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Abstract

Over the past decades, huge progress has been made in treatment of cancer, decreasing
fatality rates despite a growing number of cases. Technicalachievements had a big share
in this development.

With modern image acquisition techniques, most types of tumors can be made visible.
Automatic processing of these images to support diagnosis and therapy, on the other hand,
is still very basic. Marking lesions for volume measurements, intervention planning or
tracking over time requires a lot of manual interaction, which is both tedious and error
prone.

The work at hand therefore aims at providing tools for the automatic segmentation of
liver lesions. A system is presented that receives a contrast enhanced CT image of the liver
as input and, after several preprocessing steps, decides for each image voxel inside the liver
whether it belongs to a tumor or not. That way, tumors are not only detected in the image
but also precisely delineated in three dimensions. For the decision step, which is the main
target of this thesis, we adopted the recently proposed Probabilistic Boosting Tree. In an
offline learning phase, this classifier is trained using a number of example images. After
training, it can process new and previously unseen images.

Such automatic segmentation systems are particularly valuable when it comes to moni-
toring tumors of a patient over a longer period of time. Therefore, we propose a method for
learning a prior model to improve segmentation accuracy forsuch follow-up examinations.
It is learned from a number of series of CT images, where each series contains images of
one patient. Two different ways of incorporating the model into the segmentation system
are investigated. When acquiring an image of a patient, the system can use the model to
calculate a patient specific lesion prior from images of the same patient acquired earlier
and thus guide the segmentation in the current image.

The validity of this approach is shown in a set of experimentson clinical images. When
comparing the points of 90% sensitivity in these experiments, incorporating the prior im-
proved the precision of the segmentation from 82.7% to 91.9%. This corresponds to a
reduction of the number of false positive voxels per true positive voxel by 57.8%.

Finally, we address the issue of long processing times of classification based segmen-
tation systems. During training, the Probabilistic Boosting Tree builds up a hierarchy of
AdaBoost classifiers. In order to speed up classification during application phase, we mod-
ify this hierarchy so that simpler and thus faster AdaBoost classifiers are used in higher
levels. To this end, we introduce a cost term into AdaBoost training that trades off dis-
criminative power and computational complexity during feature selection. That way the
optimization process can be guided to build less complex classifiers for higher levels of the
tree and more complex and thus stronger ones for deeper levels. Results of an experimental
evaluation on clinical images are presented, which show that this mechanism can reduce
the overall cost during application phase by up to 76% without degrading classification ac-
curacy. It is also shown that this mechanism could be used to optimize arbitrary secondary
conditions during AdaBoost training.



Kurzfassung

In der Krebstherapie gab es in den vergangenen Jahrzehnten große Fortschritte zu verzeich-
nen. Während die Zahl der Krebsfälle weiter ansteigt, konntedie Sterblichkeit verringert
werden. Einen großen Anteil an dieser Entwicklung hatte dertechnische Fortschritt.

Bildgebende Verfahren können heute die meisten Tumoren sichtbar machen. Die au-
tomatische Verarbeitung dieser Bilder für Diagnose und Therapie dagegen beschränkt sich
weiterhin zumeist auf sehr einfache Verfahren. Läsionen können nur mit viel Handarbeit
für Volumenbestimmung, Operationsplanung, oder zeitliche Überwachung eingezeichnet
werden. Dieses Vorgehen ist nicht nur sehr mühsam sondern auch anfällig für Fehler.

Die vorliegende Arbeit soll deshalb neue Methoden für die automatische Segmen-
tierung von Leberläsionen aufzeigen. Ein System wird vorgestellt, das in einem kon-
trastverstärkten CT-Bild der Leber nach einigen Vorverarbeitungsschritten für jeden Bild-
punkt innerhalb der Leber entscheidet, ob er Teil eines Tumors ist oder nicht. So werden die
Tumoren nicht nur detektiert sondern gleichzeitig auch in allen drei Raumrichtungen vom
umliegenden Gewebe abgegrenzt. Der Entscheidungsschrittmacht dabei den Kern dieser
Arbeit aus. Als Klassifikator wurde hierfür der Probabilistic Boosting Tree gewählt. Er
wird in einer separaten Lernphase vor seinem eigentlichen Einsatz anhand einer Reihe von
Beispielbildern trainiert. Nach erfolgreichem Training kann er in der Anwendungsphase
auch zuvor nicht gesehene Bilddaten verarbeiten.

Derartige automatische Segmentierungsverfahren sind besonders dann hilfreich, wenn
Tumoren über einen längeren Zeitraum überwacht werden sollen. Wir präsentieren daher
an dieser Stelle ein Verfahren, mit dem ein a priori Modell für Tumorwahrscheinlichkeiten
erstellt werden kann. Das Modell wird aus einer Reihe von zeitlichen Serien von CT-
Bildern gewonnen, wobei eine Serie jeweils Bilder eines Patienten enthält. Ziel ist es, die
Qualität der Segmentierungsergebnisse für Folgeuntersuchungen zu verbessern. Es wer-
den zwei verschiedene Methoden untersucht, wie das Modell in das bestehende Segmen-
tierungssystem zu integrieren ist. Anschließend kann das System die Segmentierung bei
einer Folgeuntersuchung steuern, indem es mit Hilfe des Modells aus früheren Aufnahmen
desselben Patienten berechnet, wo Läsionen zu erwarten sind.

Die Wirksamkeit dieses Vorgehens wird anhand einer Reihe vonExperimenten mit
klinischen Aufnahmen belegt. Vergleicht man in diesen Experimenten jeweils den Punkt,
an dem 90% der Tumorpunkte erkannt wurden, stellt man fest, dass sich der positive
Vorhersagewert durch das a priori Modell von 82,7% auf 91,9%verbessert. Für die Zahl
der falsch positiv klassifizierten Voxel je korrekt positivklassifiziertem Voxel entspricht
das einer Verbesserung um 57,8%.

Schließlich widmen wir uns der Problematik der Rechenzeit von klassifikationsbasier-
ten Segmentierungsverfahren. In der Lernphase baut der Probabilistic Boosting Tree eine
Hierarchie von AdaBoost-Klassifikatoren auf. Um die Klassifikation im Produktivein-
satz zu beschleunigen verändern wir diese Hierarchie dahingehend, dass auf den oberen
Stufen einfachere und damit schnellere AdaBoost-Klassifikatoren verwendet werden. Zu
diesem Zweck wird ein Kostenfaktor in das Lernverfahren fürAdaBoost eingeführt, der
während der Merkmalsauswahl die Komplexität eines Merkmals gegen seinen Nutzen für
die Entscheidung abwägt. Auf diese Weise kann das Lernverfahren gezwungen werden, für
die oberen Ebenen der Hierarchie einfachere und für die tieferen Ebenen komplexere Klas-
sifikatoren zu erzeugen. Die Ergebnisse einer experimentellen Auswertung mit klinischen



Bildern belegen, dass diese Methode die Gesamtkosten der Entscheidung in der Anwen-
dungsphase um bis zu 76% verringern kann ohne die Genauigkeit der Segmentierung zu
beeinträchtigen. Des Weiteren wird in den Experimenten gezeigt, dass AdaBoost auf diese
Art nicht nur die Laufzeit sondern beliebige Nebenbedingungen optimieren kann.
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Introduction

1.1 X-Ray Computed Tomography Image Acquisition . . . . . . . . . . .. . . . . . . 2
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1.4 Focus and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 9

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 10

Medical imaging has come a long way since Wilhelm Conrad Röntgen discovered his “X-
rays” in 1895 [Ront 95]. Exciting imaging modalities have been developed that provide
insight into every part of the human body, from whole body images down to cell level.
As these modalities measure different physical phenomena,the information they visualize
may range from the morphology of arbitrary body regions or organs to body functions as
complex as blood flow or localized brain activity.

X-ray imaging itself has evolved from lengthy procedures for generating blurry 2D
transmission images to acquiring crystal clear 3D volumetric datasets at sub-millimeter
accuracy in the blink of an eye. With state-of-the-art computed tomography devices these
acquisitions are possible exposing the patient to only verylow doses of the harmful ionizing
X-ray radiation.

Having focused on improving image quality for decades, withthe advent of stronger
computers engineers started to establish new disciplines in medical imaging: computer
aided diagnosis and therapy. Algorithms are now not only used to improve image quality
visually by filtering, but try to interpret their content in order to assist medical staff. In
some domains, such as cardiac imaging, algorithms can already provide valuable support
to physicians, e. g. automatically analyzing coronaries and assessing infarction risk, sug-
gesting optimal treatment or planning stent implantations. Other domains are still waiting
for the big breakthrough in the automatic processing of their images.

One of the latter is oncology. The constantly growing numberof cancer cases world-
wide [Glob 11] and their high mortality rate create a particularly large need for computer
support. Integrated into various steps of the clinical workflow, these algorithms would al-
low earlier diagnosis as well as more precise treatment. Typical tasks that could be solved
algorithmically involve the detection and localization oftumors, their exact delineation,
measurements and categorization, as well as monitoring andchange assessment.

Unfortunately, the challenges for algorithmic solutions in this field are highly demand-
ing, even when the method is limited to a single imaging modality, a single type of cancer,
or a single target location. Of the typical clinical scenarios the fewest are well understood
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2 Chapter 1. Introduction

Figure 1.1: CT values of different tissue types. Adapted from[Kale 06].

from an image processing point of view. Consequently, not formany of them clinically
acceptable algorithmic solutions exist, let alone a universal solution.

In the work at hand, we work towards a solution for one such scenario, the detection and
segmentation of liver tumors in X-ray computed tomography images. A general segmen-
tation system is developed and then used to broaden the understanding of and investigate
further techniques for segmentation in the follow-up setting. Finally, a method for speeding
up the proposed system or related ones is presented.

1.1 X-Ray Computed Tomography Image Acquisition

X-ray computed tomography (CT) nowadays is a standard imaging method for patients
with liver tumors. It can be used in all stages of the therapy,from first diagnosis to treatment
planning and follow-up examinations.

Images are acquired by rotating a fixed setup of an X-ray source and a detector array
around a patient, where the detector elements measure the remaining intensity of the radi-
ation generated by the source after transmission through the patient. From this data, a 3D
volume is reconstructed showing morphological information of the examined body. The
volume can be interpreted as a 3D image, where each image element (“voxel”) has a certain
spatial extent. Each voxel is assigned a value based on the attenuation of the tissue at the
corresponding location in the patient body. The attenuation measurement refers not to a
mathematical point but averages over the volume covered by the voxel, which can contain
a mixture of different materials. The values, also called CT values, are given in Hounsfield
units (HU). CT values are calculated by measuring the voxel’stissue specific attenuation
coefficientνtissueand normalizing it to the attenuation coefficient of waterνwater according
to Eq. (1.1):

[CT valuetissue] =
νtissue−νwater

νwater
·1000HU (1.1)

By convention, values range from−1024 to 3071, where air has a value of−1000 and
water has the value 0. Other typical CT values for human tissuecan be found in Fig. 1.1.
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(a) (b)

Figure 1.2: CT image slices of a patient demonstrating the effect of a positive contrast
agent. Both images show the same range of gray levels. In the native image (a), the liver
is much darker than in the contrast enhanced one (b). Bright structures in the liver in (b)
designate liver veins, the dark spot marked by the arrow is a small tumor.

As can be seen from this graph, soft tissues fall into a rathernarrow range. Paired with
the comparatively high noise level in soft tissue images, this makes it difficult to distin-
guish between tissue types in the data. In particular, livertissue and most liver tumors are
nearly indistinguishable. When visualized as images, this manifests itself as low contrast
between the different tissue types. To improve this contrast in the images and thus allow
better distinction between healthy and tumorous tissue, itis often enhanced during image
acquisition by bringing a so-called contrast agent into theregion to be imaged (cf. Fig. 1.2).
Mostly, this is done by injecting the contrast agent into theblood flow, either directly at
the point of interest, which requires an interventional procedure, or peripherally so it is
distributed all over the body by the blood circulation.

There are different types of contrast agent. X-ray positiveagents exhibit a high at-
tenuation coefficient and thus lead to a local shadow where they are present in the tissue,
meaning that the image becomes brighter at these regions. This means that, in Eq. (1.1),
νtissue is increased, leading to a higher CT value. X-ray negative agents show the oppo-
site behavior, leading to darker image regions. The former ones are used far more often,
especially for imaging the blood vessel system.

1.2 Anatomy and Physiology of the Liver

The liver is an integral part of the metabolism, functioningas a filter for blood arriving
from the gastrointestinal tract. While the kidneys are a meremechanical blood filter, the
liver is more selective, processing the found substances inits specialized cells. That way it
can extract and break down toxic substances like pharmaceuticals, but also fat, glucose and
other nutrients. At the same time it functions as a gland, producing bile, which contains
enzymes important for digestion inside the bowel, and synthesizes important proteins.
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(a)

(b)

Figure 1.3: Surface view of the human liver, seen from the front (a) and back (b). Images
taken from [Putz 04], courtesy of Urban & Fischer Verlag, Elsevier GmbH.
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Figure 1.4: Functional segments as
identified by Couinaud. Each seg-
ment (I — VIII) is defined as the re-
gion of influence of certain branches
of the portal and the liver venous trees.
Adapted from [Lagh 05].

With 1500− 2000g for an adult, the liver is
the largest organ in the abdomen. It is located
towards the right hand side, directly below the
diaphragm. Anatomically, it can be divided into
two parts, the liver lobes, separated by the liga-
mentum falciforme. Figure 1.3 provides an ana-
tomical view of the liver. For liver surgery on the
other hand, a subdivision into eight segments is
more common [Coui 57]. These segments have
the property of being functionally independent of
each other, meaning that an entire segment can
be resected without affecting the remaining liver
tissue. This independence is possible due to the
special tree-like structure of the vessels inside the
liver (cf. Fig. 1.4).

Four vessel systems pervade the liver. The
hepatic artery provides oxygenated blood to the
liver cells. The portal vein brings blood from
the gastrointestinal tract to be filtered. Approx-
imately 75% of the blood flow towards the liver

arrives via the portal vein, the remaining 25% via the hepatic artery. The liver’s venous
system collects all the blood and feeds it directly into the vena cava inferior leading to the
heart. The fourth vessel system is the biliar system, collecting the bile produced at the liver
cells and draining it towards gall bladder and duodenum. Theaforementioned liver seg-
ments are independent not only in terms of their blood supply, but also in terms of venous
and biliary drainage.

1.3 Liver Tumors

Primary liver cancer is the sixth most common cancer, with anestimated 748,000 cases
worldwide in 2008. At the same time, it has an alarmingly highfatality rate. It is the third
most fatal cancer, having caused about 695,000 deaths worldwide in the same year 2008
[Ferl 10]. While almost 85% of the cases occur in developing countries, even in Europe
the 5-year survival rate is as low as 9.1% [Glob 11]. The most frequent primary malignant
tumor in the liver is the hepatocellular carcinoma (HCC), which in most cases develops on
top of a hepatitis infection or a liver cirrhosis. Far more often than primary liver cancer,
however, are metastases from different other cancers. In fact, in Europe about 90% of
all malignant liver tumors are metastases [Laye 08]. Patients with colorectal cancer, for
instance, have a 70% chance of developing liver metastases at some time [Bipa 05]. In
total, there are about 30 different clinically relevant tumors of the liver [Laye 08], though
not all of them are malignant.

The location of liver tumors varies greatly from patient to patient. For some types of
cancer rough information about their spatial distributionis available — hepatoblastoma,
for instance, are known to be located in the right lobe in 60% of the cases [OGra 00]. In
general, however, lesions can be found anywhere inside the liver. Especially metastases,
since they can invade the liver via the portal vein as well as the liver artery and even
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Figure 1.5: Enhancement patterns of aorta, liver parenchyma, and portal vein over time.
The time scale starts at the moment of injection of the contrast agent into the peripheral
vein, the points on the curves mark the time of image acquisition. Four phases of contrast
enhancement are distinguished: Early arterial phase, whenthe contrast agent first reaches
the liver via the aorta (EAP), late arterial phase, when it iswashed into the liver arteries
(LAP), portal venous phase, when the contrast agent is distributed all over the parenchyma
via the portal vein (PVP), and equilibrium phase, sometimesalso called washout phase,
when only traces remain in the liver and the rest is washed outvia the liver veins (EP).
Image adapted from [Lagh 05].

originate from other liver tumors, are widely spread. Also,patients often have more than
one tumor.

1.3.1 CT Imaging

In native CT images, most liver tumors are not distinguishable from surrounding liver
tissue. Therefore usually contrast agent enhanced images are acquired for their diagnosis.
After injecting the contrast agent into a peripheral vein, it is first washed into the liver via
the hepatic artery. Later, a second wave of contrast agent enters the liver via the portal vein.
Depending on acquisition timing, up to 4 phases of contrast enhancement are captured in
the images (see Fig. 1.5).

Tumors grow differently depending on the type of cells they develop from. This influ-
ences their entire structure, including blood supply. Theymay therefore exhibit different
enhancement patterns during contrast agent inflow, sometimes allowing identification from
multiphase images alone, without biopsy. Tumors often havea very active metabolism and
are therefore hypervascularized, with a large arterial blood supply. In arterial phase images,
this shows as strong enhancement along the rim of the tumor, in the late arterial phase often
as a strong enhancement of the entire lesion. In later phases, this hyperdense (brighter than
surrounding) appearance often turns into a hypodense (darker than surrounding) one, as
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the contrast agent is already washed out from the tumor, while the surrounding tissue is
saturated with contrast agent entering the liver via the portal vein. In contrast, lesions may
also be hypovascularized, leading to an isodense or hypodense appearance in arterial and a
hypodense appearance in venous phase images. Some lesions even exhibit a portal venous
hypervascularization. Some examples of lesions with different enhancement patterns can
be found in Fig. 1.6.

Acquisition of all contrast phases is rare in clinical routine, since the number of used
phases has a small influence on tumor detection and biopsy is still considered necessary for
final identification of the lesion type. At the same time additional scans mean additional
dose for the patient. Often one arterial and one venous imageare acquired, although the
benefit of the arterial phase is also subject to heavy discussions in the community. The
portal venous phase (often only called venous phase) is the standard phase for tumor as-
sessment and therefore always acquired. Depending on the suspected tumor presence, an
additional arterial image might be obtained as well.

In this work it is therefore only assumed that an image with some kind of venous
enhancement is available in order to keep the requirements as low as possible, although an
extension to more phases is possible with our approach. Visual inspection of the data and
some preliminary experiments indicate that adding an arterial phase image could improve
performance considerably in some cases, if sufficient example images are provided for
training of the system.

1.3.2 Therapy Options

Nowadays a whole bunch of different treatment options for liver tumors is available. Still,
the standard therapy is a resection of the affected area. This resection can include one or
more segments or even an entire liver lobe. This radical therapy becomes feasible due to
the liver’s amazing regeneration capabilities. However, in case of preexisting liver condi-
tions like cirrhosis as much tissue as possible has to be preserved, leading to a different
resection strategy. In these so-called atypical resections either a wedge-shaped portion is
resected or only the tumor itself plus a small safety margin.The latter interventions require
particularly thorough planning to ensure fully functionalblood support and drainage for
the remaining liver tissue. If the liver is damaged too severely, a transplantation is the only
solution. In recent years, living donor transplantations have attracted a lot of attention,
again extensively using the regenerative property of the liver.

Besides surgery, there are numerous alternatives. These aremainly used in cases where
a resection is not advised because the number of target lesions is too large, because the
target lesions are not accessible or dangerously close to important vessels, because the loss
of liver tissue would be too big, or because the patient’s overall condition is too bad. These
treatment options include the injection of ethanol, radiofrequency ablation, cryoablation, or
radiation therapy. In all these cases the tumorous tissue isdestroyed in situ. A chemother-
apy may be applied either as preparation for any of the aforementioned treatment options
or as primary therapy if the tumor(s) cannot be treated otherwise.

In any case, treatment success has to be assessed. Especially tumors that were not re-
moved surgically need to be closely monitored. To this end, follow-up images are acquired
on a regular basis at intervals of several months and lesionsare measured. The standard
guidelines for these measurements, the response evaluation criteria in solid tumors (RE-
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(g) (h)

Figure 1.6: Various types of liver tumors with different enhancement patterns. Images
in the left column were acquired during the late arterial phase, those in the right column
during the portal venous phase.

