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Abstract

Over the past decades, huge progress has been made in treafncancer, decreasing
fatality rates despite a growing number of cases. Techaidalevements had a big share
in this development.

With modern image acquisition techniques, most types obtgmman be made visible.
Automatic processing of these images to support diagnaosisherapy, on the other hand,
is still very basic. Marking lesions for volume measurerseimtervention planning or
tracking over time requires a lot of manual interaction, ethis both tedious and error
prone.

The work at hand therefore aims at providing tools for the@matic segmentation of
liver lesions. A system is presented that receives a cdr@rdmnced CT image of the liver
as input and, after several preprocessing steps, decideadb image voxel inside the liver
whether it belongs to a tumor or not. That way, tumors are nbt detected in the image
but also precisely delineated in three dimensions. For &ugstbn step, which is the main
target of this thesis, we adopted the recently proposedabitidtic Boosting Tree. In an
offline learning phase, this classifier is trained using a lemof example images. After
training, it can process new and previously unseen images.

Such automatic segmentation systems are particularhakwhen it comes to moni-
toring tumors of a patient over a longer period of time. Thanes we propose a method for
learning a prior model to improve segmentation accuracgtich follow-up examinations.
It is learned from a number of series of CT images, where eagfssesontains images of
one patient. Two different ways of incorporating the modédithe segmentation system
are investigated. When acquiring an image of a patient, teesycan use the model to
calculate a patient specific lesion prior from images of thme patient acquired earlier
and thus guide the segmentation in the current image.

The validity of this approach is shown in a set of experimentslinical images. When
comparing the points of 90% sensitivity in these experimginicorporating the prior im-
proved the precision of the segmentation from 82.7% to 91.9%is corresponds to a
reduction of the number of false positive voxels per truatp@svoxel by 57.8%.

Finally, we address the issue of long processing times gtiflaation based segmen-
tation systems. During training, the Probabilistic Boogtirree builds up a hierarchy of
AdaBoost classifiers. In order to speed up classificatiomduapplication phase, we mod-
ify this hierarchy so that simpler and thus faster AdaBooasgifiers are used in higher
levels. To this end, we introduce a cost term into AdaBoostitrg that trades off dis-
criminative power and computational complexity duringtéea selection. That way the
optimization process can be guided to build less complessdiars for higher levels of the
tree and more complex and thus stronger ones for deepes |&®es$ults of an experimental
evaluation on clinical images are presented, which showttlig mechanism can reduce
the overall cost during application phase by up to 76% witliegrading classification ac-
curacy. Itis also shown that this mechanism could be usegdtimize arbitrary secondary
conditions during AdaBoost training.



Kurzfassung

In der Krebstherapie gab es in den vergangenen Jahrzehmot&a gortschritte zu verzeich-
nen. Wahrend die Zahl der Krebsfalle weiter ansteigt, kodrgeSterblichkeit verringert
werden. Einen gro3en Anteil an dieser Entwicklung hatteetgrnische Fortschritt.

Bildgebende Verfahren kénnen heute die meisten Tumoretbsicinachen. Die au-
tomatische Verarbeitung dieser Bilder flr Diagnose und dpierdagegen beschrankt sich
weiterhin zumeist auf sehr einfache Verfahren. Lasionemka nur mit viel Handarbeit
fur Volumenbestimmung, Operationsplanung, oder ze#lithherwachung eingezeichnet
werden. Dieses Vorgehen ist nicht nur sehr miihsam sondemeenfiéllig fur Fehler.

Die vorliegende Arbeit soll deshalb neue Methoden fur diematische Segmen-
tierung von Leberlasionen aufzeigen. Ein System wird \veteglt, das in einem kon-
trastverstarkten CT-Bild der Leber nach einigen Vorveraudogjsschritten fur jeden Bild-
punktinnerhalb der Leber entscheidet, ob er Teil eines Tamboder nicht. So werden die
Tumoren nicht nur detektiert sondern gleichzeitig auchlenadrei Raumrichtungen vom
umliegenden Gewebe abgegrenzt. Der EntscheidungssolaGtit dabei den Kern dieser
Arbeit aus. Als Klassifikator wurde hierfur der ProbabitsBoosting Tree gewahlt. Er
wird in einer separaten Lernphase vor seinem eigentliciesaE anhand einer Reihe von
Beispielbildern trainiert. Nach erfolgreichem Trainingnkaer in der Anwendungsphase
auch zuvor nicht gesehene Bilddaten verarbeiten.

