher accuracies for diseased arteries (see above).

Furthermore, there is a high variability among the reported accuracies achieved by medical experts. Robust automatic
methods, in contrast, enable a consistent lumen extraction in a fraction of time which is needed for manual segmentation.

Method Rank DICE DICE MSD MSD MAXSD MAXSD
avg. ⇓ D [%] H [%] D [mm] H [mm] D [mm] H [mm]

Expert3 3.1/3.1 79/76 81/80 .23/.24 .21/.19 3.00/3.07 3.45/3.25
Proposed∗ 3.8/3.7 74/72 73/74 .35/.28 .55/.35 2.99/2.02 3.73/2.88
Mohr∗ [7] 3.8/3.9 70/73 73/75 .40/.29 .39/.45 2.68/1.87 2.75/3.73
Expert1 3.9/3.9 76/74 77/79 .24/.26 .24/.26 2.87/3.29 3.47/3.61
Expert2 5.3/5.1 65/66 72/73 .34/.31 .27/.25 2.82/2.70 3.26/3.00

Shahzad [9] 5.6/5.7 65/66 68/70 .39/.37 .41/.32 2.73/2.49 3.20/3.04
Wang∗ [8] 6.1/6.3 69/68 69/72 .45/.43 .55/.56 3.94/4.06 6.48/5.23

Proposed-D2
∗ n.a. n.a./73 n.a./75 n.a./.30 n.a./.36 n.a./2.21 n.a./3.11

Table 1: Three error measures are reported separately for diseased (D) and healthy (H) vessels (boldface marks best among
automatic methods). Rank lists the overall segmentation ranking compared to all participating methods (sorted by testing
accuracies). Measures are averaged over 30 testing (18 training) datasets (listed testing/training). Asterisks mark fully-
automatic methods only. Our method (Proposed) is roughly within the range of accuracies yield by medical experts and
ranks head to head with the currently best-ranking algorithm. Similar results can be expected on other sets of clinical
data which is indicated by the consistency of results on training data between the proposed und the unrivaled method
Proposed-D2 (detector model trained on D2) .

5. CONCLUSIONS
A cascade of learning-based ray classifiers yields a robust lumen boundary detection whereof the final lumen surface is
found by a global optimization scheme. The exclusion of calcified plaque from the segmentation is assured through a novel
calcium exclusion technique which allows us to accurately capture stenoses of diseased arteries. The proposed approach is
able to fully-automatically extract the coronary lumen of calcified and non-calcified vessels with accuracies almost similar
to medical experts. On a standardized testing framework our method ranks better than two of three medical experts and
lies level with the so-far best-ranking automatic system.
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