CIST [Eise 09]), define their size criteria based on the largest axial diameters of a subset of
up to five representative target lesions. Based on these diameters and the total number of
lesions, the total tumor burden is estimated and treatment response or disease progression
is rated.

1.4 Focus and Contribution

In clinical routine working with CT images of liver tumor patients involves a lot of manual
interaction for initial identification of lesions, intervention planning, or measurements dur-
ing follow-up examinations. The work at hand presents machine learning based methods
for automatic detection and segmentation of focal liver lesions. Detection in this context
means the localization of lesions, whereas segmentation denotes their precise delineation.

The main focus of the proposed methods lies on the follow-up case. To keep the com-
plexity at bay, the set of target lesions was limited. Since from an image processing point
of view the actual tumor type is of secondary importance, theselection criterion was not
biological but based on the lesions’ appearance in the images. We limited our efforts to
primarily hypodense lesions, which make the largest portion of all cases. Non-focal le-
sions like cirrhosis are not targeted here. However, the methods that will be presented in
the following chapters are sufficiently generic to be extended to arbitrary kinds of focal
lesions, provided that there is enough training data. This distinction of different cases only
by appearance implies that the image databases used for our experimental evaluations may
contain not only tumors but also other focal lesions like cysts. While a categorization of
liver lesions from a small set of multiphasic CT images is generally not considered possi-
ble, identifying non-tumors like cysts might be. Still, anydistinction beyond the categories
hyperdense vs. hypodense is not in the scope of this thesis and therefore not considered
further.
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Starting point for the proposed methods is a learning based standard approach to object
segmentation. It uses a previously trained classifier to divide the image into target objects
and background regions by classifying every single image point and assigning it to one of
the two classes. We start with a state-of-the-art system from literature [Shim 08] and refine
it by

• replacing its AdaBoost classifier by a Probabilistic Boosting Tree [Tu 05],

• improving its preprocessing by incorporating an intensity standardization step origi-
nally developed for use with magnetic resonance images [Jage 09], and

• making classification results more smooth and robust by introducing an iterative clas-
sification approach [Morr 08].

A description and experimental evaluation of this system was published in 2010 [Mili 10].
With a system like this, lesions can be monitored over time bysegmenting them in

each follow-up image separately and matching and comparingthem afterwards. In this
setup, the segmentation step treats each image of a series asif they were independent. To
improve accuracy, we modify this approach so that patient specific information gained from
previous images is incorporated into the current segmentation process. This is achieved by

• learning a lesion prior from example datasets and either

• incorporating the prior directly into the classification step of the segmentation system
or

• combining the prior with the output of the original classification step according to
Bayes theory.

This approach is also described in a recent publication [Mili 13b].
Besides accuracy, response time is one of the main criteria for use of a system like

this in clinical routine. Methods based on voxel classification have by nature a very high
computational complexity, even with today’s optimized algorithms and hardware. The last
part of this thesis thus deals with techniques for speeding up the machine learning methods
forming the core of the presented system. More specifically,we developed a modification
of the AdaBoost algorithm, which

• makes it prefer simpler features, speeding up classification in hierarchical boosting
classifiers without losing classification accuracy, and

• allows the optimization of arbitrary side conditions.

This cost constrained boosting algorithm was published in 2013 [Mili 13a].

1.5 Outline

After the above introduction to the medical background and the motivation for the work
presented in the thesis at hand, the remainder of the document is organized as follows:
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• Chapter 2 provides the reader with information about the used machine learning
methods. General ideas that form the basis of all machine learning are outlined
as well as general definitions from this field. Starting with some insights from the
theory of machine learning, the boosting methods used throughout this thesis are
explained in detail.

• Chapter 3 shows, how the aforementioned learning methods can be used for seg-
menting liver tumors in CT images. A complete segmentation system is described
and evaluated on a non-public set of clinical images. This system forms the basis for
the following two chapters.

• In Chapter 4, it is extended and adapted for the case of follow-up lesion segmen-
tation. A novel method for incorporating knowledge gained from previous image
acquisitions is presented. It includes learning a prior from the given image series and
combining it with the existing segmentation system.

• Chapter 5 finally deals with an issue that concerns all learning based detection meth-
ods, i. e. their computational complexity and thus runtime.A method is presented
that allows speeding up hierarchical boosting-based classification systems without
affecting their classification performance negatively.

• Chapter 6 outlines still open or newly raised questions fromthis project, which are
left for future work.

• Chapter 7 sums up the entire thesis.
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The idea of “intelligent” and especially learning machineshas always intrigued people and
stimulated their imagination. Nowadays, machine learning(ML) methods are used exten-
sively in tasks like object detection or categorization [Enzw 09, Zhan 13], market analysis
[Bose 01, Rudi 13], and regulating control systems [Golu 13, Bris 06]. They have made it
to the standard repertoire of pattern recognition algorithms. However, taking a closer look
at these methods shows they are only vaguely related to the science fiction ideal of machine
intelligence and our current understanding of mind and consciousness raises some doubts
as to whether these fantasies will ever become reality.

Technically speaking, machine learning refers to the concept of algorithmically deriv-
ing knowledge from data. The learning process can be as simple as the calculation of a
mean value over some data points or as complex as a multi-criteria optimization [Bish 07].
The knowledge may be represented explicitly in the form of human readable rules or im-
plicitly as parameters of a model. All, that is essential, isthat system has gained some
knowledge and that this knowledge, in contrast to the original raw data, allows inference
and prediction of new information and thus leads to a change in the system’s behavior.

This coarse description already reveals one fundamental property of systems based
on machine learning methods: Their life cycle is inherentlydivided into a learning or
training phase and an application phase. The latter is the productive phase in which the
system is used for the actual purpose it was designed for. Thetraining phase in a way
replaces the normal software development process, in whichthe desired program behavior
is implemented. As Valiant puts it [Vali 84], learning is “the phenomenon of knowledge
acquisition in the absence of explicit programming”. So, the key concept and the difference
to conventional methods is to not set parameters manually asa developer but only design
the learning algorithm and let the system learn its desired functionality from “experience”
in the form of examples. Depending on the kind of data available for training and the kind
of predictions made by the system, machine learning algorithms are divided into different
types.

Generally, the goal of the learning algorithm is a mappingf : X 7→Y from the so called
feature spaceX, to a target variabley∈Y. Often the feature space isX⊂R

m, but there are

13
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learning methods that can deal with integral or categoricaltypes just as well. The training
data is represented as a number of feature vectorsx ∈ X.

If the target variable is continuous, the predictionf is called regression, ifY is a discrete
set of labels, the prediction is called classification and the (finite) target values are called
categories or classes. In the latter case, the decision boundaries separating the classes form
hyperplanes in the input space.

Since the methods presented in this thesis heavily rely on classification algorithms, the
following descriptions will focus on this aspect of machinelearning.

Supervised Learning

In supervised learning methods the feature vectorsx in the set of training examplesX ⊆
X are complemented by the corresponding class labels, forming the training setV =
((x1,y1), . . . ,(xn,yn)) ⊆ X×Y. That means, for each feature vectorxi ∈ X, the cor-
rect target value or class label is known and provided to the learning algorithm as a teacher
signal. That way the classifier can adapt its parameters to match the desired output and
thus minimize its error rate on the training data∑n

i=1 |yi − f (xi)| or some other kind of loss
function based on this discrepancy. The goal is a low classification error during applica-
tion phase, i. e. when applied to previously unseen examples. This step of transferring
knowledge gained from examples to new input is called generalization.

Unsupervised Learning

In an unsupervised learning setting the training data does not contain class labels or any
other teacher signal. The goal here is to find patterns in the examples so that data points
or regions of the input space are grouped in a way that within agroup the points are very
similar to each other whereas objects of different groups are dissimilar. Examples for
unsupervised learning algorithms are the family of clustering methods as well as feature
reduction techniques like principal component analysis.

Reinforcement Learning

Reinforcement learning has a special position between the other two categories. There is
no explicit teacher signal and thus no explicit loss. Learning success is, instead, measured
by means of a reward. This kind of learning is often applied where agents interact with a
dynamic environments, so that each action has consequencesand thus may lead to some
reward. However, since the action may influence all future time steps, the reward may also
not be available immediately. This is very similar to human learning processes.

2.1 Statistical Learning Theory

Statistical learning theory deals with topics around the learnability of classes of functions,
the learning capabilities of algorithms, and the data used for learning. In this context,
a key concept that was introduced by Valiant in 1984 [Vali 84]is what was later called
probably approximately correct (PAC) framework. In this framework, a class of concepts
C is considered strongly learnable, if there is an algorithm such that for any conceptξ ∈C

it will produce a good hypothesish for ξ with high probability.
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A (binary) concept over the feature spaceX, for example, could be a subset of the space
and defined by

{x ∈ X : ξ (x) = 1} . (2.1)

If a learning algorithm generates a hypothesish for this concept based on a set of training
examples drawn fromX according to a probability distributionD, then its error probability
is defined as

θ = ED[h(x) 6= ξ (x)][Bish 07]. (2.2)

The full definition of PAC learnability is then as follows [Vali 84, Hayk 99, Bish 07]:

Definition 1. A classC of concepts is called PAC learnable if there exists an algorithm so
that

• for everyξ ∈ C

• for every probability distributionD over the input space and

• for everyδ ∈ (0,0.5) andρ ∈ (0,0.5)

with probability at least 1−δ the learning algorithm produces a hypothesish with an error
probabilityθ < ρ for any training sampleV = {(x1,ξ (x1)), . . . ,(xn,ξ (xn))} with n≥ n0

drawn according toD.

Then0 ∈ N in this definition may vary for different distributions or for different values
for δ andρ. An algorithm is called PAC or a strong learner if it fulfills this definition for
the concept classC being the hypothesis spaceH , which is the set of all hypotheses that
can be generated by the algorithm.

Analogously, a weak learner is an algorithm, for which in this definition the expected
error θ can only be guaranteed to stay below 0.5, i. e. it is at least better than random
guessing.

2.2 Boosting Methods

Boosting is a meta-learning algorithm, i. e. it does not definea learning algorithm by it-
self, but a method for improving the performance of arbitrary learning algorithms. It was
presented by Schapire in 1990 [Scha 90] as the affirmative response to the question raised
by Kearns and Valiant [Kear 89] whether the concepts of weak and strong learnability are
equivalent. With the boosting method Schapire presented not only a proof for his affirma-
tive answer to this question but also a means for transforming any weak learning algorithm
into a strong one.

The core idea is to run the weak learner several times, where the later iterations focus
on the hard examples, and combine the responses of the singleweak learners to form an
overall response. In the original publication, the focusing is implemented by assuming
a practically infinite amount of training data and using earlier stages to filter the training
samples for later ones. That way later stages can focus on those examples that were previ-
ously misclassified. In later versions, boosting by resampling or boosting by reweighting
were preferred.
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Boosting by resampling uses a finite set of training examples,from which a new subset
is sampled according to a probability distribution for eachiteration. By calculating the
error w. r. t. the entire training set and adapting the distribution, the sampling focuses on
the hard examples in later iterations. Sampling by reweighting uses the same set of training
examples for each iteration, but assigns a weight to each individual example. During each
iteration, the error of the weak learner is calculated w. r. t. the sample weights and in turn
used to adapt the weights, so that misclassified examples receive more attention.

2.2.1 AdaBoost

Many realizations of the boosting principle have been proposed since its origin in 1990.
One of the most successful and most frequently used to this day is the AdaBoost algorithm
by Freund and Schapire [Freu 95]. Since it is used extensively in this thesis, it will be
described in some detail on the next few pages. It is based on three key concepts:

• A weighted training set,

• iterative calls to a weak learning procedure and

• focusing on hard examples by reweighting the training set.

Hard examples in this context are those that are close to the decision boundary.
Let X = {x1, . . . ,xn} ⊂ R

m be a set of feature vectors with class labelsyi ∈ Y, i ∈
{1, . . . ,n}. AdaBoost was originally designed for binary classificationproblems, so we
assumeY = {−1,+1}. These vectorsX together with their class labels form the set of
training instancesV = {(x1,y1), . . . ,(xn,yn)}. The goal of the learning algorithm is a map-
pingRm 7→ Y of the form

H(x) = sign

(

T

∑
t=1

αtht(x)

)

, αt > 0, ht(x) ∈ {−1,+1}, (2.3)

where often we will useg(x) = ∑T
t=1αtht(x) for the sake of simplicity. During training

(Algorithm 1), AdaBoost iteratively calls a weak learning algorithm that provides the hy-
pothesesht for this linear combination. Additionally, a distributionD assigning a weight
to each of the training instances is maintained.D is updated after each iteration, putting
more emphasis on the previously misclassified samples: Weights of previously misclassi-
fied samples are increased by a factor exp(−αt), those of correctly classified samples are
decreased by a factor of exp(αt). Afterwards, the samples are normalized again to ensure
that ∑i Dt+1(i) = 1. The weighting factorαt that is assigned to eachht is a confidence
weighting determined based on its training error with respect to Dt : Hypotheses with a
high training error receive low weight and vice versa.

AdaBoost is a meta-learning algorithm, i. e. it does not regulate which kind of weak
learner should be used. Consequently, it has been combined with all sorts of classifiers,
from simple decision trees to fully grown neural networks orsupport vector machines.
While the latter ones are strong learners by themselves, the boosting theory states that their
performance will improve when they are plugged into the AdaBoost algorithm.

Throughout this thesis, one-level decision trees, also known as decision stumps, act as
weak learners. These apply a threshold to a single feature ofthe input vectorx (cf. right
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part of Fig. 2.1). Training a weak learner then means selecting the feature and threshold
producing the lowest error on the training set. That way, during each iteration AdaBoost
greedily picks the “best” feature. Compared to other learning algorithms this has the ad-
vantage that the user does not have to put much effort into selecting a small number of
optimal features. Instead, one can run AdaBoost with a large set of features and let the
algorithm perform the feature selection along the way. As anadditional benefit, the result
provides insight into the nature of the underlying classification problem and the usefulness
of certain features.

Algorithm 1 The AdaBoost algorithm [Freu 96].
Input: (x1,y1), . . . ,(xn,yn) wherexi ∈ R

m, yi ∈ {−1,+1}.

1: Initialize D1(i) = 1/n.
2: for t = 1. . .T do
3: Train weak hypothesisht : Rm 7→ Y using distributionDt .
4: Get weighted training error of hypothesisθt = ∑

i:ht(xi) 6=yi

Dt(i).

5: Setαt =
1
2 ln
(

1−θt
θt

)

6: Update

Dt+1(i) =
Dt(i)e−αtyiht(xi)

Zt

with
Zt = ∑

i
Dt(i)e

−αtyiht(xi) = 2
√

θt(1−θt).

7: end for

Output: Final hypothesisH(x) = sign

(

T
∑

t=1
αtht(x)

)

= sign(g(x)).

Error Bounds

One reason why AdaBoost was quickly adopted by the community is certainly its sim-
plicity, another is the guarantee for success stated by its inventors. Freund and Schapire
provided a thorough analysis of expected error rates [Freu 95]. Not only could they show
that the training error for AdaBoost is bounded by

Θ ≤
T

∏
t=1

2
√

θt(1−θt) =
T

∏
t=1

√

1−4γt
2 ≤ exp

(

−2
T

∑
t=1

γt
2

)

, γt = 0.5−θt , (2.4)

they also analyzed the expected generalization error and proved it is with high probability
at most

Θ
n
+O(

√

Tv
n
). (2.5)

v in this equation denotes the VC-dimension of the hypotheses,a measure for the complex-
ity of the hypothesis space that is named after Vapnik and Chervonenkis, who developed an
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extensive theory around this concept. While it was later refined several times, the bound in
Eq. (2.5) already gave some hints on what to expect from the AdaBoost learning algorithm.

Choice ofα

The error bound in Eq. (2.4) can be confirmed by unraveling thecalculation of the weight
updates for the training examples postulated in Alg. 1. For the sake of notational simplicity,
we use∑t for ∑T

t=1 and∑i for ∑n
i=1, as well as∏t for ∏T

t=1.

DT+1(i) =
1
n

e−α1yih1(xi)

Z1
· . . . ·

e−αTyihT(xi)

ZT

=
e∑t −αtyiht(xi)

n∏t Zt

=
e−yi ∑t αtht(xi)

n∏t Zt

=
e−yg(xi)

n∏t Zt
(2.6)

In the case of a misclassified example we haveH(xi) 6= yi, such thatyig(xi) ≤ 0 and thus
exp(−yig(xi))≥ 1. For the following conversions, we use the notation

J〈condition〉K =

{

1 if 〈condition〉 is true

0 otherwise.
(2.7)

With this, it is easily agreed that

JH(xi) 6= yiK ≤ e−yig(xi) (2.8)

and, summing over all feature vectors in the training set,

1
n∑

i
JH(xi) 6= yiK ≤

1
n∑

i
e−yig(xi). (2.9)

Bringing together the findings from Eq. (2.9) and Eq. (2.6), one comes to the conclusion
that

Θ =
1
n∑

i
JH(xi) 6= yiK ≤

1
n∑

i
e−yig(xi)

= ∑
i

DT+1(i)∏
t

Zt

= ∏
t

Zt ∑
i

DT+1(i)

= ∏
t

Zt . (2.10)

The last conversion step is possible due to the fact that the distributionD is normalized in
each iteration, so that∑i DT+1(i) = 1.
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One interesting conclusion that can be drawn from this inequality is, that AdaBoost es-
sentially performs a steepest gradient minimization of∏t Zt by minimizing in each iteration
the exponential loss function

Zt = 2
√

θt(1−θt) =
n

∑
i=1

Dt(i)e
−αtyiht(xi). (2.11)

In order to minimizeZt , two parameters have to be chosen:ht andαt . The former is the
result of the weak learner training. As mentioned before, AdaBoost is a meta-learning
algorithm and does not make a statement as to what kind of weaklearner has to be used, as
long as its error on the weighted training set remains below 0.5. Thus, we takeht as given
here. With that set fixed, what remains is to minimize Eq. (2.11) w. r. t. αt .

The optimal value forαt can thus be determined by solvingdZt(α)
dαt

= 0. For better
readability, we will do this for a single iteration and as a consequence leavet out of the
following formulation.

dZ(α)

dα
=

d
dα ∑

i

D(i)e−αyih(xi)

=− ∑
i

D(i)yih(xi)e
−αyih(xi)

=− ∑
i:h(xi) 6=yi

D(i)yih(xi)e
−αyih(xi) − ∑

i:h(xi)=yi

D(i)yih(xi)e
−αyih(xi)

(i)
= ∑

i:h(xi) 6=yi

D(i)eα − ∑
i:h(xi)=yi

D(i)e−α

= eα ∑
i:h(xi) 6=yi

D(i) −e−α ∑
i:h(xi)=yi

D(i)

(ii)
= eαθ −e−α(1−θ)

=
e2αθ −1+θ

eα
!
= 0 (2.12)

In step(i) of this calculation, we make use of the fact thatyi ∈ {−1,1} andh(xi)∈ {−1,1}.
Step(ii) applies the definition of the training error of a hypothesis from Alg. 1 and the fact
thatD is a distribution.

Reformulating Eq. (2.12) further yields

e2αθ −1+θ = 0

⇔

e2α =
1−θ

θ
⇔

α =
1
2

ln

(

1−θ
θ

)

. (2.13)
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Plugging this intod2Z(α)
d2α confirms, that this value ofα in fact represents the minimum of

Z(α) and thus the optimal choice for the hypothesis weight in thisversion of AdaBoost.
Proof for this claim as well as the error bound above has been presented in several

publications. The one that is formulated here largely follows the argumentation by Freund,
Schapire and Singer [Freu 95, Scha 99].