Derartige automatische Segmentierungsverfahren sirehdess dann hilfreich, wenn
Tumoren Uber einen langeren Zeitraum Uberwacht werdearsoWir prasentieren daher
an dieser Stelle ein Verfahren, mit dem ein a priori ModallTfimorwahrscheinlichkeiten
erstellt werden kann. Das Modell wird aus einer Reihe vorlizkén Serien von CT-
Bildern gewonnen, wobei eine Serie jeweils Bilder eines Rtgieenthalt. Ziel ist es, die
Qualitat der Segmentierungsergebnisse fir Folgeunteusigen zu verbessern. Es wer-
den zwei verschiedene Methoden untersucht, wie das Maddhs bestehende Segmen-
tierungssystem zu integrieren ist. Anschlie3end kann gatef die Segmentierung bei
einer Folgeuntersuchung steuern, indem es mit Hilfe desdlfodus friheren Aufnahmen
desselben Patienten berechnet, wo L&sionen zu erwaregn sin

Die Wirksamkeit dieses Vorgehens wird anhand einer ReiheBxperimenten mit
klinischen Aufnahmen belegt. Vergleicht man in diesen Expenten jeweils den Punkt,
an dem 90% der Tumorpunkte erkannt wurden, stellt man fests dich der positive
Vorhersagewert durch das a priori Modell von 82,7% auf 91y@¥bessert. Fur die Zahl
der falsch positiv klassifizierten Voxel je korrekt posikilassifiziertem Voxel entspricht
das einer Verbesserung um 57,8%.

Schlie3lich widmen wir uns der Problematik der Rechenzeitklassifikationsbasier-
ten Segmentierungsverfahren. In der Lernphase baut dbaBitistic Boosting Tree eine
Hierarchie von AdaBoost-Klassifikatoren auf. Um die Klagsifion im Produktivein-
satz zu beschleunigen verandern wir diese Hierarchie dahand, dass auf den oberen
Stufen einfachere und damit schnellere AdaBoost-Klassiffka verwendet werden. Zu
diesem Zweck wird ein Kostenfaktor in das LernverfahrenAdaBoost eingefiuhrt, der
wahrend der Merkmalsauswahl die Komplexitét eines Merkrgaben seinen Nutzen fur
die Entscheidung abwagt. Auf diese Weise kann das Lerrvwenfiegezwungen werden, fur
die oberen Ebenen der Hierarchie einfachere und fur diereafEbenen komplexere Klas-
sifikatoren zu erzeugen. Die Ergebnisse einer experimlentduswertung mit klinischen



Bildern belegen, dass diese Methode die Gesamtkosten decHeidung in der Anwen-

dungsphase um bis zu 76% verringern kann ohne die GenaudgeSegmentierung zu

beeintrachtigen. Des Weiteren wird in den Experimenterigézdass AdaBoost auf diese
Art nicht nur die Laufzeit sondern beliebige Nebenbedirggmoptimieren kann.
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Introduction

1.1 X-Ray Computed Tomography Image Acquisition. . . ... ......... [2
1.2 Anatomy and Physiology ofthe Liver . . . .. ........ .. ......... (3
1.3 LIVerTUMOIS . . . e e e e e e e e (5
1.4 Focus and Contribution . . . ... . ... .. e [9
15 0utline . ... e [10

Medical imaging has come a long way since Wilhelm Conrad Rantligcovered his “X-
rays” in 1895 [Ront95]. Exciting imaging modalities have bakeveloped that provide
insight into every part of the human body, from whole body ges down to cell level.
As these modalities measure different physical phenontbaanformation they visualize
may range from the morphology of arbitrary body regions giaos to body functions as
complex as blood flow or localized brain activity.

X-ray imaging itself has evolved from lengthy procedures denerating blurry 2D
transmission images to acquiring crystal clear 3D volummetatasets at sub-millimeter
accuracy in the blink of an eye. With state-of-the-art coteduomography devices these
acquisitions are possible exposing the patient to only Mendoses of the harmful ionizing
X-ray radiation.

Having focused on improving image quality for decades, i advent of stronger
computers engineers started to establish new disciplmeseidical imaging: computer
aided diagnosis and therapy. Algorithms are now not only igemprove image quality
visually by filtering, but try to interpret their content imder to assist medical staff. In
some domains, such as cardiac imaging, algorithms candgl@avide valuable support
to physicians, e.g. automatically analyzing coronaries$ @assessing infarction risk, sug-
gesting optimal treatment or planning stent implantatigdher domains are still waiting
for the big breakthrough in the automatic processing of tineages.