Interpretation of AdaBoost

Since its publication, AdaBoost and its capabilities of transforming weak classifiers into
strong ones have been the subject of extensive research. Many different views of the learn-
ing algorithm have been proposed, though none of them can explain all of its behavior.
While algorithmically clear and simple, mathematically AdaBoost is very hard to grasp.
One of the more widely accepted perspectives is the margin theory. It basically states
that AdaBoost training maximizes the margin of the hypotheses, which is defined as the
distance of a sample to the decision boundary [Scha 98]

φi(H) = yi

∑
t

αth(xi)

∑
t

αt
. (2.14)

With this concept, Schapire et al. explained an effect observed in many experiments: Even
after many iterations, when the training error has reached zero, the generalization error
keeps decreasing. In most learning algorithms, the generalization error would increase in
this situation, as the classifier adapts too closely to the training data; a phenomenon that is
known as overfitting. The margin idea was picked up and developed further in several other
publications, leading to approaches directly optimizing the margin via gradient descent
methods [Maso 99, Maso 00, Rats 01].

Whether AdaBoost overfits or not has long been subject to discussions. The current
consensus is summarized, e. g., by Dietterich [Diet 00] and Mease and Wyner [Meas 08]:
AdaBoost in general shows little overfitting, but it can severely overfit for datasets with a
high noise level. The reason for the latter is founded in the weight modification procedure
for misclassified samples.

A second view of AdaBoost originated from an influential paperby Friedman et al.
[Frie 00]. There, the authors develop a statistical argument, describing AdaBoost by means
of additive models. This leads them to the conclusion that AdaBoost approaches logistic
regression with

g(x)≈
1
2

ln
p(y=+1|x)
p(y=−1|x)

(2.15)

for posterior probabilitiesp(y|x),y∈ {−1,+1}. The most important implication from this
for the work at hand is that the output of the AdaBoost classifier can directly be translated
into an approximate probability value.

2.2.2 Probabilistic Boosting Tree

The PBT is a hierarchical classifier proposed by Tu in 2005 [Tu 05]. Designed as a two-
class classifier, it builds a binary tree of strong learners during training (cf. Fig. 2.1). Much
like a decision tree, the PBT classifies examples in a divide & conquer manner where at



2.2. Boosting Methods 21

each node of the tree the result is refined. However, bearing strong learners, the nodes of
a PBT have much more discriminative power than those of a decision tree, which usually
consist of only a single feature. Also, the decisions made ateach node of the PBT while
traversing the tree are not binary but represent probabilities, by default incorporating both
subtrees. It is due to this latter fact that its mode of operation is therefore often referred
to as that of a soft decision tree. Its way of decision making also strongly resembles
the hierarchical mixture of experts approach [Jord 94, Hayk99] with a dynamic gating
network.

Figure 2.1: Structure of the PBT. Each tree node contains an AdaBoost classifier, which in
turn consists of a number of weak learners, in this case decision stumps.

Training Phase

The training procedure of the PBT is recursive: Starting witha set of weighted training
examplesS, at the root node of the tree a strong learner is trained, stopping early. Using
AdaBoost to train these as Tu recommends has the advantage that their outputH allows the
computation of approximate posterior probabilitiesq(y|x) for a samplex as (cf. Eq. (2.15))

q(±1|x) =
exp(±2g(x))

1+exp(±2g(x))
. (2.16)

Using these probabilities, the training samples are separated by the newly trained strong
learner (cf. Fig. 2.2):

• Samples, for whichq(+1|x)> 1
2 + ε are put into a positive subset;

• samples, for whichq(−1|x) = 1−q(+1|x)> 1
2 + ε are put into a negative subset;

• samples, for whichq(±1|x) ∈ [12 − ε, 1
2 + ε] for a user definedε are considered am-

biguous and put into both subsets.

Ambiguous samples are those located close to the decision boundary of the strong learner,
so thatg(x) id close to 0. The two subsets are then reweighted, placing less emphasis on
the ambiguous samples, and used to train the right (positive) and left (negative) subtrees.
For the full training procedure see Alg. 2.
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Figure 2.2: During PBT training, at each node the samples are separated into positive and
negative subsets according to the approximate posterior probabilitiesq(y|x) calculated by
the node’s strong learner. The softness of the splitε is a user defined training parameter.

Algorithm 2 The training procedure of the PBT.
Input: S = {(x1,y1,w1), . . . ,(xn,yn,wn)}. wherexi ∈ R

m, yi ∈ {−1,+1}, and∑i wi = 1.
Maximum tree depthL. Split softnessε ∈ [0,0.5].

1: Compute and store empirical distribution ˆqc(y) = ∑
i:yi=y

wi.

2: Using AdaBoost, train strong learnerHc for current nodec from Sc, stopping early, for
example when hypothesis errorθ > 0.45.

3: if reached tree depthL then
4: return
5: else
6: Split Sc into Sle f t andSright :
7: for all x i ∈ Sc do
8: UsingHc, computeq(±1|xi).
9: if q(+1|xi)> 0.5+ ε then

10: Add (xi ,yi,1) to Sright .
11: else ifq(−1|xi)> 0.5+ ε then
12: Add (xi ,yi,1) to Sle f t.
13: else
14: Add (xi ,yi,q(−1|xi)) to Sle f t and(xi ,yi,q(+1|xi)) to Sright .
15: end if
16: end for
17: Normalize sample weightswi in Sle f t, so that∑i wi = 1.
18: Train left subtree withSle f t.
19: Normalize sample weightswi in Sright , so that∑i wi = 1.
20: Train right subtree withSright .
21: end if

Output: Trained PBT
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Figure 2.3: The PBT splits the feature space hierarchically similar to a decision tree. Sam-
ples can, however, end up in both subtrees.

Inference Phase

Applying a previously trained PBT to classify a new pattern works analogously: Start-
ing from the root, the sample is passed down the tree. At each node, the strong learner’s
posteriorsq(y|x) are computed. Based on these, the subtrees’ results are computed and
combined, so that at the root node the overall approximate posterior p̃(y|x) is returned.
Whenever a strong learner is very certain about the sample’s class (q(y|x) > ε + 1

2), the
respective other subtree is omitted, or more precisely, itsempirical class distribution deter-
mined during training is assumed as posterior. This on-the-fly subtree pruning can speed
up classification considerably. At the same time, it does notinfluence accuracy negatively,
since only those subtrees are omitted that have a small influence on the overall result. The
final result p̃ can then be used to directly trade off the tree’s sensitivityvs. its specificity
via a single threshold. The procedure is described in detailin Alg. 3.

Since the output of the PBT is not a category but a probability value, it is strictly speak-
ing not a classification. However, since the PBT is trained with a binary teacher signal, we
will stick to this terminology, interpreting the output as confidence rated classification.

The PBT has been successfully applied to various challengingclassification prob-
lems such as polyp detection in virtual colonoscopy CT images[Tu 06], detection of fetal
anatomies in ultrasound images [Carn 08], and segmentation of pediatric brain tumors in
MR images [Wels 08]. Its divide & conquer strategy makes it particularly well suited for
problems with high dimensional feature spaces and high intra-class variability. Splitting
the training samples at each node effectively subdivides the classification task by subdi-
viding the feature space (Figure 2.3), restricting the classification in deeper tree nodes to
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Algorithm 3 Calculation of the approximate posterior ˜pc(y|x) at nodec of a trained PBT
for a samplex. cright here means the subtree rooted at the right child of nodec, q̂c denotes
the weighted empirical class distribution at nodec as computed during training.

1: Using the node’s strong classifierHc, computeq(±1|x)
2: if q(+1|x)> 0.5+ ε then
3: return q(−1|x)q̂cle f t(y)+q(+1|x)p̃cright (y|x)
4: else ifq(−1|x)> 0.5+ ε then
5: return q(−1|x)p̃cle f t(y|x)+q(+1|x)q̂cright (y)
6: else
7: return q(−1|x)p̃cle f t(y|x)+q(+1|x)p̃cright (y|x)
8: end if

Output: Approximate posterior ˜pc(y|x)

smaller subspaces. Compared to a monolithic design, this leads to a more efficient problem
representation, using less weak learners. Also, together with stopping the training early, it
stabilizes AdaBoost: The AdaBoost classifiers are less prone to overfitting and the occur-
rence of conflicting hypotheses is reduced. For the PBT itself, overfitting can be controlled
via the tree depth and, to some extent, via the split softnessε. With all other parameters
fixed, a lowerε will lead to a stronger separation of the subtrees and thus a higher risk of
overfitting.

As additional benefit compared to other classifiers, the hierarchical subdivision of the
feature space together with the feature selection process inherent to AdaBoost provide
insight into the nature of the classification problem at handand the relative importance of
different features. While features that are selected at early stages are highly discriminative
and important for a rough estimate, those chosen in deeper tree nodes encode fine details
about the decision boundary and may only be useful for a smallnumber of samples.
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An automatic assessment of liver lesions requires automatic solutions for both their detec-
tion and segmentation. These two tasks could be carried out separately and consecutively
by first finding relevant lesion locations as regions of interest (ROI) and then running a
different algorithm to delineate the lesions. In contrast,the approach described on the fol-
lowing pages performs both detection and segmentation simultaneously. This is achieved
by letting a previously trained classifier mark each single point in the input image as be-
longing to a liver lesion or to the background. The only required input for this system is a
CT image of the patient’s liver with venous contrast enhancement.

The principle of segmentation by pointwise classification is a fairly standard approach,
so there are many parallels between our approach and, e. g., the one by Shimizu et al.
[Shim 08]. Algorithmically important differences to theirmethod will be pointed out along
the description throughout this chapter.

Before we detail on our own approach, a brief overview of existing literature on the
topic of liver lesion segmentation will be given. Next, the entire processing pipeline
(Fig. 3.1) is described, from image preprocessing via the actual segmentation step to the
postprocessing necessary to generate contiguous lesion masks out of the point classifica-
tions. Finally, the presented system is evaluated in a series of experiments highlighting
different aspects of the method.

The work described in this chapter was published at the “20thInternational Conference
on Pattern Recognition” (ICPR) in 2010 [Mili 10].

25
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Figure 3.1: Liver lesions are segmented by classifying eachvoxel inside the liver as tumor
or background. The probability image output by the classifier is smoothed and binarized.
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3.1 Related Work

A number of automatic methods for liver lesion segmentationhave been proposed over the
past few years. These include histogram based methods like combining adaptive multi-
thresholding with morphological operators [Bile 04] or k-means clustering on mean shift
filtered images [Mass 08]. Such methods require, however, a good and fairly constant
contrast between lesions and parenchyma.

Machine learning techniques like AdaBoost seem more promising in this respect due
to their higher flexibility and the resulting ability to adapt to different tumor types, lesion
shapes and sizes, image qualities, or contrast enhancements. They have been used to lo-
cate lesion boundaries by classifying 1D intensity profilescalculated around a manually
set seed point [Li 06a] or to automatically identify tumorous tissue based on its image tex-
ture [Pesc 08]. If the lesion position is known, ML and level set methods can be used in
combination to delineate its boundaries [Smee 10].

As part of the MICCAI conference in 2008, a workshop on liver lesion segmentation
was held in order to compare state of the art methods. Severalpromising algorithms at
different levels of automation were presented, the best fully automatic one yielding a Jac-
card index of up to 0.71 [Shim 08] on the provided set of test images containing 10 tumors.
This system, which was proposed by Shimizu et al., is the one most closely related to ours.
They trained two AdaBoost classifiers with a set of gray value statistical and gradient fea-
tures calculated on normalized images, as well as features based on a convergence index
filter that enhances blob-like structures. One classifier was trained for segmenting large,
the other for segmenting small lesions. After applying bothclassifiers to the points of an
image separately, their results were merged to form a final output.

3.2 Preprocessing

Machine learning methods have proven to be highly flexible and capable of adapting to
most complex environments or tasks if provided with sufficient training data. Nevertheless,
in order to improve robustness of the classification and reduce the need for training data
and feature dimensions, one wants to keep problem complexity as low as possible. To this
end, the preprocessing step in the presented system removesseveral sources of variability
by first automatically segmenting the liver and then standardizing image intensities in the
input data.

3.2.1 Automatic Liver Segmentation

Providing a segmentation of the liver to the lesion segmentation system has two great
benefits. Identifying the liver region in the image allows constraining the search space to
relevant areas and thus saves computation time. From the point of view of the classifier
used in the segmentation step, all image points outside the liver belong to the background.
Not considering these at all therefore also reduces the complexity of the feature space and
especially the intra-class variance of the background. This makes the classification task
more feasible and reduces the risk of spurious detections.

The method adopted for liver segmentation here was first proposed by Ling et al.
[Ling 08]. They model the liver by a hierarchical mesh-basedshape representation. First,
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(a) (b)

Figure 3.2: Images of two patients illustrating the need forintensity standardization. Both
images were acquired with a protocol for venous contrast enhancement. Still, the tumor in
(a) has approximately the same intensity as large parts of the parenchyma in (b). For both
images the displayed intensity window is centered at 100 HU,with a width of 200 HU.

the liver is detected estimating its location, orientationand scale on the coarsest level using
the marginal space learning scheme. Then, the model is refined applying a learning-based
boundary localization which helps the system to become robust against heterogeneous in-
tensity patterns. The liver surface is decomposed into patches depending on the surround-
ing anatomic structures, and patch dependent classifiers are employed to cope with the
different texture patterns.

The result of this step is a binary mask of the liver, which is used to define the region
of interest in the image for the intensity standardization step and all further processing.

3.2.2 Intensity Standardization

Several factors influence the distribution of contrast agent inside the liver at the time of
acquisition and thus the image intensities. One factor is acquisition timing, another, even
less controllable, the perfusion of the liver, which depends on the health status of the patient
and his metabolism. Stenoses or other local disturbances inperfusion may also cause
changes in intensity. The result is that even images that were acquired during the same
phase of contrast enhancement can have a very different overall intensity level.

In order to make the input images more comparable, intensities inside the liver are
standardized. This is a fairly common preprocessing step insegmentation. Its realization,
however, in our case differs from the standard approach. In most cases, voxel intensities
I are either modified using histogram equalization [Pesc 08],which has a mainly visual
effect, or normalized according to [Shim 08]

I ′ =
I −µ

σ
(3.1)
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with I ′ being the processed intensity andµ andσ being the mean and standard deviation
of intensities inside the liver. For simple cases like small, strictly hypodense lesions in oth-
erwise healthy livers, this will usually be sufficient. In more complex cases, however, like
partly hyperdense or rim-enhancing lesions, cirrhosis or other basal diseases, the histogram
of the liver voxels may be multi-modal with varying distances between the single modes,
so that normalization will not match intensity ranges across images correctly.

Figure 3.3: The histogram of the target image
(red) is non-rigidly registered to the histogram
of the reference image to determine the inten-
sity mapping for the standardization.

To be able to handle these cases as
well, we took a different approach, which
was originally developed for standardiz-
ing intensities in nuclear magnetic reso-
nance images (MRI) and was there ap-
plied to head and even full body images
[Jage 09]. The idea is to select a repre-
sentative image, in which the liver has
an appearance that is considered typical
for the database. This image’s intensi-
ties’ probability density function inside
the liver defines the ideal histogram. Each
target image is then standardized by
matching its histogram non-rigidly to that
of the reference image and applying the

resulting intensity mapping to the intensities in the target image (Fig. 3.3).

3.3 Pointwise Classification

The core of the system, responsible for the actual segmentation, consists of a classifier that
assigns a value in the range[0,1] to each voxel within the liver. This value reflects the
estimated posterior probabilityp(y = 1|xa) of the voxel belonging to a liver lesion. It is
calculated by a cascade of previously trained Probabilistic Boosting Trees (PBT), based
on a vector of featuresxa describing the appearance of the voxel in the image. Strictly
speaking, the result is not a real classification, but since the PBT is trained with class labels
as target values and the output values are a mere confidence rating, we will stick to this
terminology.

There are two standard ways to use classification in object detection: window classifi-
cation and point classification. The former receives a largenumber of rectangular regions
of various sizes and positions in the image (windows) and decides which ones contain a
target object. The latter decides for each single point in the image, whether it belongs to
a target object, providing a segmentation at the same time. While window classification
allows the simple incorporation of features describing an entire target object like in tem-
plate matching approaches, point classification has the advantage of allowing the detection
of objects of arbitrary size and shape. Especially in the case of liver tumors, which vary
greatly in their size and appearance, this is an invaluable side effect. Also, the point clas-
sification approach requires a much smaller patient database for classifier training, since
each single tumor point can function as a positive example, as opposed to each tumor in
the window classification case.
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Figure 3.4: The red point in the center marks the current voxel, at image locationl. The
boxes denote the neighborhoodN(l) around this voxel (left) and the neighborhoods around
the voxels inN(l) (right). N(l) marks the region from which the probability features for
the voxel at locationl are calculated.

3.3.1 Iterative Classifier Setup

The highly variable appearance of both parenchyma and lesions makes it difficult for a
single classifier like AdaBoost or a support vector machine (SVM) to globally find an ap-
propriate model for each target class and thus an optimal decision boundary in the input
space. To be able to account for at least different lesion sizes and thus eliminate one source
of variation, Shimizu et al. [Shim 08] used two AdaBoost classifiers in their segmentation
step. The approach presented here is more general, scaling well for segmentation tasks of
different complexities. The classifier we chose to adopt is the recently proposed Probabilis-
tic Boosting Tree [Tu 05] in combination with AdaBoost as strong– and decision stumps as
weak learners (compare Sec. 2.2). Due to its hierarchical nature, the PBT should be able to
handle the high dimensional feature space at hand, as well asthe high intra-class variability
of the task.

One drawback of the voxel classification approach is the fact, that it treats the clas-
sification of each point in the image as an independent problem, which is obviously not
true when segmenting contiguous objects. This wrong assumption is usually compensated
for by incorporating context information into the classification, e. g. by designing special
features or averaging features over some neighborhood. An entirely different approach
is proposed by Morra et al. [Morr 08], who exploit the fact that neighboring points with
similar properties tend to belong to the same class. The rationale is the following: When
classifying a point it would be helpful to know the correct label of the surrounding points
and incorporate this information into the decision making.In practice, during application
phase class labels are not available, but the classifier doesprovide an estimate of the pos-
terior probabilities. Consequently, each point’s classification is formulated to depend on
that of the surrounding points. Since these depend on the result for the current point, this
leads to an iterative scheme, in which all points initially have the same lesion probability
of 0.5 and are updated alternatingly until convergence. The finalestimated posterior prob-
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ability of the voxel at locationl with corresponding feature vectorxa after k iterations is
then calculated as:

k= 0 : p(y|l) = p0(y|l) = p0(y|xa)

k= 1 : p(y|l) = p1(y|l) = p1(y|xr) = p1(y|xa,{p0(y|l∗) | l∗ ∈ N(l)})

. . .

k= K : p(y|l) = pK(y|l) = pK(y|xr) = pK (y|xa,{pK−1(y|l∗) | l∗ ∈ N(l)}) (3.2)

N(l) here denotes the voxel locations in a neighborhood of location l (Figure 3.4) and,
accordingly,{pi(y|l∗) | l∗ ∈ N(l)} denotes the probability values at these locations as pro-
vided by classifieri. We incorporated this scheme into our voxel classification step by
training a sequence of PBTs. Each PBT in the sequence receives as input not only the fea-
ture vectorxa describing the appearance of the voxel under consideration, but also a vector
xp of features calculated from the output probability image ofthe preceding classifier (Fig-
ure 3.5). Both feature vectors are concatenated asxr = (xa,xp) to form a combined feature
space for the PBT. That way, when classifying a point, previously gained knowledge of
the classes of surrounding points can function as a prior. This iterative training procedure
is also described in Alg. 4. For the task at hand three to four iterations turned out to be
sufficient; further steps rarely brought any benefit.

Algorithm 4 Training procedure for the iterative classification scheme
Input: V = {(xa,1,y1), . . . ,(xa,n,yn)} where thexa,i ∈ R

m were calculated from image
locationsl i in the training images andyi ∈ {−1,+1}. Number of iterationsK+1.

1: Train classifier PBT0 using examplesV
2: for k= 1. . .K do
3: Use PBTk−1 to classify the training images, i. e. for every single voxellocation

l j in the images, calculate the corresponding feature vectorxa, j and the posterior
p(y|xa, j) (cf. Alg. 3).

4: For each training sample locationl1, . . . , ln, calculate probability feature vectorxp,i

from the output of PBTk−1
5: Concatenatexa,i and xp,i to xr,i to form new set of training examplesVk =

{(xr,1,y1), . . . ,(xr,n,yn)}
6: Train classifier PBTk using examplesVk

7: end for

Output: Cascade of classifiers PBT0, . . . ,PBTK

3.3.2 Feature Calculation

Selecting features describing the objects to be classified is a crucial step in designing a
classification system. Only if they capture the full variability of the objects and the differ-
ences between the classes, the classifier can learn to distinguish them. At the same time
adding new dimensions means additional complexity for the classifier and can decrease
robustness. AdaBoost in the version that is used here does notsuffer from this latter issue
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Figure 3.5: The iterative classification scheme used for separating tumor from background
voxels, here with three iterations (in our experiments three to four iterations turned out to
be sufficient for convergence). Each voxel of the input imageis classified by each PBT
sequentially. The feature vectorxr consists of appearance featuresxa calculated from the
input image and probability featuresxp calculated from the output of the previous iteration.
In the output images, bright parts denote voxels that were assigned a high lesion probability
by the classifier. The arrow in the input image shows the location of the target lesion.
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due to its built-in feature selection mechanism that restricts the learning to the most rel-
evant dimensions. This is not only convenient but also opensup new worlds of features
that might be too weak to be used in other classifiers. Insteadof carefully selecting a small
number of strong and uncorrelated features, an AdaBoost usercan work with a large num-
ber of features and experiment with new types. Not only will AdaBoost still learn the task,
it will also provide information about which features are the most useful ones.

A good example for this policy are the rectangular Haar-features often used in ob-
ject detection. Originally, these were designed for a license plate detection task [Papa 98,
Papa 00]. With the introduction of integral images by Viola and Jones [Viol 01], these
became a standard set of features for object detection. Eachfeature is calculated as the
difference between the integral over two or more rectangular image regions around the
current locationl. A number of different combinations have been proposed in 2D[Papa 00,
Viol 01, Lien 02], 3D [Tu 06] and arbitrary dimensions [Feul 11a]. Calculating these at
various scales leads to a number of features that can easily reach several hundreds of thou-
sands, often even exceeding the number of training examples.

For detecting and segmenting liver lesions, we designed a set of features capturing
different aspects of the appearance of liver parenchyma, lesions, their borders, as well as
other structures in the liver that might be confused with thetarget lesions. The feature set
comprises

• intensity statistics of neighborhoods of various sizes,

• the skewness of an intensity profile sampled across the point under consideration,

• gradient based features, including a simplified version ofthe adaptive convergence
index [Shim 05, Shim 08],

• a number of Haar-like features, as well as

• a vesselness measure [Sato 97].

The adaptive convergence index is a gradient based filter forenhancing spherical structures
and was proposed by Shimizu et al. for detection of HCC. A detailed list of the features is
given in Tab. 3.1.

In contrast to other approaches [Shim 08, Li 06a], our neighborhood is computed not
on a voxel but on a millimeter scale, making the approach robust against the use of images
acquired with different CT scanners and acquisition protocols.

The features that are calculated from the intermediate probability output images to form
the feature vectorxp are the point’s own probability value, as well as some simplestatistics
and weighted sums of the values in the point’s neighborhood (cf. Tab. 3.2).

3.4 Postprocessing

The iterative classification in the previous step smooths larger regions in the output im-
age as well as the course of lesion boundaries, rendering anyelaborate postprocessing
unnecessary. The final probability map is therefore only treated with a median filter and a
morphological opening operation with a kernel size of 4×4×4 in order to eliminate last
small and isolated false positive detections. Finally, theimage is converted into a lesion
candidate mask by thresholding the probability values.
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Feature category Feature name Scales/NeighborhoodsTotal #

Intensity statistics

Intensity 1
Max

1.2 mm – 16.0 mm

5
Min 5
Range 5
Contrast 5
Mean 5
Variance 5
Skewness 5
2D Median 5
3D Median 5
Difference from global mean

1.2 mm – 4.0 mm

3
Absolute difference from
global mean

3

Mean profile skewness 3
Max profile skewness 3

Gradients

Central differences inx,y,z 3
Sum of squared central differ-
ences

1

Sobel operator 6
Laplace operator 2D 1
Adaptive convergence index overlap 1.0 mm – 5.0

mm, radius 2.0 mm –
10.0 mm

6

Vesselness Sato vesselness 1

Haar features
Edge inx,y,z

0.8 mm – 41.0 mm

735
Line in x,y,z 735
Diagonal inxy,xz,yz 735
Center-surround 245

2526

Table 3.1: Appearance featuresxa used to separate tumor from background points.
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Feature category Feature name Scales/NeighborhoodsTotal #

Intensity statistics

Intensity 1
Mean

0.8 mm – 16.0 mm

6
Sum over 2D surrounding 6
Sum over 3D surrounding 6
Variance 6
2D Median 6
3D Median 6
Gaussian-weighted sum in 2D 6
Gaussian-weighted sum in 3D 6
Difference from global mean 6
Absolute difference from
global mean

6

61

Table 3.2: Featuresxp calculated from the probability image generated by the previous
classification stage.

3.5 Results and Discussion

To assess the system’s performance, a series of experimentswas conducted, each high-
lighting a different aspect of the algorithm. In total, 15 CT liver datasets with venous phase
contrast enhancement from three different clinical sites were used in the experiments. All
images had been acquired at 120 kVp. Their voxel resolution varied from 0.547 to 0.832
mm in x andy directions, and 1 to 3 mm inz direction. For training and testing, datasets
were subsampled to a slice thickness of 3 mm where applicable. As mentioned in Sec. 1.4,
the images contained only lesions that were mainly hypodense.

Each single experiment was set up as a 5-fold cross-validation. During each fold, 12
images were used to train the classifiers and the remaining ones were held out as indepen-
dent test set.

3.5.1 Subsampling of Training Data

While the tests were performed on all available points of the testing images, the training
images were randomly subsampled to reduce training time. The subsampling was not uni-
form: Homogeneous image regions can easily be represented in the training data by only a
few points. On the other hand, regions around tumor boundaries and blood vessels, as well
as regions with generally high entropy, contain a high degree of variation which is difficult
to capture in a few examples. The sampling routine thereforefocused on these difficult
regions to ensure that in the training set each image region was represented proportionally
to its importance, not its size.

A sampling probability map for each training image was created by combining two
filtered versions of the image:

• One was based on each point’s absolute distance to the closest lesion boundary, with
a value of 1 at the boundary and falling off exponentially from there.
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• The other was based on the variability of the intensity image, measuring for each
point the absolute difference in intensity between the local neighborhood and the
global mean. Only the top 0.5% of the points were kept, with their values scaled to
the range[0,1].

Both images were combined additively, plus a small constant to not completely suppress
samples outside these regions. Training images were then subsampled without replacement
according to these sampling maps.

The learning algorithm was started with 50,000 positive and50,000 negative instances.
During training, additional samples could be drawn whenever necessary. While this is a
rather coarse subsampling, experiments indicate, that it does capture the entire variation
contained in the training data.

3.5.2 Evaluation Measures

For segmentation quality assessment, receiver operator characteristics (ROC) curves were
generated. ROC curves are one common way of presenting the performance of a classi-
fication or segmentation algorithm graphically, plotting the system’s sensitivity against its
false positive rate. The point of perfect classification in these diagrams is the upper left
corner; the closer a curve is located towards this corner, the better is the classifier it was
generated by [Fawc 06].

Since the output of the presented algorithm is a probabilitymap containing a lesion
probability for each individual image location, a threshold has to be applied to determine
the final segmentation. Varying this threshold from 0 to 1 andcalculating sensitivity and
specificity values from the resulting confusion matrices (Sec. A.1, Tab. A.1) yields the
points of the ROC curve. Here, each curve is the result of a full cross-validation experiment
and is obtained by calculating the confusion matrices over all datasets.

In addition to the ROC curves, several overlap measures werecalculated in the experi-
ments (Appendix A, Tab. A.2) to allow a quantitative assessment of the results. The Jaccard
and Dice similarity coefficients are widely used for evaluation of segmentation methods.
Like sensitivity and specificity, they both try to capture the accuracy of a method by mea-
suring the similarity of the reference segmentation and thealgorithm result, however taking
into account both over- and under-segmentation.

While these measures allow a simple comparison of different methods, their meaning is
hard to grasp intuitively, especially in a domain with very few positive samples such as the
problem at hand. Thus, we resorted to a measure with a simple intuitive meaning, namely
the positive predictive value, also known as precision. Precision denotes the probability
of a positive decision made by the classifier being correct. While for a cancer patient the
sensitivity seems most important, precision is equally important for physicians in clinical
routine, as it describes how reliable the decisions by the system are and thus how many
false positives one has to expect on average. The simplest and most intuitive performance
measure in this respect is the ratio of false positives and true positives# f p

#t p , since it describes
directly what to expect visually.
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Figure 3.6: ROC curves comparing the classification performance with and without the
standardization step during preprocessing. The shown curves represent a system designed
with only one PBT, which is equivalent to using the output of the first iteration in our
scheme as result. Standardizing image intensities clearlyhelps the PBT by simplifying the
task.



38 Chapter 3. Automatic Segmentation of Liver Lesions

3.5.3 Effect of Standardization on Segmentation

Figure 3.6 compares the classification performance of PBTs working with standardized
images and those having to deal with the original intensities. This experiment was run
without the filter based postprocessing in order to show onlythe accuracy of the classi-
fier. Also, no iterative classification was used. The system using intensity standardization
clearly outperforms the one using the unprocessed images, showing an increase in preci-
sion of 39.2% at 90% sensitivity (cf. Tab. 3.3). While the PBT inprinciple is capable of
finding the decision boundary with the original images as well, simplifying the task will
certainly result in more compact and robust classifiers.

3.5.4 Effect of Iterative Classification on Segmentation

Iteratively classifying image voxels can stabilize the classification, resulting in smoother
and more homogeneous probability images. Figure 3.7 indicates that the provided prob-
ability features were extensively used by the classifiers. All classifiers use the same set
of appearance features, yet when adding the probability features, each classification stage
outperforms the preceding one. In this cascade, the performance gain becomes smaller
with each step. While adding the first classifier with probability features improves preci-
sion at the point of 90% sensitivity by 26.6%, the next two steps yield only improvements
of 8.6% and 3.3%, respectively (cf. Tab. 3.3). The improvement achieved by training
more than three iterations turned out to be marginal in most experiments. If the filter based
postprocessing is activated, the gain becomes even smaller, as can be seen from Fig. 3.7
(b). Like the iterative classification, the filters smooth regions in the probability image as
well as lesion borders, and remove small false positive detections. Figure 3.8 shows how
similar the effects of both techniques are. While in the first iteration the postprocessing
has a visible effect on the ROC, in later iterations an effect is only noticeable in those parts
of the curve with low specificity. Still, deactivating the postprocessing completely is not
recommended. Not all isolated misclassifications are removed by the iterative classifica-
tion, so that the postprocessing filters are necessary to reduce the number of false positive
detections.

Figure 3.9 finally shows curves for a system trained and tested on images that were not
standardized. The same effect as in Fig. 3.7 can be observed.As with the postprocessing,
the improvement caused by the standardization step becomessmaller in later iterations,
showing how heavily the classifier relies on the probabilityfeatures in these cases.

Table 3.3 contains the performance figures for the segmentation evaluation without
postprocessing. All numbers are calculated for the threshold value yielding 90% sensitiv-
ity. The effect of the iterative scheme is clearly visible: All specificity related measures im-
prove considerably in later iterations, the improvement between the iterations being higher
in the early steps.

Table 3.4 presents the maximum Jaccard and Dice similarity coefficients that could
be yielded in the experiments for a single threshold, together with their corresponding
sensitivity values. In contrast to the previous experiments, these values were determined
not by setting the desired sensitivity. Instead, for each cross-validation experiment and
each iteration the single threshold value was determined that yielded the maximum average
Jaccard and Dice similarity over all images in the experiment.
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Figure 3.7: ROC curves visualizing the performance gain introduced by the iterative clas-
sification scheme. In comparison to the original output of the classifiers (a), the curves
generated after postprocessing (b) are only slightly shifted towards the upper left corner.
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Figure 3.8: ROC curves of two exemplary iterations, directly comparing the results with
and without postprocessing. In later iterations, the influence of the postprocessing dimin-
ishes: The classifier result is stabilized by the iterative scheme, reducing the number of
small false positive detections, which would otherwise be removed by the postprocessing
filters.
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Figure 3.9: ROC curves visualizing the influence of iterative classification on a system
trained without intensity standardization.
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w/o Standardization w/ Standardization

Iteration

0 1 2 3 0 1 2 3

Sensitivity (%) 90 90 90 90 90 90 90 90
Specificity (%) 94.3 97.7 98.2 98.696.8 98.2 98.6 98.7
Jaccard index 0.35 0.55 0.60 0.650.48 0.60 0.64 0.66
Dice coefficient 0.51 0.71 0.74 0.790.65 0.75 0.78 0.80
Precision (%) 36.2 59.0 63.4 70.350.4 63.8 69.3 71.6
#fp/#tp 1.76 0.70 0.57 0.420.98 0.57 0.44 0.40

Table 3.3: Comparison of segmentation performance of different classifiers. All numbers
were calculated from the unprocessed classifier output, i. e. with no filter based postpro-
cessing involved.

w/o Standardization w/ Standardization

Iteration

0 1 2 3 0 1 2 3

Jaccard index 0.57 0.67 0.67 0.690.64 0.70 0.71 0.71
Dice coefficient 0.72 0.80 0.80 0.820.78 0.82 0.83 0.83
at sensitivity (%) 68 78 83 84 72 79 81 81

Table 3.4: Maximum values for Jaccard and Dice similarity coefficients, measured from
classifier output without filter based postprocessing.
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3.5.5 Lesion Detection Performance

The presented segmentation method requires no separate lesion detection step beforehand.
Instead, detection and segmentation of lesions are performed simultaneously by classifying
each single voxel within the liver. While it does not seem reasonable to discard the seg-
mentation and use the method for detection purposes only, itis still interesting to see, how
many lesions can be found by the algorithm and how many false alarms are raised, since
this has a major influence on its acceptance by clinicians. Unfortunately, this is rarely done
in literature. Massoptier and Casciaro [Mass 08] do report figures on lesion detection per-
formance, however, they do not clearly state their criteriafor considering a lesion correctly
detected or not, which makes a comparison difficult.

Thus, detection quality is assessed in this section in a lesion based evaluation. The
images in these experiments all underwent the filter based postprocessing. Lesion candi-
dates were identified from the segmentation mask generated by the algorithm by running a
connected components analysis. A reference lesion was considered detected if

1. its axis aligned bounding box overlapped with the bounding box of a lesion candidate
so that the candidate covered at least 25% of the reference and

2. the candidate box’s center lay within the reference box.

While the first criterion measures only the sensitivity of themethod, the second one ensures
a certain specificity as well, since it penalizes too large candidates. Any candidate that was
not matched by these criteria for a reference lesion was considered a false positive or false
alarm. The entire analysis was restricted to objects with a volume larger than 0.125 ml,
which corresponds to a cube with 5 mm edge length.

Applying these criteria to the final output of the system, we achieved a maximum de-
tection rate of 68% in the last iteration at 3.4 false positives per correctly detected lesion,
which equals 10.5 false positives per patient on this database.

In Fig. 3.10 and Fig. 3.11, the detection sensitivity was plotted against the false alarms
per volume and per true detection. Each data point in the scatterplot corresponds to one
value of the threshold that is applied to the probability output of the segmentation algo-
rithm. The points were not interpolated to form a curve, because the detection criteria do
not produce a continuous output for increasing values of theprobability threshold.

While the false positive rates appear very high, closer examination reveals that most
of the false positives are located at the liver boundary or infissures and exhibit character-
istic shapes, so that they could probably be filtered using another classifier. Experimental
support for this conjecture, however, has to be provided in follow-up projects.

A look at the segmentation result generated with the same threshold as for the maxi-
mum detection sensitivity value illustrates the differences in the requirements for the two
tasks: The corresponding segmentation sensitivity is as high as 94.3%, however at a speci-
ficity of only 95.3%, meaning there are 1.39 false positive voxels per true positive. This
impression is confirmed when Tab. 3.5 is considered. This table gives the detection results
of each configuration and classifier stage at the settings yielding 90% segmentation sensi-
tivity. At 61.7%, detection sensitivity is far below its maximum value of 68%, however, at
the same time detection errors are much lower as well (1.7 vs.3.4 false positives per cor-
rectly detected lesion). Of course, the mentioned classification based candidate filter would
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improve specificity not only for detection but also for segmentation, potentially allowing
lower thresholds and thus a higher sensitivity.

w/o Standardization w/ Standardization

Iteration

Method 0 1 2 3 0 1 2 3

Segmentation sensitivity (%) 90.0 90.0 90.0 90.090.0 90.0 90.0 90.0
Detection sensitivity (%) 47.7 41.5 41.5 50.854.4 54.4 58.9 61.7
Detection precision (%) 18.1 26.2 28.7 40.118.9 25.2 32.0 36.8
Detection #fp/#tp 4.5 2.8 2.5 1.5 4.3 3.0 2.1 1.7
Detection #fp/volume 9.3 5.1 4.5 3.210.6 7.3 5.7 4.8

Table 3.5: Detection quality at the setting yielding 90% segmentation sensitivity.

3.6 Conclusion

In this chapter, we presented a system for automatic detection and segmentation of focal
liver lesions in CT images. It is based on pointwise classification of liver voxels. Compared
to previous approaches, we incorporated a novel intensity standardization step adopted
from MR imaging. For classification we used a cascade of Probabilistic Boosting Trees
instead of a single classifier, increasing flexibility and improving the handling of complex
input spaces. Both measures account for an increased robustness of the system, setting
track for the segmentation of difficult cases like rim enhancing lesions.

The validity of the approach was shown in an experimental evaluation with 15 clinical
datasets containing mostly hypodense liver lesions.
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Figure 3.10: Detection performance of classifiers when using standardized data. Each
marker represents the result for one value of the threshold applied to the output probability
image.
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Figure 3.11: Detection performance of classifiers when using original image intensities.
Each marker represents the result for one value of the threshold applied to the output prob-
ability image.
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As described in Sec. 1.3.2, there are many scenarios in whichliver tumors are not
removed surgically. Such tumors have to be monitored using,e.g., CT images in order
to detect growth or shrinkage and thus rate disease progression or treatment response. To
this end, after the initial examination, follow-up exams are performed every few months.
During these, images are acquired and the lesion sizes are measured and compared. As
a patient may have well over a dozen lesions, performing these measurements manually
is error prone and tedious. The RECIST guidelines for lesion assessment in follow-up
examinations [Eise 09] therefore define their criteria for disease progression based on the
largest axial diameters of a subset of representative lesions, selected by the physician.
While this approach somewhat reduces the effort for the physician, it also introduces new
sources of error: Changes might occur either in lesions that were not selected as target
lesions and are thus not monitored, or in lesions that are monitored, but grow or shrink in
a direction other than the measured one.

Hence, there is a great need for automatic segmentation algorithms to overcome the
limitations of this manual approach, allowing volumetric measurements and taking into
account all liver lesions of the patient. Follow-up examinations are therefore the primary
use case for such automatic segmentation methods. While in principle any of the automatic
lesion segmentation methods presented in Chap. 3 could be used in this setting, the fact
that several images of a single patient have to be segmented raises the question whether the
results of the earlier examinations might be helpful for thelater ones.

Incorporating prior knowledge is a common way of preventinga segmentation proce-
dure from choosing a wrong parameterization or evolving in the wrong direction. This can
be knowledge of the expected appearance of the image or target objects, of their size, or of
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their location. For level set methods, for instance, the useof shape priors is well established
[Rous 02, Nain 04, Farz 10]. These are modeled manually [Nain 04], statistically from a set
of training shapes [Rous 02], or even dynamically [Farz 10], and integrated into the level
set function.