One of the latter is oncology. The constantly growing nundferancer cases world-
wide [Glob 11] and their high mortality rate create a patacly large need for computer
support. Integrated into various steps of the clinical \ilork, these algorithms would al-
low earlier diagnosis as well as more precise treatmenticdypasks that could be solved
algorithmically involve the detection and localizationtaimors, their exact delineation,
measurements and categorization, as well as monitoringlzampe assessment.

Unfortunately, the challenges for algorithmic solutiongthiis field are highly demand-
ing, even when the method is limited to a single imaging mbgal single type of cancer,
or a single target location. Of the typical clinical scenarihe fewest are well understood

1
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Figure 1.1: CT values of different tissue types. Adapted f{Kiaie 06].

from an image processing point of view. Consequently, notriany of them clinically
acceptable algorithmic solutions exist, let alone a usiakesolution.

In the work at hand, we work towards a solution for one suchaue, the detection and
segmentation of liver tumors in X-ray computed tomographgges. A general segmen-
tation system is developed and then used to broaden thestadeing of and investigate
further techniques for segmentation in the follow-up settiFinally, a method for speeding
up the proposed system or related ones is presented.

1.1 X-Ray Computed Tomography Image Acquisition

X-ray computed tomography (CT) nowadays is a standard ingagiathod for patients
with liver tumors. It can be used in all stages of the ther&pyn first diagnosis to treatment
planning and follow-up examinations.

Images are acquired by rotating a fixed setup of an X-ray soamnd a detector array
around a patient, where the detector elements measurentiagniag intensity of the radi-
ation generated by the source after transmission throwgpdtient. From this data, a 3D
volume is reconstructed showing morphological infornratd the examined body. The
volume can be interpreted as a 3D image, where each imagemi€tvoxel”) has a certain
spatial extent. Each voxel is assigned a value based ont#heuation of the tissue at the
corresponding location in the patient body. The attennati@asurement refers not to a
mathematical point but averages over the volume coveretldoydxel, which can contain
a mixture of different materials. The values, also called @lligs, are given in Hounsfield
units (HU). CT values are calculated by measuring the voxisisie specific attenuation
coefficientvissueand normalizing it to the attenuation coefficient of watgs:er according

to Eq. [1.1):
[CT valugissud = —esue™ Ywater 4900y (1.1)

Vwater

By convention, values range from1024 to 3071, where air has a value-e1000 and
water has the value 0. Other typical CT values for human tisanébe found in Fid, 111.
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(b)

Figure 1.2: CT image slices of a patient demonstrating thecefif a positive contrast
agent. Both images show the same range of gray levels. In the image (d), the liver
is much darker than in the contrast enhanced[orje (b). Brigitttates in the liver if ()
designate liver veins, the dark spot marked by the arrow mallsumor.

As can be seen from this graph, soft tissues fall into a rataeow range. Paired with
the comparatively high noise level in soft tissue images, tiakes it difficult to distin-
guish between tissue types in the data. In particular, tigsue and most liver tumors are
nearly indistinguishable. When visualized as images, tlanifasts itself as low contrast
between the different tissue types. To improve this cohtrathe images and thus allow
better distinction between healthy and tumorous tissug,dften enhanced during image
acquisition by bringing a so-called contrast agent intaéggon to be imaged (cf. Fig. 1.2).
Mostly, this is done by injecting the contrast agent into bk@od flow, either directly at
the point of interest, which requires an interventionalgedure, or peripherally so it is
distributed all over the body by the blood circulation.

There are different types of contrast agent. X-ray positigents exhibit a high at-
tenuation coefficient and thus lead to a local shadow whexg dine present in the tissue,
meaning that the image becomes brighter at these regions.mians that, in Eql.(1.1),
Viissue IS increased, leading to a higher CT value. X-ray negativentsgehow the oppo-
site behavior, leading to darker image regions. The forrmesare used far more often,
especially for imaging the blood vessel system.

1.2 Anatomy and Physiology of the Liver

The liver is an integral part of the metabolism, functionamya filter for blood arriving
from the gastrointestinal tract. While the kidneys are a nmeeehanical blood filter, the
liver is more selective, processing the found substanciés gpecialized cells. That way it
can extract and break down toxic substances like pharmaatjtut also fat, glucose and
other nutrients. At the same time it functions as a glanddypecong bile, which contains
enzymes important for digestion inside the bowel, and sgites important proteins.