Statistical atlases, consisting of a mean shape and a notionof frequent deviations, have
been used in organ segmentation tasks [Lotj 10, Zhan 06]. Theidea of a statistical atlas has
been transferred to lymph node detection by Feulner et al. [Feul 10]. In an offline training
phase, they generate an atlas of common lymph node locationsfrom a patient database.
For an image of a new patient, a spatial prior is calculated byregistering the image to the
atlas and combining the atlas information with a multi-organ segmentation of the patient.
The prior is then multiplied with the probability output of their classification based lymph
node detector to steer its attention.

Adopting the idea of prior knowledge for the problem at hand,we do not treat a se-
ries of images of the same patient as several isolated segmentation tasks, but instead use
information gained from earlier images to improve the results on later ones.

To this end, we propose a novel learning based approach to generating priors for follow-
up lesion segmentation. This chapter describes, how such a prior can be trained and inte-
grated into our lesion segmentation system, discussing benefits and drawbacks of different
integration methods. This work was already published in [Mili 13b].

In a training step, we first use a Probabilistic Boosting Tree to build a combined model
of changes in tumor volume over time and corresponding changes in image intensities from
a set of patient images. In the application phase this model is then used to guide the lesion
segmentation in follow-up images of new patients by calculating a patient specific prior
lesion probability.

Two different methods for building the model and integrating it into the segmentation
system introduced in Chap. 3 are described and compared. One trains a PBT only for
calculating the prior. This prior is then combined with the classifier output of the exist-
ing lesion segmentation system. The other method fuses the prior model and the original
segmentation system into a new lesion detector that is specialized on follow-up images by
incorporating all information into a single classifier.

In both cases, the input for the system consists of sets of three images each: The CT
image acquired at the initial examination, called baselineimage in the remainder of this
chapter; a lesion segmentation of this image; and a CT image acquired during a follow-
up exam of the same patient, which is thus called follow-up image. For training of the
classifier that forms the core of the system, in addition, a lesion segmentation mask of the
follow-up image is provided as reference. Both baseline image and baseline segmentation
mask are registered to the follow-up image in the process to provide point correspondences.

In the remainder of this chapter, we will first review relevant algorithms from fields
related to the segmentation of liver lesions in follow-up images. Next, a basic prior model
is described in Sec. 4.3, before in Sec. 4.4 the proposed lesion prior model is explained in
detail. The used methods are evaluated in Sec. 4.5.

4.1 Related Work

While in Sec. 3.1 general methods for automatic lesion segmentation were outlined, here
we shift the focus towards algorithms addressing issues more specific to the follow-up
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setting, first listing some publications describing methods for detecting changes between
images, and then methods dealing with the problem of deformation in temporal image
series. Finally, some existing work from the field of priors for detection and segmentation
is detailed on.

4.1.1 Image Change Detection

The methods in Sec. 3.1 segment lesions in an image using onlyinformation from this
image. We on the other hand are dealing with follow-up images, meaning that previous
acquisitions of the same patient are available. These provide additional information, which
can be used to improve segmentation performance in basically two ways: Information
gained from the baseline image and its segmentation can be projected to the follow-up
image, or changes between the images can be measured. In literature, there is a wide range
of methods for detecting changes between images [Radk 05, Paja 06, Paja 09]. The fact that
changes in medical images indicate growth or other pathologic processes has been used in
automatic detection or segmentation systems before.

Saha et al. [Saha 11] take advantage of the symmetry properties of the brain to identify
brain tumors and edemas by comparing local intensity statistics of the hemispheres. Similar
to the scenario presented here, Rey et al. [Rey 02] work with temporal image series of the
brain to detect and segment multiple sclerosis lesions. In contrast to the task at hand,
however, they have no baseline segmentation available and thus only build upon tissue
deformations and intensity changes that occur between acquisitions.

4.1.2 Follow-up Image Registration and Segmentation

In order to segment lesions in follow-up images, one would ideally map the baseline le-
sion mask to the follow-up image and apply a model of tumor growth, in order to predict
the lesion boundaries in the follow-up image and thus provide a segmentation. For brain
MR images, Gooya et al. [Gooy 11] achieve this by using a biophysical model of lesion
growth and tissue deformation. Starting from a lesion seed point in an atlas, they grow their
virtual tumor based on the model and register it to the patient image using an expectation-
maximization framework. However, they focus their work on asingle type of brain tumor
(glioma). In the liver, on the other hand, about 30 types of clinically relevant tumors can
occur, each of which would require a different model. This isfurther complicated by the
fact that their actual identification is generally considered impossible without biopsy.

A prerequisite for fusing information from different images is a coordinate mapping be-
tween them, which usually implies their registration. The main challenges in intra-patient
registration of follow-up liver images lie in the nature of liver tissue, i.e. its low contrast
in CT images and its elasticity. It is very soft, allowing large deformations even within
a single breathing cycle. Tumor growth or other structural changes inside the liver of a
patient may change its shape and appearance even further.

Charnoz et al. [Char 05] try to overcome these issues by using anatomical landmarks
for their registration algorithm. They calculate the deformation field by matching hepatic
vessel trees of baseline and follow-up images and interpolating the deformation for the
remaining image points. The baseline lesion mask is mapped to the follow-up lesions, al-
lowing their comparison without segmenting follow-up lesions. The interpolation scheme,
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however, is limited to space-occupying tumor growth since infiltrating growth of a tumor is
not necessarily reflected in a deformation of the surrounding vessels. Also, while the ves-
sel tree provides very robust landmarks for registration, its segmentation is a challenging
problem by itself.

Moltz et al. [Molt 09] propose a lesion detection framework for follow-up images that
requires only the segmentation of the lesions in the baseline scan. They apply their algo-
rithm to the detection of liver metastases, of lung nodules and of lymph nodes. After a rigid
registration step, baseline lesion masks are mapped to the follow-up image. Around each
mask, lesion candidates are generated by gray value thresholding and detecting circular
structures. The correct candidate is then selected by a template matching algorithm based
on normalized cross-correlation and forms the input to a segmentation algorithm. Large
deformations of the liver or the target lesions, or changes in the lesion texture as they may
be induced by chemotherapy, naturally pose a problem for this method.

4.1.3 Prior Models for Detection and Segmentation

Feulner et al. [Feul 10] show that detection or segmentationmethods based on classifica-
tion can be further stabilized by combining the output of theclassifier with a spatial prior
calculated from a statistical atlas. Assuming, the location l ∈ R

3 of a point in the image
and its feature vectorx ∈ R

m (with the number of featuresm depending on the actual seg-
mentation task) are conditionally independent, this corresponds to calculating the posterior
object probability as [Bish 07]

p(y|x, l) ∝ p(x, l|y)p(y) = p(x|y)p(l|y)p(y)

=
p(y|x)p(y|l)

p(y)
, (4.1)

wherey ∈ {−1,1} denotes the point’s class label,p(y|x) the posterior generated by the
classifier andp(y|l) the spatial prior. Although the independence assumption isnot true for
a given image, this simplification seems not to affect the system’s performance negatively
while at the same time reducing the complexity of the learning problem for the classifier.

Unfortunately, since the location of lesions inside the liver is fairly random, an atlas-
based spatial prior as proposed for lymph node detection in [Feul 10] is not suitable for
the task of liver lesion segmentation. A prior generated from such a general atlas of lesion
locations would be almost uniform and certainly not discriminative enough to restrict a
segmentation algorithm.

In a similar fashion, Feulner et al. [Feul 11b] use a prior built from a smoothed seg-
mentation of esophageal air to detect the esophagus position within a CT image slice. In
their case, however, the air segmentation is based on the same image the esophagus is to
be detected in. In the tumor follow-up setting at hand, a lesion segmentation is mapped
from the baseline to a follow-up image. Thus, there are growth and shrinkage processes
involved, which are not known to the algorithm and cause additional variability and uncer-
tainty. These make two separately filtered versions of the mapped lesion mask necessary,
one for the growth and one for the shrinkage cases. Also, since the volume change is not
known beforehand, manual interaction becomes necessary toset the filter parameters.
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4.2 Processing Pipeline for Liver Lesion Segmentation

This section describes the framework in which we embedded the proposed method for
follow-up lesion segmentation. It is based on the system presented in Chap. 3, but adapted
to the special follow-up setting. The subsequent sections explain how the lesion detector
was extended for this scenario. This includes a descriptionof the image data occurring
in the follow-up scenario as well as information about the registration component that is
incorporated to allow handling of image series. Details on how each image is used are
provided in the respective algorithmic sections, because the different methods handle the
images in slightly different ways.

4.2.1 Input Images

What makes the follow-up setting special is the fact that there is not a single input image
but a series of images of the same patient. The initial CT scan is called baseline image. All
later ones, acquired in order to monitor the treatment response or progression of the same
disease, are called follow-up images.

The goal in the scenario at hand is to segment liver lesions ina follow-up image of a
patient. The baseline image is available, as well as a lesionsegmentation for this baseline
image. In practice, the baseline segmentation may be the result of any general lesion
segmentation method, either manual or (semi-)automatic. For our experiments, however,
these lesion masks were the result of a manual segmentation in order to purely evaluate the
follow-up segmentation method. The segmentations were partly performed by experienced
radiologists and partly by the authors and reviewed by radiologists. In the same way,
reference lesion segmentations of the follow-up images were generated for training and
evaluating the system.

While in general any number of images may be acquired for a patient, the presented
system currently works with pairs of one baseline and one follow-up image. Thus, for
those patients in the test database that had more than two images acquired, the images
were split into several pairs, so that the input into the system always consisted of a set of
three images.

4.2.2 Follow-up Liver Lesion Segmentation

Figure 4.1 shows how the input images are processed in the follow-up setting. The depicted
segmentation pipeline is an extension of the one shown in Fig. 3.1. The first processing
step in this case consists of non-rigidly registering the baseline image to the follow-up
image and transforming it accordingly. The same transformation is applied to the baseline
segmentation, so that for any further processing, all images lie in the coordinate frame of
the follow-up image, providing point correspondences.

The follow-up image is the target of the entire processing, so the result of the liver
segmentation step applied to this image defines the region ofinterest for the detection step.
Both intensity images, however, are standardized as in the original method (cf. Sec. 3.2.2)
before points in the follow-up image are classified.

This classification is where the proposed prior comes into play. Originally, classifying
an image positionl in a follow-up image would involve assigning a lesion probability
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based on the appearance modelp(y|xa), with features inxa calculated from the follow-up
image. To train this classifier, baseline and follow-up images could both be used to form the
training set. Since this classifier uses information from only one image for its decision, the
time point of acquisition would be irrelevant. The input forthe PBT training phase would
consist of a set ofn training samplesV = {(xa,1,y1), ..,(xa,n,yn)}, calculated at randomly
drawn locations in the selected training images, whereyi ∈ {−1,1} denotes the target class
determined from the corresponding lesion mask.

In addition, in the system described here, baseline and follow-up images are aligned by
the registration step. Thus, whenever a voxel in the follow-up image is to be classified, the
corresponding voxel position in the baseline image and the baseline lesion mask is known.
This allows the calculation of features encoding information not only from the follow-up
image, but also from the other two images. This information is used to form the prior.
Depending on which of the methods described in Sec. 4.4 is considered, the prior either
replaces or complements the appearance model in this setup.

4.2.3 Follow-up Liver Registration

While registration is not the focus of our work, it is a key component of the presented
algorithm, since a good mapping from baseline to follow-up image is required for fusing
their information.

The algorithm we chose to use for this task was originally designed for non-rigid multi-
modal image registration [Chef 02]. It is a variational approach, optimizing a similarity
criterion based on local cross-correlation. A template propagation method is introduced
to be able to deal with large deformations as they may occur inmulti-modal scenarios.
These deformations are recovered by combining small displacements along the gradient of
the similarity measure. For regularization purposes, Gaussian filtering is applied to these
small steps that are calculated in each iteration.

For the setting at hand this algorithm yielded satisfying results in matching the liver sur-
face and vessel structures. Tumor growth, however, resultsin a strong local deformation
that can be very irregular and that will rarely be consistentwith the overall liver defor-
mation caused by motion. After registering the images, baseline lesions will therefore be
correctly localized in the follow-up image, but because of the rather strong regularization,
their boundaries will not necessarily match those of the follow-up lesions (Figure 4.2). This
is the desired behavior, since the volume change is the target of our learning algorithm.

For the remainder of this chapter, all mentioned coordinates refer to the coordinate sys-
tem of the follow-up image, i.e., it is assumed that the baseline image has been registered
to the follow-up image and transformed accordingly, together with its lesion mask.

4.3 Spatial Prior Models for Follow-up Segmentation

Given a mapping of the baseline segmentation to the follow-up image, patient specific in-
formation about previous lesion locations provides a strong cue on where to expect lesions
in the follow-up image and forms the basis for the prior models we use for guiding our
lesion detector.
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Figure 4.1: Processing pipeline for segmenting follow-up lesions. The baseline image is
non-rigidly registered to the follow-up image and transformed accordingly, together with
its lesion mask. After segmenting the liver, the intensity images are standardized and the
points in the follow-up image are classified as tumor or background, using features calcu-
lated from all three images (depending on the type of prior).The classification step dif-
fers depending on how the prior is incorporated into the segmentation procedure (compare
Fig. 4.3, 4.4). Its output is a probability image, which is postprocessed and transformed
into a lesion mask by a thresholding operation.
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(a) (b) (c)

Figure 4.2: Checkerboard representation of a registered pair of baseline and follow-up
images (a) with a tumor that has grown between acquisitions.For better visibility of the
checkerboard pattern, the images are shown using differentwindowing functions. The
cutouts (white box) show a baseline (b) and follow-up (c) lesion after registration.

The simplest prior in this scenario, given only for reference, would be the registered
baseline lesion segmentation at locationl itself:

p(y|l) =M0(l) =

{

1, l inside baseline lesion

0, l outside baseline lesions
(4.2)

M0 here denotes the baseline lesion mask image. Letp(y|xa) be the posterior calculated
from the follow-up image by a previously trained appearancemodel as described in Chap. 3
and Sec. 4.2.2, which forms the pointwise classification step in Fig. 4.1. Following the
argument in [Feul 10, Bish 07], this probability can then during application stage be com-
bined with the prior (compare Eq. (4.1)):

p(y|xa, l) ∝ p(y|xa)p(y|l) = p∗(y|xa, l) (4.3)

The prior probabilityp(y) is omitted here as a further simplification, since it is constant
for a given scenario and the final goal of the method is not the posterior probability itself
but rather a binary decision. The resulting probability mapp∗(y|xa, l) is postprocessed and
converted into a lesion mask as before, where the scaling with p(y) is accounted for in the
final thresholding operation.

The underlying assumption that the target lesions did not change between acquisitions
is obviously too restrictive, but this naïve version does provide a reference result as well as
some insight into how the prior should be constructed. Sincethis prior is binary, multiply-
ing it with the output of the lesion detector completely suppresses all regions not covered
by baseline lesions, so that no lesion growth nor new tumors can be detected. Within
the boundaries of the baseline lesions, the detector response remains unchanged, without
suppressing shrunk lesions.

A seemingly straightforward extension that is similar to the prior used by Feulner et al.
for esophagus detection [Feul 11b] involves filtering the mask imageM0 to soften the prior:
Assuming that the volume change of tumors follows a zero-mean normal distribution, the
mask image is filtered using Gaussian smoothing. The prior isthen a combination of a
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growth component, filtered with standard deviationσg, and a shrinkage component, filtered
with standard deviationσs:

p(y|l) =











1−λs ·e
−

d(l)2

2σs2 if M0(l) = 1

λg ·e
−

d(l)2

2σg2 else

(4.4)

with d(l) the distance of the locationl to the closest lesion boundary. This prior is multi-
plicatively combined with the appearance model just like the mask prior described above.

The weighting factorsλg,λs ∈ [0,1] control the influence of the growth component vs.
the shrinkage component. Both the optimal values for these weighting factors and the
optimal width of the Gaussian filters vary between images, even between lesions within
the same image. For best segmentation results, the parameters would thus have to be
defined interactively for each lesion by the user. Even though this is not the fully automatic
solution that is sought for here, quantitative results for this prior are presented in Sec. 4.5
for comparison. These were generated, however, using a fixedset of parameters for all
images to allow a direct comparison with the other methods.

4.4 Learning a Prior Model for Follow-up Segmentation

To overcome the limitations of above’s mask based priors such as inflexibility and need for
user interaction, a novel learning based approach was developed. As mentioned before, a
“generative” growth model that predicts lesion boundariesbased on a biophysical model as
Gooya et al. developed for gliomas [Gooy 11] is not feasible for liver tumors. Therefore,
we decided to use a data driven approach instead.

As for the original lesion detector, for the prior a discriminative model for lesion proba-
bility at an image positionl is learned by the PBT algorithm. But in contrast to the previous
setting, now all three input images are taken into account. In Sec. 4.4.1 a prior is learned
from these images and combined with the result of the appearance based classification
p(y|xa) (Figure 4.3). Section 4.4.2 goes all the way and combines theinformation from the
prior and the appearance model into one single classifier (Figure 4.4).

Feature category Feature name Scales/NeighborhoodsTotal #

Spatial features

Time between scans 1
Mask value 1
Distance to closest lesion 1
Gaussian of distance 0.1 – 10.0 13
Gaussian of distance, time
scaled

0.1 – 10.0 13

29

Table 4.1: Spatial features inxs calculated from baseline lesion mask to learn the prior.
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Feature category Feature name Scales/NeighborhoodsTotal #

Intensity statistics
Intensity difference 0.0 mm – 32.0 mm 10
Weighted intensity sums 0.0 mm – 32.0 mm 30
Difference between local
variances

0.8 mm – 32.0 mm 9

Vesselness Sato vesselness 1

50

Table 4.2: Intensity change features inxs used to learn the prior.

4.4.1 Multiplicative Learned Prior

Rather than explicitly modeling tumor growth [Gooy 11], the learned prior model should
implicitly encode volume changes in the tumors. To achieve this, a feature vectorxs ∈ R

l

is used for classification that is a combination of two sets offeatures.
One set consists mainly of spatial features (Table 4.1) calculated from the baseline

mask and encodes the actual tumor growth and shrinking. Features include various fil-
tered versions of the signed distance from the current imagelocationl to the closest lesion
boundary, as well as the time between acquisitions. These features basically contain the
same information as the filtered mask prior in Sec. 4.3 and arethus not much more flexible
or patient specific. In order to facilitate patient specific adaptations of this model, these
purely geometric features are complemented by a second set of features encoding changes
between the baseline and the follow-up intensity images (Table 4.2). Instead of complex
change detection methods, simple difference features are calculated from the registered
baseline and follow-up images, leaving their interpretation to the learning algorithm of
the PBT. This feature set contains weighted intensity differences and sums over various
neighborhoods of the current location, as well as a vesselness measure.

With a number of patient datasets for training, the PBT modeling p(y|xs) is built. Using
this prior to guide the segmentation in the follow-up image yields (compare Eq. (4.1))

p(y|xa,xs) ∝ p(y|xa)p(y|xs) = p∗(y|xa,xs). (4.5)

Thus, for this version of the prior, the classification step in Fig. 4.1 becomes the product of
the output of the original lesion detector and the priorp(y|xs) (cf. Fig. 4.3).

Due to its hierarchical nature, the PBT can be seen as learningnot a single but a whole
family of models, very similar to the hierarchical mixture of experts scheme [Hayk 99].
When the trained PBT is then used to classify a new instance, theintensity change features
guide it in its decision which model should be applied, and adapt the geometric model to
characteristic deviations from the normal lesion volume change found in the current patient.
Moreover, they also support the detection of newly emerged lesions. Large changes in
tumor structure or texture induced by chemotherapy may alsobe reflected in these features.
However, since on a larger scale these changes only lead to a slightly different intensity,
they do not affect the prior learning negatively.