Chapter 1. Introduction

o , Lig. coronarium

, Lig. falciforme
. A
Lig. triangulare dextrum —

- Diaphragma
7

— Lig. triangulare
sinistrum

Lobus hepatis dexter, ——
Facies diaphragmatica

— Lobus hepatis sinister,
Facies diaphragmatica

Lig. falciforme

\

\ Lig. teres hepatis
\ Vesica biliaris
Margo inferior

@)

Impressio oesophagea \

Appendix fibrosa hepatis ~ __

: : : Pars superior;
/ 7 , Facies diaphragmatica { Hioa nuda

_ Impressio suprarenalis
7
Lig. venosum ——

Lobus caudatus ——

5 > — — Lig. coronarium
Impressio —— |
gastrica

_— V. portae hepatis
Tuber ——

omentale

4 —— Impressio renalis
Proc. papillaris ——

—— Ductus
choledochus
[biliaris]
Proc. caudatus — = A. lobi caudati
— Impressio
Lobus hepatis sinister ~ duodenalis
= A. cystica
Margo inferior ~ v
£
A. hepatica propria 4

Fissura ligamenti teretis 4

~ Impressio colica

Incisura ligamenti teretis !

Wi N
Lig. teres N

hepatis

T = Lobus hepatis dexter

Lobus
quadratus

o~
> Vesica biliaris

(b)

Figure 1.3: Surface view of the human liver, seen from thatf(a) and back (b). Images
taken from [Putz 04], courtesy of Urban & Fischer Verlag eiler GmbH.
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With 1500— 20009 for an adult, the liver is
the largest organ in the abdomen. It is located
towards the right hand side, directly below the
diaphragm. Anatomically, it can be divided into
two parts, the liver lobes, separated by the liga-
mentum falciforme. Figure 1.3 provides an ana-
tomical view of the liver. For liver surgery on the
other hand, a subdivision into eight segments is
more common[[Coui57]. These segments have
the property of being functionally independent of
each other, meaning that an entire segment can
be resected without affecting the remaining liver
tissue. This independence is possible due to the
Figure 1.4: Functional segments aspecial tree-like structure of the vessels inside the
identified by Couinaud. Each segtiver (cf. Fig.[1.4).
ment (I — VIII) is defined as the re-  Four vessel systems pervade the liver. The
gion of influence of certain branchedepatic artery provides oxygenated blood to the
of the portal and the liver venous treediver cells. The portal vein brings blood from
Adapted from|[Lagh 05]. the gastrointestinal tract to be filtered. Approx-

imately 75% of the blood flow towards the liver
arrives via the portal vein, the remaining 25% via the hepattery. The liver’s venous
system collects all the blood and feeds it directly into thaascava inferior leading to the
heart. The fourth vessel system is the biliar system, ciig¢he bile produced at the liver
cells and draining it towards gall bladder and duodenum. afbeementioned liver seg-
ments are independent not only in terms of their blood syfpiyalso in terms of venous
and biliary drainage.

Vena cava

. . Liver veins
inferior

Portal vein

1.3 Liver Tumors

Primary liver cancer is the sixth most common cancer, wittestimated 748,000 cases
worldwide in 2008. At the same time, it has an alarmingly Hagality rate. It is the third
most fatal cancer, having caused about 695,000 deathswidddn the same year 2008
[Ferl10]. While almost 85% of the cases occur in developingntaes, even in Europe
the 5-year survival rate is as low as 9.1% [Glob 11]. The mesjfent primary malignant
tumor in the liver is the hepatocellular carcinoma (HCC), mhitmost cases develops on
top of a hepatitis infection or a liver cirrhosis. Far moréeafthan primary liver cancer,
however, are metastases from different other cancers. cln ifa Europe about 90% of
all malignant liver tumors are metastases [Laye 08]. Ptiaith colorectal cancer, for
instance, have a 70% chance of developing liver metastasasree time|[Bipa05]. In
total, there are about 30 different clinically relevant arsof the liver [Laye 08], though
not all of them are malignant.

The location of liver tumors varies greatly from patient &tipnt. For some types of
cancer rough information about their spatial distributisravailable — hepatoblastoma,
for instance, are known to be located in the right lobe in 6% e cases [OGra00]. In
general, however, lesions can be found anywhere insidavire Especially metastases,
since they can invade the liver via the portal vein as welllesliver artery and even
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Figure 1.5: Enhancement patterns of aorta, liver parenehymd portal vein over time.
The time scale starts at the moment of injection of the ceht@gent into the peripheral
vein, the points on the curves mark the time of image acdusitour phases of contrast
enhancement are distinguished: Early arterial phase, Wieecontrast agent first reaches
the liver via the aorta (EAP), late arterial phase, when washed into the liver arteries
(LAP), portal venous phase, when the contrast agent istlisd all over the parenchyma
via the portal vein (PVP), and equilibrium phase, sometiaiss called washout phase,
when only traces remain in the liver and the rest is washedsiauthe liver veins (EP).
Image adapted from [Lagh D5].

originate from other liver tumors, are widely spread. Algatients often have more than
one tumor.