Overall, in our experiments the vectorxs held l = 79 features. The PBT for the prior
is then trained with a set ofn training samplesV l p = {(xs,1,y1), ..,(xs,n,yn)} calculated at
randomly drawn locations in the training follow-up images,where the target class labelsyi

are determined from the follow-up lesion mask.
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Figure 4.3: Setup for classification step using a learned multiplicative lesion prior. In
addition to the original lesion detector that works with appearance featuresxa calculated
from the follow-up image, a second PBT is trained. It receivesa vector of prior featuresxs

calculated from baseline image, baseline lesion mask and follow-up image and computes
the lesion prior. Both classifiers’ outputs are multiplied toform the final lesion probability
p∗(y|xs,xa).
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The formulation in Eq. 4.5 again considers the feature vectors xs andxa being con-
ditionally independent. While it is almost certainly not true, this model assumption does
help dealing with the complex, high-dimensional feature space at hand. It allows splitting
the space and training two separate models on the two subspaces. This has the advantage
of making the classification task more manageable. Furthermore, it is also convenient and
intuitive in that the same appearance based classifier from the original segmentation system
is used to segment all images, only refined in the follow-up case by the prior generated by
the second classifier.

4.4.2 Integrated Learned Prior

One of the major benefits of the PBT is its hierarchical decision making. This characteristic
allows the PBT to learn complex feature spaces and should thusenable it to correlate
image appearance, changes in intensities, and tumor presence effectively. In fact, as could
be shown in a different context, training a PBT on a more complex feature space might
even be superior to manually splitting the problem and training several PBTs on smaller
subproblems [Mili 09]. So, to see whether the PBT can exploit existing correlations and
dependencies in the data to improve classification accuracy, another PBT was trained to
calculatep(y|xa,xs) as p(y|xc), xc = (xa,xs) ∈ R

m+l . The feature vectors were simply
concatenated, so that all the input images and features wereused in a single classifier
(Figure 4.4), dropping the independence assumption introduced before. The training data
then consists of samplesV ip = {(xc,1,y1), ..,(xc,n,yn)} again calculated at randomly chosen
locations in the follow-up images selected for training, where the target class labels are
determined from the follow-up lesion masks as before. This classifier can then be used for
lesion segmentation in follow-up images directly, replacing the combination of the original
lesion detector and the prior described in Sec. 4.4.1.

While it seems desirable to leave the decision on the optimal combination of features
to the training procedure, the higher dimensional and substantially more complex feature
space makes greater demands on both the training data and thelearning algorithm. This
effect could be observed in some of the experiments conducted for this work, so the topic
is addressed further in Sec. 4.5.5. Also, from an application point of view, this scenario
has the potential drawback that different features may be chosen by the learning algorithm
for segmentation in baseline and follow-up images, leadingto different behavior of the two
systems and different types of errors. Still, provided thatsufficient training data is avail-
able, this is the method of choice, because it combines the advantages of the multiplicative
learned prior with the detection capabilities of the original segmentation system.

4.5 Results and Discussion

In order to evaluate and compare the priors described above,a set of experiments was per-
formed on clinical images. First, the accuracy of the non-rigid registration was measured.
Next, various aspects of the methods’ segmentation performance were evaluated. The sys-
tem’s lesion detection capabilities were investigated separately, before finally the features
selected by the learning algorithm were analyzed.

The segmentation methods compared on the following pages are:
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Figure 4.4: Classifier setup used for integrating the prior information into the lesion detec-
tor directly: The feature sets of the lesion detector (xa) and the prior (xs) are combined into
one feature vectorxc. A single PBT is then used to assign the posterior lesion probability
p(y|xc).
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• “No Prior” - The lesion detector of the original segmentation system as described in
Chap. 3, using only follow-up images as input.

• “Mask Prior” - Uses the registered baseline lesion mask as prior for follow-up seg-
mentation by multiplying it with the lesion detector’s posterior probability output
p(y|xa) (cf. Sec. 4.3).

• “Filtered Mask Prior” - Applies two Gaussian filters to the registered baseline lesion
mask before multiplying it with the lesion detector’s posterior probability output
p(y|xa) (cf. Sec. 4.3).

• “Learned Prior” - Trains a PBT to generate the priorp(y|xs) and multiplies this prior
with the lesion detector’s posterior probability outputp(y|xa) (cf. Sec. 4.4.1).

• “Integrated Prior” - Trains a PBT that combines the featuresxs of the “Learned Prior”
with the appearance features of the lesion detectorxa, directly calculatingp(y|xc) (cf.
Sec. 4.4.2).

The feature vectors used by the different classifiers are again summarized in Tab. 4.3.

Feature vector Description Calculated from

xa Appearance of voxel, used for
general lesion segmentation

Single (follow-up) image

xs Encodes lesion growth, used
for calculating lesion prior

Baseline lesion mask (geo-
metric features), baseline and
follow-up images (change fea-
tures)

xc Combination of above feature
vectors (concatenation), used
for follow-up lesion segmenta-
tion

Single (follow-up) image (ap-
pearance features), baseline
lesion mask (geometric fea-
tures), baseline and follow-up
images (change features)

Table 4.3: Feature vectors used in different discriminative models.

4.5.1 Image Database

To the best of our knowledge there is no publicly available database containing follow-
up series of liver CT images. Therefore, we used our own test database, which comprised
liver CT images of 14 patients, acquired at 4 different clinical sites. The images had a voxel
resolution between 0.531 and 0.830 mm inx andy directions, and 2 to 4 mm inzdirection.
All had been acquired at 120 kVp. For each patient at least onebaseline and one follow-up
image were available, with a free interval between the scansof 1 – 13 months. For some
patients several follow-up images had been taken at different times, so that a total of 17
image sets of baseline image, baseline lesion mask and follow-up image could be built. All
images were acquired after injection of a contrast agent andshowed a venous enhancement
of the liver. The baseline images contained 80 mostly hypodense lesions. In 6 of the 17
image sets a growth of the contained lesions was observed, with a median growth of the
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total lesion volume per image of 41%, a minimum of 3% and a maximum of 564%. In
the remaining cases, the lesions diminished, with a median total volume loss of 35%, a
minimum of 1% and a maximum of 95%. 13 new lesions emerged during the studies. This
broad range of variations in the images poses a great challenge for the algorithm, making
this a very realistic test scenario.

4.5.2 Experimental Setup

As before, each single experiment was set up as a 5-fold cross-validation. During each
fold, 13–14 image sets were used to train the classifiers and the remaining ones were held
out as independent test set, making sure no patient occurredin both training and test. This
was also ensured for the experiments with the multiplicative learned prior, where for each
fold two classifiers had to be trained and tested. That way, training and testing data were
kept separated in all experiments.

The training images were again subsampled using the procedure described in Sec. 3.5.1;
for testing all liver voxels were used.

4.5.3 Registration Evaluation
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Figure 4.5: Cumulative histogram of registration errors on test database. For each error
level on thex-axis, the bar shows how many of the 124 marker pairs fall within this error
range.

The quality of the registration results was assessed with a marker based approach. For
each image pair in the test database, 5-10 markers were placed manually at landmarks such
as vessel bifurcations or inside tumors in both baseline andfollow-up images (124 marker
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pairs in total). After registering the images, the Euclidean distance between corresponding
markers was measured. The average distance was 4.68 mm (minimum 0.58 mm, maxi-
mum 23.44 mm). Even though this evaluation was performed by asingle observer and
thus the placement error was not considered, it does give an impression of the algorithm’s
capabilities (compare Fig. 4.5).

The evaluation above shows, that the registration method isable to match landmarks in
baseline and follow-up images. It does not evaluate, however, how the non-rigid warping
influences the lesions contained in the liver. It turns out that, while it did not match lesion
boundaries perfectly, the algorithm did slightly deform the lesions during registration. In
most cases, the volume difference between baseline and follow-up lesions stayed in the
same range as without the registration, changing e.g. from 20% to 33%. Only in one case,
it changed from 33% growth to a 12% shrinkage. However, in practice the registered and
thus deformed baseline lesion mask is only used to segment the undeformed follow-up le-
sions. After segmentation, the volumes of the unregisteredand thus undeformed lesions
are compared, so the differences introduced by the registration step do not affect the ac-
curacy of the clinical growth assessment. The only constraint is that the same registration
algorithm has to be used in all cases since the learning system used for segmentation adapts
to its behavior.

4.5.4 Segmentation Evaluation

Segmentation performance of the system was assessed using the methods described in
Sec. 3.5. A threshold was applied to the system’s output probabilities to allow calculation
of the volumetric overlap of the manual reference segmentation and each algorithm result.
From this overlap, several performance figures were calculated and by varying the thresh-
old, ROC curves were generated. As before, this analysis waslimited to points inside the
liver.

The first set of curves given in Fig. 4.6 reflects the system’s segmentation performance
without the filter based postprocessing, i. e. the classification accuracy. As a reference re-
sult, the dotted curve shows the performance of the originalmethod as described in Chap. 3,
without including any prior knowledge (“No Prior”). The “Mask Prior” curve was gener-
ated directly using the registered baseline lesion mask as prior (cf. Eq. (4.2)). The “Filtered
Mask Prior” curve is the result of filtering this mask as described in Eq. (4.4). As expected,
especially the unfiltered mask prior version features an excellent specificity, since its only
false positive classifications stem from misregistered lesion boundaries. On the other hand,
sensitivity drops considerably because lesion growth cannot be handled by this primitive
prior. While the filtered mask prior generally supports lesion growth, its potential is limited
by the fixed filter parameters.

If a PBT is trained to generate the prior using the features from tables 4.1 and 4.2, this
limitation is overcome. The resulting prior effectively islike a filtered mask, where the
filter parameters are adapted for each single voxel based on information from the current
image, generating a patient specific prior. As the “Learned Prior” curve implies, this flex-
ibility results in potentially higher false positive rates, but at the benefit of a better overall
segmentation. Finally, providing all information to a single classifier and leaving the deci-
sion on how to combine it in the best possible way yields very similar results (“Integrated
Prior” curve).
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Figure 4.6: Segmentation performance without postprocessing. The reference curve (“No
Prior”) reflects the performance of the original lesion detector that uses no prior for follow-
up segmentation. As expected, the versions using a mask based prior show excellent speci-
ficity at the cost of low sensitivity, missing any lesion growth as well as newly emerged
lesions. Training a PBT to generate the prior can overcome these limitations and yields
the best overall performance, independent of whether the prior model is trained separately
(“Learned Prior”) or integrated into the lesion detector (“Integrated Prior”). Area under the
curve (AUC) values are provided for the partial ROC up to a false positive rate of 0.15 and
for the entire ROC.
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Figure 4.7: Segmentation performance with postprocessing. Compared to Fig. 4.6, the
curves are all slightly shifted towards the upper left corner. Their relative positions, how-
ever, are nearly the same. AUC values are provided for the partial ROC up to a false
positive rate of 0.15 and for the entire ROC.
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Figure 4.8: Comparison of segmentation performance with andwithout filter based post-
processing for two exemplary configurations. The curves reveal a slight improvement in
specificity at the cost of a slight decrease in sensitivity when postprocessing is applied.
The latter explains, why for some configurations the AUC decreased between Fig. 4.6 and
Fig. 4.7.
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The curves in Fig. 4.7 reveal that the improvement due to introducing the prior seen
in the experiments above is substantial: Here, the segmentation performance is measured
after postprocessing. While all curves are slightly shiftedto the left compared to the ones
without postprocessing, their relative positions to each other remain nearly unchanged.
Figure 4.8 demonstrates the influence of the postprocessingstep even more clearly by
comparing the unfiltered and the filtered results of the “No Prior” and the “Integrated Prior”
curves directly. The effect shown in Fig. 4.6 is thus not leveled out by the postprocessing
filters. Still, unless otherwise noted, the remainder of this section builds upon the raw
classification results to eliminate all possible influence of the postprocessing.

Table 4.4 presents various performance figures for segmentation quality for the thresh-
old value yielding 90% sensitivity. The change in specificity by adding prior information
appears to be very small. However, since in most patients thelargest part of the liver is
made up by healthy tissue (≈ 95% on the test database), this may still have a large vi-
sual effect. The same observation holds for Jaccard and Dicecoefficients. For these two,
the maximum value achieved in the experiments is given in Tab. 4.5, together with the
corresponding sensitivity value.

Method No Prior Learned Prior Integrated Prior

Sensitivity (%) 90 90 90
Specificity (%) 98.6 99.3 99.4
Jaccard index 0.76 0.83 0.83
Dice coefficient 0.86 0.90 0.91
Precision (%) 82.7 90.8 91.9
#fp/#tp 0.21 0.10 0.09

Table 4.4: Comparison of the segmentation quality of the learning based priors and the
reference method at 90% sensitivity without postprocessing.

Method No Prior Learned Prior Integrated Prior

Max Jaccard index 0.79 0.83 0.84
Max Dice coefficient 0.88 0.91 0.91
At sensitivity (%) 84.4 88.4 88.3

Table 4.5: Comparison of the optimal segmentation quality with respect to Jaccard and
Dice similarity coefficients, together with correspondingsensitivity level.

The results for precision and the ratio#fp
#tp show the full potential of the method in re-

ducing the number of false positives: The positive predictive value is improved by 9.8%
for the “Learned Prior” and 11.1% for the “Integrated Prior”, the ratio#fp

#tp is reduced by
51.8% (“Learned Prior”) and 57.8% (“Integrated Prior”) respectively, meaning a huge im-
provement for the physician.

Splitting up the testing data according to their treatment response reveals, that the
shown improvement affects mainly those cases, where the target lesions responded to the
chosen therapy (Figure 4.9). The fact that this is the case not only for the mask based
but also for the learning based priors indicates, that the baseline lesion mask has a strong
influence on these as well.
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Figure 4.9: Segmentation performance without postprocessing on those datasets with le-
sion growth between acquisitions (a) and on those with shrinking lesions (b). AUC values
in both cases are provided for the partial ROC up to a false positive rate of 0.15 and for the
entire ROC.
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4.5.5 Detection Evaluation

As for the original lesion segmentation system, we evaluated the detection performance
of the different configurations described above separately. Figure 4.10 is a scatterplot of
the detection results, which was generated just like the ROCcurves above: Each point in
the plot corresponds to one value of the threshold applied tothe output probability of the
system. The first aspect to notice in Fig. 4.10 is that, just asin the segmentation evaluation,
including prior information considerably improves detection specificity, reducing the num-
ber of false alarms. A closer look at only the newly emerged lesions reveals, however, the
limit of this claim. Both “Learned Prior” and “Integrated Prior” actually lead to a decrease
in detection rate in these cases, yielding a maximum detection rate of 38% compared to
54% if no prior information is used.

The “Learned Prior” can hardly do better. It has only access to the prior features mak-
ing up xs, i. e. the geometrical features in Tab. 4.1 and the intensitydifference features
in Tab. 4.2. Therefore, it acts very similar to the mask basedpriors and may suppress
new detections in the follow-up image if the intensity change at this image location is not
substantial.

The “Integrated Prior” on the other hand has access to the full feature set, i. e. the prior
featuresxs as well as the appearance featuresxa the original system uses for detection and
segmentation. In principle, it should thus be able to segment lesions that are present in
both images as well as new ones. The limiting factor here is the training database: Only
13 lesions emerged between the acquisitions, meaning that samples from these lesions are
highly underrepresented in the training data, which poses achallenge to the PBT with its
greedy learning strategy. On the other hand, reducing the total number of cases in the
database to achieve a more balanced dataset is not an option.The additional input images
compared to the “No Prior” setup and the prior features calculated from them increase
the complexity of the feature space considerably. Reducing the dataset would thus lead to
instabilities in the training procedure and overfitting. Therefore, a larger training database
with more new lesions is necessary to improve this somewhat disappointing result.

What may seem surprising is the performance of the “Mask Prior”: Its maximum sensi-
tivity is the same as that achieved by the other methods, except for the “Integrated Prior”, at
an even better false positive rate. This result is rooted in the registration algorithm. While
this prior suppresses all tumor growth, all baseline lesions are mapped to their follow-up
counterparts by the registration step. Thus, if the threshold is sufficiently low, these will
be detected, even if not well segmented. At the same time, since it has a value of 0 outside
the mapped baseline lesions (cf. Eq. (4.2)), this prior suppresses not only lesion growth
but everything that is not within a baseline lesion, including any false positive the lesion
detector might otherwise produce. The only way this system can make a false positive is
in case registration fails or if a lesion disappeared, whichis why the data points for this
version are all located at very low false positive rates. Thesame effect, slightly weakened
by the smoothing filters used during prior generation, can beobserved for the “Filtered
Mask Prior”, which also exhibits an excellent specificity, with sensitivity quickly dropping
off at about four false positives per volume.

The same drop-off can be observed for the “Learned” and “Integrated” priors. The rea-
son for this behavior is not algorithmic but simply the detection criterion. As the threshold
on the probability image is increased, the connected regions in the resulting lesion mask
tend to fall apart, building lots of small connected components, each of which is considered
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one lesion candidate. At the same time the number of correct detections decreases because
of the failing overlap criterion. This effect can be seen forall methods, where a drop-off at
lower false positive rates means a higher overall specificity. For the “No Prior” version the
specificity is so low that the drop-off is outside the shown range.

The findings about the mask priors already indicate that the detection results given in
Fig. 4.10 do not allow to draw conclusions about the quality of the segmentation generated
with the same parameters, even though the detection criteria are based on an overlap mea-
sure. This is confirmed by looking at the setting yielding 90%sensitivity for segmentation
again. The corresponding numbers for detection given in Tab. 4.6 show that there is a slight
trade-off between optimal detection and segmentation.

Method No Prior Learned Prior Integrated Prior

Segmentation sensitivity (%) 90.0 90.0 90.0
Detection sensitivity (%) 61.8 63.2 63.2
Detection precision (%) 37.5 61.4 66.2
Detection #fp/#tp 1.7 0.63 0.51

Table 4.6: Detection quality at the setting yielding 90% segmentation sensitivity.

4.5.6 Features

Finally, we examined the effectiveness of the features usedfor training the prior. Generally,
two findings are worth noting. First, adding the spatial and intensity change features to
the appearance features as in the “Integrated Prior” version does not change the relative
distribution of the latter. Second, this version uses the intensity change features much more
extensively than the “Learned Prior” version, putting (distributed over the entire PBT) 16
times as much weight on these as on the spatial features. For the “Learned Prior”, this
factor is only 1.2.

The spatial features used most extensively were the signed distance from the current
location to the closest lesion, followed by the time scaled Gaussian of this distance. Of
the intensity change features, the difference between baseline and follow-up image over
some neighborhood was the most important feature, followedby the difference of local
variances.

4.6 Conclusion

We presented a novel approach for integrating prior knowledge of expected lesion loca-
tions into a classification based algorithm for follow-up segmentation of liver lesions. A
discriminative model is trained, which combines information about lesion appearance in
CT images, lesion volume changes and intensity changes to form a decision. Two versions
of this method were compared: One combines all information into a single PBT which is in
turn used to segment follow-up lesions. The other method uses two PBTs, one for general
liver lesion segmentation using the appearance features, the other for calculating a lesion
prior for follow-up examinations. This prior is then multiplied with the output of the lesion
detector.



70 Chapter 4. Learning a Prior Model for Lesion Follow-up Segmentation

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
en

si
tiv

ity

False positives per volume

 

 

No Prior
Mask Prior
Filtered Mask Prior
Learned Prior
Integrated Prior

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
en

si
tiv

ity

False positives per true positive

 

 

No Prior
Mask Prior
Filtered Mask Prior
Learned Prior
Integrated Prior

Figure 4.10: Detection performance with postprocessing.
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For both methods, an improvement in classification precision compared to the original
system with no prior knowledge could be shown in a set of experiments with clinical im-
ages. For the former version, the improvement was 11.1%, thelatter achieved 9.8%. The
two methods yield comparable results, where the improvement affects both segmentation
and detection accuracy. Only for the detection of lesions that emerged between image ac-
quisitions an improvement could not be shown, as these were underrepresented in the used
database.
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In the previous chapters, a system for automatic segmentation of liver lesions in CT im-
ages was introduced. It is based on categorizing image points into tumor and background
by means of a Probabilistic Boosting Tree. The focus of the description so far was en-
tirely on the accuracy of the system. While reliability is of course a prerequisite for any
algorithm in this field, when it comes to clinical routine a second criterion gains impor-
tance: Response time. Since such learning based detectors have to classify large numbers
of possible target object positions to filter out the true detections, this approach requires
classification algorithms that are both accurate and efficient.

5.1 Related Work

In terms of accuracy, besides the boosting technique with its most popular descendant,
AdaBoost [Freu 95], especially the support vector machine (SVM) [Vapn 95], has to be
mentioned. Together with derived methods these are currently the most widely used tech-
niques. However, for complex feature spaces like the one used for the task at hand, both
the SVM and AdaBoost classifiers tend to become very large, slowing down classification.
In domains with real-time requirements or with large amounts of data like CT images this
is an issue. While recent speed increases in object detectionlargely stem from faster pro-
cessing hardware or the incorporation of special domain knowledge, there have been a few
influential algorithmic developments that made it to the standard repertoire in classification
based detection. Regardless of whether sub-windows of the search space are classified to
identify possible target positions or single points are categorized as belonging to either an
object or the background, there are two starting points for possible speed-ups: Making the
search space smaller to reduce the number of classifier evaluations, or making the classifier
itself faster.

73
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A widely used representative of the former category are coarse-to-fine strategies. The
search space is first scanned on a very coarse grid and only those parts that induce a detector
response are investigated with finer sampling as well. That way large portions of the search
space can be omitted in the fine scans, greatly reducing the number of classifications.

Another very successful approach for speeding up detectionsystems is the implemen-
tation of rejection cascades. They are advantageous in detection settings, in which most of
the input space consists of background and large parts of this background are well separa-
ble from the target objects. Probably the best known exampleof this architecture is the face
detection cascade by Viola and Jones [Viol 01]. It meant a leap forward in object detection,
as one of the first methods allowing real-time face detection, and by now is considered a
standard approach. The cascade is built by training an AdaBoost classifier at each stage.
The complexity of each classifier is controlled by stopping the training as soon as either
the number of false rejections rises above a certain threshold or a desired rejection rate is
reached. As the classification task becomes more difficult with each stage, more and more
hypotheses are admitted to generate stronger AdaBoost classifiers. This mechanism, which
Viola and Jones call “focus of attention”, has the effect that classifiers at later stages are
much slower than those at early stages. Or, put differently,the first stages can filter out
most of the image background with very fast classifiers, leaving the few hard decisions to
later, more complex ones.

The principle of the rejection cascade has been transferredto a hierarchy of SVMs by
Heisele et al. [Heis 03] and picked up by Sahbi and Geman [Sahb06]. Here, a cascade of
linear SVMs is installed to filter out most of the background in a target image, before a final
SVM with a second-degree polynomial kernel function separates the true detections from
the most similar background regions. While lacking the automatic control over classifier
complexity characterizing the AdaBoost cascade, this allows the combination of simple
but fast linear SVMs with slow but accurate non-linear ones to achieve a similar behavior.
An additional coarse-to-fine scheme yields a further speed-up. Finally, a feature reduction
technique is applied for the non-linear SVM.

When optimizing the speed of classification systems, the core, meaning the classifier
itself, is often left untouched. Still, a number of modifications to learning methods aiming
at faster classification have been developed. For the SVM, several authors described ways
of reducing the number of support vectors in the final decision function, thus potentially
reducing the computational complexity.

These authors either introduce a pruning step to remove redundancies from the set of
support vectors [Down 01, Nguy 06, Li 07], or modify SVM training in a way so that less
support vectors are generated. Li et al. [Li 06b] achieve this by iteratively re-training the
SVM on a dataset that is reduced in each step to more importantpoints, generating an ever
more compact solution. Parado-Hernández et al. [Parr 03] and Keerthi et al. [Keer 06] also
devise iterative schemes, however starting with a simplistic SVM and expanding it in each
iteration, thus directly controlling the size of the classifier. Osuna and Girosi take a more
formal approach, reformulating the central optimization problem in a way that yields the
same separating hyperplane in a possibly more compact representation [Osun 98].

For AdaBoost, there exist similar optimization approaches:Several pruning methods
that try to reduce the number of hypotheses in the decision function after training have
been presented and compared for effectiveness [Marg 97, Tamo 00]. These methods select
the optimal set of hypotheses based on diversity in order to use the available features most
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efficiently. While they were introduced to reduce memory consumption and overfitting
effects, these techniques may also lead to a speed-up of the classifier.

Mahmoood and Khan [Mahm 09] and Utsumi et al. [Utsu 09] both use a trick to im-
plement an exact on-the-fly pruning during application phase. They sort the hypotheses
by their contributions to the final decision, in descending order. These contributions are
measured by the hypothesis weights. When classifying a new sample, they can then limit
the sequential evaluation of the hypotheses to those that are really necessary. Kawakita
et al. [Kawa 11] extend this by learning an optimal order fromthe training data.

Taking on the gradient descent view of boosting, Bühlmann andYu [Buhl 06] present a
method for generating sparse classifiers with theL2Boosting algorithm described by Fried-
man [Frie 01], which could be transferable to AdaBoost as well.

5.2 Constrained Boosting

In this chapter, a simple yet effective way of speeding up AdaBoost based classification is
presented that is orthogonal to the ones mentioned above.

A first description of this approach was published in 2011 [Mili 11], a more elaborate
version followed in 2013 [Mili 13a]. In the meantime, the same idea was independently
picked up by Xu et al. [Xu 12, Xu 13], wrapped, however, into stagewise regression of
limited depth regression trees [Xu 12] and a decision tree with strong learners at the nodes
[Xu 13], respectively.

Like Margineantu and Dietterich [Marg 97], we aim at redefining what the “best” hy-
potheses for the final decision function should be. The approach, however, is a different
one. (1) Our criterion for good hypotheses is not based on diversity but on computational
complexity, leading not necessarily to less hypotheses, but to faster evaluation. (2) In con-
trast to the post-pruning approaches above, our solution isconstructive. Instead of training
the classifier with the original AdaBoost algorithm and adapting it afterwards, we modify
the way the classifier is built in the first place.

In a nutshell, we yield a faster evaluation of the decision function by making the weak
learner training prefer features that are fast to compute. The overall algorithm is defined so
as to maintain classification accuracy. There are several ways how the desired effect can
be achieved. A manual pre-selection of preferred features might be sufficient, although it
requires a profound knowledge of the feature space and is a rather strict limitation of the
learning algorithm. Restricting a learning algorithm artificially based on heuristics always
bears the risk that it is prevented from learning certain patterns in the data. To keep the
need for manual interaction at a minimum, we decided to instead equip the weak learning
algorithm with some notion of feature cost, leading to a generic formulation of a cost
constrained boosting algorithm. Two different options howthe influence of the cost term
can be controlled were investigated. They will be describedin Sec. 5.2.2 and Sec. 5.2.3.
A thorough analysis and discussion of their individual benefits is given in the evaluation
section.

Though modifying the AdaBoost training procedure directly,this optimization aims
at hierarchical systems based on AdaBoost. It was originallydeveloped for use with the
Probabilistic Boosting Tree that is the core of our segmentation system described in the
previous chapters, but works just the same with the cascade [Viol 01] or similar architec-
tures. Nevertheless, the PBT is used for the description on the following pages.
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The modification can be seen as a realization of the focus of attention mechanism of
the cascade for feature sets with inhomogeneous complexities. The objective is that early
stages of the hierarchy contain particularly simple classifiers, which in our case is realized
by constraining the feature selection performed during AdaBoost training. To prevent a
loss of classification accuracy compared to the unconstrained approach, the condition is
weakened for later stages of the hierarchy.

As will become obvious from the description, the method is not limited to runtime opti-
mization. It is fully generic, allowing for the optimization of arbitrary secondary objectives
during AdaBoost training.

5.2.1 Speeding up Classification in the Probabilistic Boosting Tree

The PBT distributes a decision to a hierarchy of classifiers, each component of which can
in turn be rather small. As described in Sec. 2.2.2, during application parts of the hierarchy
may be omitted if their influence on the decision would be too small to matter. This on-
the-fly subtree pruning mechanism partially compensates for the additional complexity of
the hierarchical design. However, in contrast to the cascade the PBT’s primary design goal
was not classification speed but minimizing the average loss. The sequential evaluation of
all the small classifiers in the hierarchy can therefore be slower than a single large classifier
of equal power.

Looking at this classifier architecture and its mode of operation, two approaches for an
additional speed-up come to mind almost immediately: Explicit pruning by restricting the
depth of the hierarchy and implicit pruning by training stronger learners in the nodes.

The effect of the former is obvious. A reduced tree depth means less classifiers in the
hierarchy and can thus save a great deal of processing time. Since the PBT is a binary tree,
reducing the depth by one level can reduce the number of nodesby up to 50%. As Carneiro
et al. [Carn 08] showed, a smaller tree does not necessarily imply lower classification
accuracy. Since the PBT tends to overfit the training data, keeping its depth minimal is
even beneficial for generalization performance.

In contrast, the implicit pruning approach does not add any restrictions to the training
procedure. Instead, stronger AdaBoost classifiers are trained by relaxing its stopping cri-
terion and using more or stronger hypotheses. While this may lead to an increased worst
case classification time, on average less tree nodes will have to be evaluated. The stronger
node classifiers generate more certain results, which in turn leads to more pruned subtrees.

While both approaches reduce processing time and in the case of explicit pruning also
help to avoid overfitting, they also both contradict the ideaof the PBT. This classifier’s
power stems from the fact that it is hierarchical. Stronger classifiers in the nodes would
mean giving up this concept and ultimately approaching a single AdaBoost classifier.

We propose an entirely different method for speeding up classification. As for Heisele
et al. [Heis 03] or the cascade, the starting point is the observation that for many samples
not the entire tree is evaluated. Since evaluation can stop at any point of the hierarchy, the
root node is the only one that is passed by all samples. Consequently, this node should have
the fastest classifier. Going deeper in the tree, nodes have to classify less and less samples,
meaning that for these fast classification is of lesser importance.

Since for simple classifiers like AdaBoost with decision stumps most time is consumed
by feature calculation, this is the target of the presented approach. The idea is to use
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simpler features in high tree nodes, where simple in this context means fast to compute.
Using less complex features could obviously reduce the overall complexity of the classifier
considerably. However, as simpler features often do not have the same discriminative
power, we do not want to discard the more complex ones entirely. Therefore, in deeper
nodes, where less samples have to be classified and thus speedis less crucial, all features
should be available to the algorithm. A side effect of restricting feature selection is that the
nodes using only simple features may be slightly weaker. It may thus happen that more
weak learners are used in total and some samples go further down in the tree than originally,
but experiments indicate that, if the differences in feature complexity are big enough, this
will still lead to a substantial improvement.

In the following two sections, we describe two ways of incorporating this concept into
the learning process of a PBT. As mentioned before, the principle is transferable to other
hierarchical classifiers as well. Prerequisites are that each node of the hierarchy has its own,
separately trained classifier and that during application deeper nodes classify less samples
than high nodes. Also, features of different computationalcomplexities have to be used.

5.2.2 Cost Constrained Hypothesis Training

In order to make AdaBoost prefer simpler features during training, the weak learning pro-
cedure has to be adapted. During each iterationt AdaBoost calls its weak learning algo-
rithm that generates a new hypothesisht for the ensemble.ht is the result of optimizing
a functionϕ : H 7→ R with H being the hypothesis space containing all possible hy-
potheses that can be generated by the weak learning algorithm. In the simplest case, the
optimization criterion is solely based on the misclassification error with respect to the cur-
rent sample weight distributionDt

ϕt(h) = ∑
i:h(xi) 6=yi

Dt(i).

This formulation is now extended by incorporating a cost term κ : H 7→ [0,1] that is
defined on the hypothesis space and assigns a cost to each hypothesis. The new criterion
to be optimized by the weak learning algorithm then becomes

ψt(h) = λ ·κ(h)+(1−λ ) ·ϕt(h) (5.1)

with λ ∈ [0,1] a weighting factor trading off the influence of the hypothesis cost vs. its
training error.

In our segmentation system decision stumps are used for weaklearners. Since a deci-
sion stump consists of the application of a threshold to a single feature, its training origi-
nally comes down to selecting the single most discriminative feature at each iteration based
on its weighted error on the training data. Consequently, if classification speed is to be
optimized by this mechanism, the cost of a hypothesis has to be defined as being the com-
putational complexity of the used feature, may it be determined analytically, empirically
(by runtime measurement) or heuristically (by manually setting arbitrary values).

Since the primary goal of the AdaBoost learning is still errorreduction, the cost term
is used exclusively for weak learner training while the restof the procedure remains un-
touched (cf. Alg. 5): The hypothesis errorθt = ∑i:ht(xi) 6=yi

Dt(i) is used for calculatingαt

andDt+1 as before. Consequently, looking at Sec. 2.2 again, the derivation of the error
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Algorithm 5 The cost constrained AdaBoost algorithm
Input: (x1,y1), . . . ,(xn,yn) wherexi ∈R

m, yi ∈ {−1,+1}. A cost functionκ : H 7→ [0,1].
A weighting factorλ ∈ [0,1].

1: Initialize D1(i) = 1/n.
2: for t = 1. . .T do
3: Train weak hypothesisht : Rm 7→ Y that minimizes the objective functionψt(h) =

λ ·κ(h)+(1−λ ) ·ϕt(h) using distributionDt .
4: Get weighted training error of hypothesisθt = ∑

i:ht(xi) 6=yi

Dt(i).

5: Setαt =
1
2 ln
(

1−θt
θt

)

6: Update

Dt+1(i) =
Dt(i)e−αtyiht(xi)

Zt

with
Zt = ∑

i
Dt(i)e

−αtyiht(xi) = 2
√

θt(1−θt).

7: end for

Output: Final hypothesisH(x) = sign

(

T
∑

t=1
αtht(x)

)

= sign(g(x)).

bounds for AdaBoost remains the same. All that is required forthis derivation is that the
hypothesis errorθt stay below 0.5, which can always be guaranteed for a two-class clas-
sifier. Therefore, the initial upper bound on the training error Θ f of the final ensemble
identified by Freund and Schapire [Freu 95] remains intact as

Θ f ≤
T

∏
t=1

√

1−4γt
2 ≤ exp

(

−2
T

∑
t=1

γt
2

)

, γt = 0.5−θt ,

guaranteeing convergence as long as the minimum requirements for a weak learner are
met. By iteratively rejecting the found hypothesis and usingthe next best with respect to
ψt where necessary, even stricter requirements for the hypotheses may be met leading to
tighter error bounds. Of course, using this combined optimization criterion can in general
lead to the selection of suboptimal (with respect to their classification error) hypotheses.
This has two implications: Since the individualγt may be larger than in the original ver-
sion, convergence might be slower in the end as AdaBoost may have to generate more
hypotheses than without the cost term. And, in the terms of Rudin et al. [Rudi 04], this
is not “optimal” AdaBoost. For this case Rudin et al. could showthat AdaBoost is not
guaranteed to produce a maximum margin solution even if the “optimal” version always
choosing the hypothesis with the lowest classification error would. However, experiments
with clinical data indicate that in practice, this does not affect performance negatively in
the hierarchical classifier setting.

To achieve the intended runtime optimization of the PBT, the selection of the weighting
factorλ is crucial. The goal is to have fast AdaBoost classifiers at thetop of the hierarchy
and slower, more accurate ones at deeper tree levels. To thisend,λ has to be set to a high
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value for the root node to put a strong emphasis on the hypothesis cost and thus ensure
the selection of simple features. At deeper tree levels,λ can be decreased to reduce the
influence of the cost factor. That way the most accurate features are chosen regardless of
their higher complexity.

One thing to note from Eq. (5.1) is its generic formulation. This approach is by no
means limited to runtime optimization. The weak requirements on the cost function allow
the introduction of arbitrary side conditions into the AdaBoost training procedure. This
could be memory constraints, stability considerations, personal preferences like the trans-
parency of a classifier decision, reliability or the actual cost for acquiring a feature value.
Also, for other types of weak learners or objective functions, the cost term can be incorpo-
rated in a similar fashion.

5.2.3 Adaptive Cost Constrained Hypothesis Training

Besides the hypothesis cost functionκ, the previous section introduced the weighting fac-
tor λ as additional parameter into the training procedure. This trades off complexity vs.
discriminative power during weak learner training, allowing the generation of simple and
fast AdaBoost classifiers as well as slow but accurate ones by changing only the value of
λ . In this section, the method is automated even further, making it more elegant by re-
moving the need for setting the weighting factor manually. Instead, it is set adaptively for
each AdaBoost training based on the importance of the AdaBoostclassifier currently being
trained.

In our runtime optimization setting, node importance is measured by the amount of
data that has to be processed, which is the fraction of samples that have to be classified by
this node. During training, when starting a new AdaBoost training, the number of available
training samples at the current node|Sc| is compared to the total number of samples|S| the
root node was trained with. If the training set is representative for the data to be encoun-
tered during application stage, the weight factor can then be set according to the expected
fraction of data to be processed by this node. In our experiments we set this parameter to be
λ = 0.5 · |Sc|

|S| . Depending on the classification problem and the structure of the hypothesis
cost functionκ, one might want to chooseλ to approach 0 more rapidly or actually reach
it.

5.3 Results and Discussion

The effect of the proposed constrained boosting method was evaluated with the original
segmentation system described in Chap. 3 on the same set of 15 clinical images. However,
since in this experiment we are only interested in changes inthe computational complexity
of the classifier, only the first PBT of the iterative classification step was used and postpro-
cessing was deactivated.

As before, each experiment was set up as a five fold cross-validation. For the experi-
ments, the PBT was trained withε = 0.2 and a maximum depth of 5. AdaBoost training
was stopped at a hypothesis error ofθt ≥ 0.45 or after 30 iterations.
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5.3.1 Experimental Setup

The optimization of the learning algorithm described aboveaims at reducing the compu-
tational complexity of the classification system during application stage. To measure this
effect, experiments were run with and without the optimization and their outcome was
compared in terms of application cost and classifier cost. Three experiments were run for
each of the two described configurations:

• One training a classifier with the original learning method(“No Cost”),

• one with the cost constrained algorithm and a runtime basedhypothesis cost function
(“Empirical Cost”) and

• one with randomly chosen cost values (“Random Cost”),

all other parameters set identically.
To determine the runtime based hypothesis cost function we chose a very hands-on

approach. Each feature was calculated on the target machineand the elapsed time was
measured, averaged over several thousand runs. For the random cost function, hypothesis
cost values were uniformly randomly drawn from the range[0,1]. By using this cost that is
completely unrelated to any feature semantics or power, thegeneral optimization potential
for arbitrary side conditions is demonstrated.

If the used cost function is based on the feature calculationtime, a reduction in cost
also means faster evaluation. A random cost function on the other hand cannot be expected
to improve runtime, so the more general cost based approach had to be taken to show the
effect of the cost constrained training for this setup.

The overall cost of classifying a new sample with the PBT cannot be determined analyt-
ically because of the subtree pruning. Instead, one has to actually apply the classifier to the
sample and accumulate the costs of all encountered hypotheses along the way. This yields
the classifier’s application costωpbt(x) for a samplex. The overall cost for a datasetz, rep-
resented as the set of samplesXz = {x1, ..,xu}, would then beΩpbt(Xz) = ∑u

i=1ωpbt(xi).
For each fold of the cross-validation, the total cost of all datasets in the test set is calcu-
lated. Thus, after a full cross-validation, the final resultis the total evaluation cost of all
datasets in the test database.

Besides comparing the actual cost when applying the different classifiers to a sample,
we also analyzed how the modified training procedure changesthe internal structure of
the classifiers. To this end, their classifier cost was determined and compared. For this
static analysis, the cost of the single hypotheses forming the PBT is accumulated. More
precisely, the values for all hypotheses at a certain tree level are summed up and averaged
over the number of nodes at this level. This procedure also unveils the influence of the
weighting factorλ .

Obviously, measuring the improvement in runtime or cost is not sufficient to show the
validity of the approach. We have to show, that the complexity reduction does not de-
grade classification accuracy over proportion. To this end,ROC curves of the classification
accuracy of each configuration are compared.
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5.3.2 Cost Constrained Hypothesis Training

For this set of experiments, the hypothesis cost valuesκ(·) were scaled to the range[0,0.5].
This range was used instead of[0,1] in order to have the cost values in the same range as the
hypothesis errors. Having the two values in the same range makes setting and interpreting
the weighting factorλ during training straightforward. Here,λ was initially set to 0.5 and
then linearly decreased to reach 0 at the deepest level of thehierarchy.