1.3.1 CT Imaging

In native CT images, most liver tumors are not distinguisddbdbm surrounding liver
tissue. Therefore usually contrast agent enhanced imagesquired for their diagnosis.
After injecting the contrast agent into a peripheral veiis first washed into the liver via
the hepatic artery. Later, a second wave of contrast agésntsahe liver via the portal vein.
Depending on acquisition timing, up to 4 phases of contnasaecement are captured in
the images (see Fig.1.5).

Tumors grow differently depending on the type of cells theyadop from. This influ-
ences their entire structure, including blood supply. Timay therefore exhibit different
enhancement patterns during contrast agent inflow, sorest@itowing identification from
multiphase images alone, without biopsy. Tumors often laawery active metabolism and
are therefore hypervascularized, with a large arteriaddbgupply. In arterial phase images,
this shows as strong enhancement along the rim of the tumihreilate arterial phase often
as a strong enhancement of the entire lesion. In later phselyperdense (brighter than
surrounding) appearance often turns into a hypodensegd#ri&n surrounding) one, as
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the contrast agent is already washed out from the tumorewhé surrounding tissue is
saturated with contrast agent entering the liver via thégboein. In contrast, lesions may
also be hypovascularized, leading to an isodense or hygedgypearance in arterial and a
hypodense appearance in venous phase images. Some lesorexhibit a portal venous
hypervascularization. Some examples of lesions with giffeenhancement patterns can
be found in Fig['1J6.

Acquisition of all contrast phases is rare in clinical roeti since the number of used
phases has a small influence on tumor detection and biopsy c®@asidered necessary for
final identification of the lesion type. At the same time aiddial scans mean additional
dose for the patient. Often one arterial and one venous iraegacquired, although the
benefit of the arterial phase is also subject to heavy digmssn the community. The
portal venous phase (often only called venous phase) istéinelard phase for tumor as-
sessment and therefore always acquired. Depending on $peced tumor presence, an
additional arterial image might be obtained as well.

In this work it is therefore only assumed that an image witmedind of venous
enhancement is available in order to keep the requiremerntsvaas possible, although an
extension to more phases is possible with our approachaMsspection of the data and
some preliminary experiments indicate that adding aniattehase image could improve
performance considerably in some cases, if sufficient elainpages are provided for
training of the system.

1.3.2 Therapy Options

Nowadays a whole bunch of different treatment options f@rltumors is available. Still,
the standard therapy is a resection of the affected area. rébéction can include one or
more segments or even an entire liver lobe. This radicabflyebecomes feasible due to
the liver's amazing regeneration capabilities. Howevease of preexisting liver condi-
tions like cirrhosis as much tissue as possible has to bemwes, leading to a different
resection strategy. In these so-called atypical resexgither a wedge-shaped portion is
resected or only the tumor itself plus a small safety margire latter interventions require
particularly thorough planning to ensure fully functiotddod support and drainage for
the remaining liver tissue. If the liver is damaged too selyeil transplantation is the only
solution. In recent years, living donor transplantatioasehattracted a lot of attention,
again extensively using the regenerative property of thee.li

Besides surgery, there are numerous alternatives. Thessarly used in cases where
a resection is not advised because the number of targehtesdoo large, because the
target lesions are not accessible or dangerously closeportant vessels, because the loss
of liver tissue would be too big, or because the patient'sal’eondition is too bad. These
treatment options include the injection of ethanol, ragdiqfiency ablation, cryoablation, or
radiation therapy. In all these cases the tumorous tisstesisoyed in situ. A chemother-
apy may be applied either as preparation for any of the afentioned treatment options
or as primary therapy if the tumor(s) cannot be treated otiser

In any case, treatment success has to be assessed. Egpanalls that were not re-
moved surgically need to be closely monitored. To this eolthW-up images are acquired
on a regular basis at intervals of several months and lesimsieasured. The standard
guidelines for these measurements, the response evalwaiieria in solid tumors (RE-
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Figure 1.6: Various types of liver tumors with different anlcement patterns. Images
in the left column were acquired during the late arterialgghahose in the right column
during the portal venous phase.

CIST [Eise 09]), define their size criteria based on the largeigl diameters of a subset of
up to five representative target lesions. Based on these tiesrand the total number of
lesions, the total tumor burden is estimated and treatnesipionse or disease progression
is rated.