Compared to the standard PBT training, the total application cost could be reduced by
58% by the proposed feature selection method with an empirical cost function, without
losing classification accuracy as can be seen from the ROC curve in Fig. 5.1(a). This cost
takes into account only the feature calculation part of the classification, not the overhead
produced by the hierarchical classifier. The actual runtimereduction depends on various
implementation factors. For the system used in these experiments, the 58% lower cost
translates to a runtime reduction of 52%.

Figure 5.2 shows the result of the static analysis, comparing the classifier cost for the
different configurations. The constrained feature selection worked as expected: In high
nodes, AdaBoost chose features with lower cost than with the standard PBT version, thus
the much higher cost per tree level and per node of the unconstrained PBT (“No Cost”)
for depths 1− 4. In deeper nodes, which are rarely evaluated, the cost penalty in the
constrained algorithm was decreased. Hence, the AdaBoost procedure focused more on
the weak learners’ classification error and the average costincreased.

The fact that for the unconstrained training the average cost decreases with increasing
tree depth supports the claim that there is a loose correlation between feature complexity
and discriminative power. AdaBoost learning, by nature a greedy approach, chooses the
strongest features first, which turn out to be the most expensive ones. For deeper tree levels,
these do not provide any additional insight, so that simplerfeatures are preferred.

The empirical cost constrained PBT exhibits the opposite behavior, using the cheapest
features first and gradually switching to more expensive ones in deeper tree levels. That
way its curve for the total cost per tree level is steeper, even exceeding the unconstrained
one at leaf level, whereλ is set to 0.

The experiments with random hypothesis cost show, however,that this correlation be-
tween feature cost and discriminative power is not requiredfor successful optimization of
a side condition. In Fig. 5.2(d) the average node cost remains fairly constant, showing
the uniformity of the cost function. Still, even for these arbitrary assignments of cost val-
ues to features, the evaluation cost is reduced by 42%. This supports the claim made by
Eq. (5.1): The proposed method is by no means limited to runtime optimization. Using
this method, the PBT training can optimize any secondary condition without losing track
of the classification error.

5.3.3 Adaptive Cost Constrained Hypothesis Training

Trading off the cost and the training error of the hypothesisadaptively as described in
Sec. 5.2.3 lets the learning algorithm control the optimization process even further. The
importance of a node and thus the value ofλ now does not depend on the depth of the
node any more, but directly on the fraction of samples that will have to be classified by
this node. This method achieves an even higher application cost reduction than before,
namely 76%. This equals a runtime reduction of 69%. The random cost function yields
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Figure 5.1: Classification accuracy of the different training configurations. (a) shows the
result with manually chosenλ , (b) with adaptively setλ .



5.3. Results and Discussion 83

63% improvement. Again, classification accuracy is not degraded as can be seen from
Fig. 5.1(b).

A side effect of this setup is that the interpretation of the cost graphs (Figure 5.3)
changes. For the total cost per tree level (Figure 5.3(a), (c)), the shape of the curve is
still somewhat predictable: It starts with a low cost, sincethe situation at the root node
remains the same as in the previous experiment. The slope maybe steeper, because a good
separation at one node leads to a low value ofλ and thus a high cost at one of the child
nodes. The total cost at leaf level is nevertheless lower than in the previous experiment,
because thereλ was set to 0 at leaf level while here the cost may still have some influence.

The average cost per node, on the other hand, does not show a clear behavior any more.
Looking at the values ofλ alone, one could argue that the average cost should stay nearly
the same throughout the tree or decrease slightly. The samples at any node are split up and
distributed to its children, soλ is distributed accordingly, with a small gain due to samples
put into both subtrees. There are, however, many influence factors disturbing this fragile
balance, such as the fact that any two nodes at the same level may have very different values
of λ , the greediness of AdaBoost, or outliers from the correlation between feature cost and
discriminative power. The plots in Fig. 5.3(b), (d) are thusonly given for completeness.

5.3.4 Free Lunch?

At first glance the above results seem surprising. PBT training can be modified so that
classification takes 69% less time without losing classification accuracy, just by restricting
the use of certain features. The algorithm can even be used toimprove not runtime but any
(even random) constraint.

Thinking one step further it becomes clear what has to be happening during the training
procedure. As stated in Sec. 2.2.1, one advantage of AdaBoostover other learning methods
is its ability to deal with a large number of features. One canleave the algorithm with a
huge set of features and during training it will select the most useful ones. In the end,
the classifier will always use only a small subset of the provided features. Starting with a
smaller number in the first place could result in the same classifier, but then the user would
have to perform the feature selection. So, many features maysimply be left out because
there are cheaper ones that are only slightly worse w. r. t. the classification error. However,
this may lead, as mentioned in Sec. 5.2, to a higher number of hypotheses.

The second effect yielded by the constrained feature selection compensates for this
higher number of hypotheses: The order of evaluation of the features is changed. By
introducing the weighting factorλ and adapting it at different tree levels/nodes, one can
control the distribution of hypothesis cost over the tree. When looking at the case of a
runtime based cost function, one can shift the use of the mostexpensive features away
from the first few nodes that have to classify the highest number of samples. That way
these nodes will likely lose some accuracy, so that some samples will move deeper in the
tree than in the unconstrained case. But this will not be the case for all samples, which
is why this constrained tree can, on average, be considerably faster. If a sample needs to
be classified by all nodes of the tree, the effort needed to classify it is the same as in the
unconstrained tree, only the order of evaluation changed.

So, to summarize the above, taking the metaphor further, this method does not claim
any free lunch, but the original method paid too much. The redundancy in the original fea-
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ture set gives room for optimization. Apart from this, only the order of feature evaluation
is changed, with the goal to use the cheapest features as an early filter.

5.4 Conclusion

In this chapter, we introduced an extension to the AdaBoost algorithm that allows incor-
porating a user defined constraint into the hypothesis selection process during classifier
training. In a study with clinical CT images we showed that, using this method, the com-
putational complexity of the PBT that forms the basis of our recently proposed liver tumor
segmentation system could be reduced by 76% by incorporating a measure of feature cost.
The same method can be applied to the AdaBoost cascade [Viol 01] or other, similar hierar-
chical algorithms that contain a means of pruning parts of the classifier during application.

To fully optimize the runtime of an algorithm, a single modification will rarely be
enough. The method presented here can be combined with others like the ones discussed
in Sec. 5.1.

However, this extension to AdaBoost is by no means limited to complexity reduction.
The algorithm works independent of the semantics of the costfunction. This method thus
gives the user a powerful means of control over the AdaBoost procedure, allowing the
simultaneous optimization on any additional criterion that can be defined at hypothesis
level.
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Figure 5.2: Comparison of classifier costs for the PBT if the weighting factorλ is set to
decrease linearly from 0.5 at the root to 0 in depth 5. The PBTs are analyzed by accu-
mulating the cost of all hypotheses at each tree level (=depth) ((a), (c)) and averaging the
resulting values over the number of AdaBoost classifiers at this depth ((b), (d)). The top
row shows the comparison of an unconstrained classifier, trained without any cost func-
tion (solid black curves), with a classifier trained with an empirical cost function. Both
classifiers were evaluated using the same cost function to show the effect of said function
on the training procedure. The bottom row shows the same comparison between the un-
constrained classifier and one that was trained with a randomcost function. Again, both
classifiers were evaluated with the same random cost function.
In all configurations the total cost increases with depth, asthe number of nodes (and thus
the number of hypotheses) increases. The generally much higher costs in the random cost
case (note the different scales at they-axes) stem from the fact, that the feature set contains
mostly Haar-like features, which receive very low cost values in the empirical cost function.
Since the random cost function is uniformly distributed, itis likely to assign much higher
cost values to these features.
Analysis of the average cost per node shows, that including the cost function in the training
procedure has the expected effect: For the constrained PBT cheaper features are preferred
in the higher nodes of the tree.
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Figure 5.3: Comparison of classifier costs for the PBT withλ set proportionally to the
fraction of samples to be classified at the respective node. As in Fig. 5.2, the cost of all
hypotheses is accumulated at each tree level ((a), (c)) and averaged over the number of
AdaBoost classifiers at this depth ((b), (d)).
The top row shows again the comparison of an unconstrained classifier (solid black curve)
with one that was trained using the empirical cost function.The bottom row shows the
same comparison between the unconstrained classifier and one that was trained with a
random cost function.
The average node cost does not show a clear behavior, becauseλ is now independent of
the depth and thus at any given depth nodes can have very different costs. The total cost
per level is similar to the previous experiment, with a slightly steeper slope in early levels
and a lower total cost at leaf level.
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Outlook

This work takes another step towards an automatic solution to the problem of segmenting
liver tumors in CT images. It analyses new ways of learning priors from data and presents
modifications of existing learning algorithms that reach well beyond the domain of medical
image processing. However, for every project borders have to be drawn at some point, so
that while many questions could be answered some new ones were raised as well.

One limitation of this work is its focus on a single kind of lesions. The focus was put
on hypodense liver lesions in order to keep the complexity ofthe problem space at bay
and that way reduce the necessary amount of training data. Inprinciple, the approach is
by no means limited to this type of tumors. It could just as well be applied to hyperdense,
rim-enhancing or even completely inhomogeneous lesions, although besides the additional
training data some more features capturing the intricaciesof these targets may become
necessary. One natural extension in this context would be touse not only images with
venous contrast enhancement but combine them with arterialimages or even other contrast
phases. The combination could be either an early fusion approach, combining features of
matched voxels into one feature vector and feeding this intoa single classifier. Or one could
have separate classifiers for each image type and combine their results afterwards. The
implications of this design decision would be similar to those formulated for the integration
of the lesion prior into the segmentation system described earlier (Section 4.4). Preliminary
experiments with additional arterial phase images show promising results, especially for
lesions like focal nodular hyperplasia, which often present themselves isodense in venous
images but strongly hyperdense in arterial ones (cf. Fig. 1.6(a)). With sufficiently large
databases one might even be able to settle the discussion among radiologists about the
benefit of multiphasic image acquisitions for diagnosis of liver tumors.

Regarding our work on learning priors for follow-up segmentation there is one ques-
tion that comes to mind almost immediately. One prerequisite for learning the prior from
training image pairs and applying it to new ones is that the image pairs are registered non-
rigidly. The state-of-the-art method used here performs reasonably well on this difficult
task. It would, however, be interesting to see how differentmethods with different errors
influence the performance of the learner and the segmentation system. Knowing the behav-
ior of a registration algorithm one may even be able to generate realistic errors artificially,
providing a higher degree of control over the evaluation. Given a sufficient number of
follow-up images to allow reliable statements on influence factors this could provide valu-
able insight into the nature of the learning algorithm, its learning task and the used feature
space.

In general, the methods and evaluations presented here are focused on automatic seg-
mentation, i. e. a decision on voxel level what parts of the liver consist of healthy tissue
and what parts belong to a lesion. The voxel classification approach does also provide a
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detection and has the advantage that it is in principle independent of the size and shape of a
target lesion. Pure detection methods like the window classification approach by Viola and
Jones [Viol 01], on the other hand, provide access to new setsof features describing whole
objects as opposed to single points inside an object. Also, they are in general more robust
against noise in the input data. As a drawback, they require more training data because
each lesion makes only one positive example (plus possibly affinely transformed versions
of the lesion). For a voxel classification approach, each voxel of a lesion makes one posi-
tive example. Nevertheless, it would certainly be worth investigating how such a window
based detection performs and how a separate module only for detection can simplify the
subsequent segmentation task.

Regarding the detection capabilities of the system presented here, results can certainly
be improved by introducing a filter step into postprocessing. This filter would consist of a
classifier that receives a feature vector for each lesion candidate and decides whether this
candidate is a true detection or a false positive. Of course,this filter must not remove any
true detections, but still it should be able to identify somefalse alarms.
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Summary

Modern medical imaging devices are able to acquire images ofan amazingly broad range
of targets. With X-Ray Computed Tomography, anything from theblood vessels of a beat-
ing heart to the entire muscoskeletal system can be captured. Thanks to various types of
contrast agents this modality even pushes into the originaldomain of Magnetic Resonance
or Ultrasound imaging, the visualization of soft tissue. For diagnosis and monitoring of
liver tumors it has become a standard tool in clinical routine. However, while image ac-
quisition has made enormous progress over the past decades,computers and algorithms
processing the ever increasing amount of images can hardly keep up with the pace of de-
velopment. In fact, most processing to this day is focused onimproving image quality in
order to give a better or more clear presentation to a human observer while exposing the
patient to ever less ionizing radiation. While this effort was without doubt very successful
when looking at today’s images in comparison to those of the early 90s, this is not the
end of what computers can do. The tools for visualization or measurements provided to
the physician are still very basic. A growing community of researchers and companies
therefore bring methods of artificial intelligence, pattern recognition, statistics and image
understanding into the market in order to provide tools thatsupport clinical workflows by
actually interpreting images and generating condensed information out of them.

The domain of medical images is a very complex one. Every patient has a different
anatomy and metabolism. Many acquisition parameters influence the appearance of im-
ages. Differences between relevant structures and background or noise may be very small.
That is the reason why to this day in most fields of applicationno algorithm can match a
human when it comes to extracting relevant objects from the images or making decisions
on disease status. Despite all progress made in specializedfields like skin cancer diagnosis
or analysis of coronary arteries we are still barely scratching the surface of what could be
done if only we had the right tools: algorithms that can adaptto this complex and ever
changing environment as the human brain does seemingly without effort.

The thesis at hand takes one more step in this direction, investigating machine learning
methods for the segmentation of liver tumors in CT images. Using contrast agent, CT
images of the liver can be acquired showing lesions that would otherwise be isodense to
the surrounding liver tissue. Especially useful for the assessment of liver tumors are images
in which the contrast agent just entered the liver via the portal vein, because most tumors
receive their blood supply via this path. In order to judge the disease status of a patient
and to monitor it over time a physician will have to measure a representative subset of the
lesions in each of the patient’s images. The goal of an algorithmic solution here would
be to provide a 3D delineation of all lesions of the patient inorder to allow for precise
volume measurements. For complex tasks like this, recentlymachine learning techniques
have proven most useful. These allow to build systems that adjust their parameters and
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thus learn their functionality based on examples. In the case at hand a classifier is built by
providing it with example images of healthy and diseased livers. After this training phase
the resulting classifier is ready to be used on new images. Itspurpose is to decide for single
points (=voxels) of a CT image whether they are part of a liver tumor or not. The classifier
that is used here is a Probabilistic Boosting Tree (PBT), a hierarchical classifier combining
a number of AdaBoost classifiers.

The PBT forms the core of the presented segmentation system. The input to the system
consists of a liver CT image acquired during portal venous phase of contrast enhancement.
The image is preprocessed by automatically segmenting the liver in the image and stan-
dardizing image intensities of the voxels inside it. The former reduces the search space for
the further processing, the latter simplifies the classification task by eliminating differences
in the images due to acquisition timing or other external factors. In the main segmentation
step, for each voxel inside the liver a vector of about 2500 features describing the voxel’s
appearance is calculated. From this feature vector the PBT estimates a probability for the
voxel to belong to a tumor. From the resulting probability image about 60 additional fea-
tures are calculated and appended to the vector of appearance features. This new vector
forms the input to another PBT. This process is repeated with up to four PBTs, resulting in
a cascade of classifiers. Due to its hierarchical decision making, the PBT as a classifier is
very well suited for complex problem spaces like the one at hand. Using a cascade instead
of a single classifier leads to more robust results with less spurious misclassifications, im-
proving precision by 38% at 90% sensitivity. Very similar toneural information processing
the classifier cascade has the effect that neighboring voxels influence each other iteratively
in such a way that each voxel’s probability value stabilizesover time. Therefore, the final
output of the cascade needs no elaborate postprocessing. Instead, it is only filtered using
a morphological opening and a median filtering before thresholding it to yield the output
lesion mask.

To monitor disease progression over time, one could segmentand measure lesions in
every image acquired from the patient during each examination separately. However, we
chose to optimize the method for this task in order to furtherreduce error rates. To this end
we propose a method for generating a patient specific lesion prior that can guide the system
in its segmentation task. A prior model is learned from registered pairs of images of the
same patient acquired at different times together with a reference segmentation for the first
of the two images. This model encodes lesion growth and shrinkage over time. Given the
first image of a new patient together with its lesion segmentation and an image acquired a
few months later, the system can compute a patient specific prior from the model providing
insight where to expect lesions in the second image. Two waysof incorporating the prior
into the segmentation system are investigated. The prior can be combined multiplicatively
with the output of the original lesion segmentation system for the second image. Or it
can be incorporated into the system directly by training only one classifier that uses all
features of the classifier used for segmentation and the one used in the prior model in one
vector. While the latter is preferable because it can detect and exploit additional patterns
and dependencies in the data, experiments indicate that it requires a substantial amount of
additional training data. In general, our experiments on clinical data show a considerable
advantage of the systems using a learned prior, no matter howit is used. Measuring the
segmentation performance on voxel level, we found a reduction of false positive classi-
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fications per true positive by 57.8% at 90% sensitivity if theprior is integrated into the
system.

For systems like the one presented here, where a complex analysis is required for each
image point, runtime can become an issue in clinical routine. With modern imaging de-
vices, large 3D datasets can be acquired, whose processing can take several minutes up
to hours depending on the type of analysis performed. With increasing capabilities of the
methods their runtime demands have therefore to become target of research themselves.
Starting from the observation that in detection tasks oftenmost of the input images con-
sists of background, large parts of which can easily be filtered out, we therefore develop a
means to build a PBT that can save a great deal of processing time compared to the original
version. We propose a redesign of the PBT, where the topmost nodes are constructed much
simpler than the deeper ones. This makes use of a property of the PBT during application
phase: A feature vector is handed down the tree and classifiedat each node along the way.
If, however, such a node classifier is very certain about the label of the example, it is only
handed down the corresponding subtree instead of both. Thisleads to the root node being
the only one that has to process all examples, while deeper nodes only have to classify
those that are most difficult to decide. Since most of the processing time in this classifier
is spent calculating features, we incorporate a new term into the AdaBoost training pro-
cedure, so that it does not only optimize classification error but at the same time also the
cost of the used features. During PBT training, the influence of this cost factor is reduced
with increasing tree depth. That way more complex features,that may have larger discrim-
inative power, can still be used towards lower levels of the tree. This modification of the
AdaBoost and PBT learning algorithms reduces classification cost in the presented system
by up to 76% without losing classification accuracy.

A topic of this complexity can never be studied exhaustively. Solving one question will
raise two new ones that are worth investigating. In our case an extension to multi phase CT
imaging and more types of liver lesions would be the most prominent directions of future
research. Approaches that include a separate detection step based on window classification
may improve performance further. And obviously a better understanding of the influence
of the used registration algorithm on the behavior of the system would be desirable.
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C H A P T E R A

Appendix

A.1 Evaluation Measures

Comparing the output of a segmentation algorithm with a reference segmentation on a
per-voxel basis yields the numbers of correctly and incorrectly classified points. With two
possible target classes there are two types of correct classifications and two types of error,
so four values in total. These can be represented as 2×2 matrix known as confusion matrix
(Table A.1). From the values in this table, several overlap measures can be calculated to

Classification Reference: lesion Reference: background
Algorithm: lesion True positive (tp) False positive (fp)

Algorithm: background False negative (fn) True negative (tn)

Table A.1: Confusion matrix. Based on the numbers of true positives, false positives, true
negatives and false negatives, the quality of the segmentation is assessed.

characterize the performance of the classification or segmentation algorithm (Table A.2).
Each measure highlights different aspects of the segmentation by putting emphasis on dif-
ferent parts of the confusion matrix.

Sensitivity #t p
#t p+# f n

Specificity #tn
#tn+# f p

False positive rate = 1 - specificity # f p
# f p+#tn

Jaccard index #t p
#t p+# f p+# f n

Dice coefficient 2·#t p
2·#t p+# f p+# f n

Precision #t p
#t p+# f p

Table A.2: Performance measures calculated from the entries of the confusion matrix.
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