1.4 Focus and Contribution

In clinical routine working with CT images of liver tumor patits involves a lot of manual
interaction for initial identification of lesions, intem&on planning, or measurements dur-
ing follow-up examinations. The work at hand presents nreelearning based methods
for automatic detection and segmentation of focal liveroles. Detection in this context
means the localization of lesions, whereas segmentatiootel their precise delineation.

The main focus of the proposed methods lies on the followagecTo keep the com-
plexity at bay, the set of target lesions was limited. Simoenfan image processing point
of view the actual tumor type is of secondary importance stiection criterion was not
biological but based on the lesions’ appearance in the imagée limited our efforts to
primarily hypodense lesions, which make the largest portiball cases. Non-focal le-
sions like cirrhosis are not targeted here. However, thénokst that will be presented in
the following chapters are sufficiently generic to be exehtb arbitrary kinds of focal
lesions, provided that there is enough training data. Tistendtion of different cases only
by appearance implies that the image databases used faxprnraental evaluations may
contain not only tumors but also other focal lesions liketgy&Vhile a categorization of
liver lesions from a small set of multiphasic CT images is galhenot considered possi-
ble, identifying non-tumors like cysts might be. Still, agigtinction beyond the categories
hyperdense vs. hypodense is not in the scope of this thedithanefore not considered
further.
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Starting point for the proposed methods is a learning basediard approach to object
segmentation. It uses a previously trained classifier tmldithe image into target objects
and background regions by classifying every single imaget@md assigning it to one of
the two classes. We start with a state-of-the-art system fterature [Shim 08] and refine
it by

* replacing its AdaBoost classifier by a Probabilistic Boagflinee [Tu 05],

* improving its preprocessing by incorporating an intgnstandardization step origi-
nally developed for use with magnetic resonance image® [J&g and

» making classification results more smooth and robust lbgdiuicing an iterative clas-
sification approach [Morr 08].

A description and experimental evaluation of this systera puzblished in 2010 [Mili 10].
With a system like this, lesions can be monitored over timeségmenting them in
each follow-up image separately and matching and compdiiewp afterwards. In this
setup, the segmentation step treats each image of a serfdb@swere independent. To
improve accuracy, we modify this approach so that patieziti§ip information gained from
previous images is incorporated into the current segmentptocess. This is achieved by

* learning a lesion prior from example datasets and either

* incorporating the prior directly into the classificatides of the segmentation system
or

» combining the prior with the output of the original class#fiion step according to
Bayes theory.

This approach is also described in a recent publicationi [I\3ih].

Besides accuracy, response time is one of the main criteriag®e of a system like
this in clinical routine. Methods based on voxel classifaahave by nature a very high
computational complexity, even with today’s optimizedalghms and hardware. The last
part of this thesis thus deals with techniques for speedirthp@ machine learning methods
forming the core of the presented system. More specificakydeveloped a modification
of the AdaBoost algorithm, which

* makes it prefer simpler features, speeding up classificat hierarchical boosting
classifiers without losing classification accuracy, and

« allows the optimization of arbitrary side conditions.

This cost constrained boosting algorithm was publishe®it3ZMili 13a].

1.5 Outline

After the above introduction to the medical background dredmotivation for the work
presented in the thesis at hand, the remainder of the docusnenganized as follows:
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» Chaptei 2 provides the reader with information about thed usachine learning
methods. General ideas that form the basis of all machimaitepare outlined
as well as general definitions from this field. Starting witm® insights from the
theory of machine learning, the boosting methods used gffiraut this thesis are
explained in detalil.

e Chaptef B shows, how the aforementioned learning methad$eaised for seg-
menting liver tumors in CT images. A complete segmentatiatesy is described
and evaluated on a non-public set of clinical images. Thesesy forms the basis for
the following two chapters.

 In Chapter’4, it is extended and adapted for the case of falipdesion segmen-
tation. A novel method for incorporating knowledge gaineahf previous image
acquisitions is presented. It includes learning a priomftbe given image series and
combining it with the existing segmentation system.

» Chaptetb finally deals with an issue that concerns all legrbased detection meth-
ods, i.e. their computational complexity and thus runtilemethod is presented
that allows speeding up hierarchical boosting-based itilzeson systems without
affecting their classification performance negatively.

» Chaptei b outlines still open or newly raised questions ftbis project, which are
left for future work.

* Chaptef¥ sums up the entire thesis.
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Relevant Machine Learning
Methods
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The idea of “intelligent” and especially learning machihes always intrigued people and
stimulated their imagination. Nowadays, machine leariiMb) methods are used exten-
sively in tasks like object detection or categorization4#®9,/ Zhan 13], market analysis
[Bose 01/ Rudi 13], and regulating control systems [Golu 135 8%]. They have made it
to the standard repertoire of pattern recognition algorghHowever, taking a closer look
at these methods shows they are only vaguely related toigrecedfiction ideal of machine
intelligence and our current understanding of mind and consness raises some doubts
as to whether these fantasies will ever become reality.

Technically speaking, machine learning refers to the coihokalgorithmically deriv-
ing knowledge from data. The learning process can be as siagpthe calculation of a
mean value over some data points or as complex as a mudrardgptimization[[Bish 07].
The knowledge may be represented explicitly in the form ohlo readable rules or im-
plicitly as parameters of a model. All, that is essentialthat system has gained some
knowledge and that this knowledge, in contrast to the caigiaw data, allows inference
and prediction of new information and thus leads to a chandfes system’s behavior.

This coarse description already reveals one fundamentglepty of systems based
on machine learning methods: Their life cycle is inheremtiyided into a learning or
training phase and an application phase. The latter is the@ugtive phase in which the
system is used for the actual purpose it was designed for. tréivéng phase in a way
replaces the normal software development process, in vhe&tesired program behavior
is implemented. As Valiant puts it [Vali 84], learning is &lphenomenon of knowledge
acquisition in the absence of explicit programming”. Se,kRy concept and the difference
to conventional methods is to not set parameters manualyoeveloper but only design
the learning algorithm and let the system learn its desuedtfonality from “experience”
in the form of examples. Depending on the kind of data avkal&dyr training and the kind
of predictions made by the system, machine learning algostare divided into different
types.

Generally, the goal of the learning algorithm is a mappging — Y from the so called
feature spac¥, to a target variablg € Y. Often the feature spaceXsc R™, but there are

13
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learning methods that can deal with integral or categotigas just as well. The training
data is represented as a number of feature vegtarX.

If the target variable is continuous, the predictiois called regression, If is a discrete
set of labels, the prediction is called classification arel(finite) target values are called
categories or classes. In the latter case, the decisiordaoies separating the classes form
hyperplanes in the input space.

Since the methods presented in this thesis heavily relyassification algorithms, the
following descriptions will focus on this aspect of machlearning.

Supervised Learning

In supervised learning methods the feature vectarsthe set of training examples C

X are complemented by the corresponding class labels, fgritia training setv =
((X1,¥1),---,(Xn,¥n)) € X x Y. That means, for each feature vecigre X, the cor-
rect target value or class label is known and provided togbming algorithm as a teacher
signal. That way the classifier can adapt its parameters tomthe desired output and
thus minimize its error rate on the training dgt ; |yi — f(x;)| or some other kind of loss
function based on this discrepancy. The goal is a low classifin error during applica-
tion phase, i.e. when applied to previously unseen exampléss step of transferring
knowledge gained from examples to new input is called gdizateon.

Unsupervised Learning

In an unsupervised learning setting the training data doegantain class labels or any
other teacher signal. The goal here is to find patterns inxhenples so that data points
or regions of the input space are grouped in a way that witlgroap the points are very
similar to each other whereas objects of different grougsdigsimilar. Examples for

unsupervised learning algorithms are the family of clustemethods as well as feature
reduction techniques like principal component analysis.

Reinforcement Learning

Reinforcement learning has a special position between tier otvo categories. There is
no explicit teacher signal and thus no explicit loss. Laagrsuccess is, instead, measured
by means of a reward. This kind of learning is often applie@&mhagents interact with a
dynamic environments, so that each action has consequandatus may lead to some
reward. However, since the action may influence all futuretsteps, the reward may also
not be available immediately. This is very similar to humearhing processes.

2.1 Statistical Learning Theory

Statistical learning theory deals with topics around tlanability of classes of functions,
the learning capabilities of algorithms, and the data useddarning. In this context,
a key concept that was introduced by Valiant in 1984 [Vali B4fvhat was later called
probably approximately correct (PAC) framework. In thisniework, a class of concepts
% is considered strongly learnable, if there is an algoritiehghat for any concefdt € ¢

it will produce a good hypothesisfor & with high probability.
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A (binary) concept over the feature spateor example, could be a subset of the space
and defined by
{xeX:&(x)=1}. (2.1)

If a learning algorithm generates a hypothdsfer this concept based on a set of training
examples drawn frorX according to a probability distributidD, then its error probability
is defined as

6 = Ep[h(x) # & (x)][Bish 07. (2.2)

The full definition of PAC learnability is then as follows [W&84],[Hayk 99, Bish 07]:

Definition 1. A class% of concepts is called PAC learnable if there exists an dlgorso
that

o foreveryé € ¢
« for every probability distributioD over the input space and
« for everyd € (0,0.5) andp € (0,0.5)

with probability at least + d the learning algorithm produces a hypothésigith an error
probability 8 < p for any training sampl&/ = {(x1,&(X1)),..., (Xn, & (Xn))} With n > ng
drawn according t®.

Theng € N in this definition may vary for different distributions orrfdifferent values
for d andp. An algorithm is called PAC or a strong learner if it fulfillsis definition for
the concept clasg’ being the hypothesis spac€, which is the set of all hypotheses that
can be generated by the algorithm.

Analogously, a weak learner is an algorithm, for which irsttiefinition the expected
error 8 can only be guaranteed to stay belovs,0. e. it is at least better than random
guessing.

2.2 Boosting Methods

Boosting is a meta-learning algorithm, i. e. it does not definearning algorithm by it-
self, but a method for improving the performance of arbyjtdi@arning algorithms. It was
presented by Schapire in 1990 [Scha 90] as the affirmatiy@nse to the question raised
by Kearns and Valiant [Kear 89] whether the concepts of weakstrong learnability are
equivalent. With the boosting method Schapire presentedmly a proof for his affirma-
tive answer to this question but also a means for transfayraiy weak learning algorithm
into a strong one.

The core idea is to run the weak learner several times, wherkater iterations focus
on the hard examples, and combine the responses of the sirglelearners to form an
overall response. In the original publication, the focgsis implemented by assuming
a practically infinite amount of training data and using iearstages to filter the training
samples for later ones. That way later stages can focus se th@amples that were previ-
ously misclassified. In later versions, boosting by resamgpbr boosting by reweighting
were preferred.
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Boosting by resampling uses a finite set of training examgiesy which a new subset
Is sampled according to a probability distribution for eatelmation. By calculating the
error w.r.t. the entire training set and adapting the distion, the sampling focuses on
the hard examples in later iterations. Sampling by reweéghises the same set of training
examples for each iteration, but assigns a weight to eacd¥idlual example. During each
iteration, the error of the weak learner is calculated w.thé sample weights and in turn
used to adapt the weights, so that misclassified exampleweamore attention.

2.2.1 AdaBoost

Many realizations of the boosting principle have been pseplosince its origin in 1990.
One of the most successful and most frequently used to tiisdae AdaBoost algorithm
by Freund and Schapiré [Freu95]. Since it is used externsivethis thesis, it will be
described in some detail on the next few pages. It is baselrea key concepts:

* A weighted training set,
* iterative calls to a weak learning procedure and
« focusing on hard examples by reweighting the training set.

Hard examples in this context are those that are close todtisidn boundary.

Let X = {X1,...,Xn} C R™ be a set of feature vectors with class labgls Y, i €
{1,...,n}. AdaBoost was originally designed for binary classificatmnblems, so we
assumeY = {—1,+1}. These vectorX together with their class labels form the set of
training instance¥ = {(x1,Y1), ..., (Xn,Yn)}. The goal of the learning algorithm is a map-
pingR™ — Y of the form

T

H(x) = sign(;atmx)) Loy >0, hy(x) € {~1,+1}, (2.3)
t=

where often we will usg(x) = S{_; atht(x) for the sake of simplicity. During training
(Algorithm[1l), AdaBoost iteratively calls a weak learning@lithm that provides the hy-
pothesesy for this linear combination. Additionally, a distributidd assigning a weight
to each of the training instances is maintain@dis updated after each iteration, putting
more emphasis on the previously misclassified samples: M¢eaj previously misclassi-
fied samples are increased by a factor(exg ), those of correctly classified samples are
decreased by a factor of eéq). Afterwards, the samples are normalized again to ensure
that i Dry1(i) = 1. The weighting facton that is assigned to eadh is a confidence
weighting determined based on its training error with respe D;: Hypotheses with a
high training error receive low weight and vice versa.

AdaBoost is a meta-learning algorithm, i.e. it does not raguwhich kind of weak
learner should be used. Consequently, it has been combintkdallvsorts of classifiers,
from simple decision trees to fully grown neural networkssapport vector machines.
While the latter ones are strong learners by themselvesgibsting theory states that their
performance will improve when they are plugged into the Ada®@lgorithm.

Throughout this thesis, one-level decision trees, alsovknas decision stumps, act as
weak learners. These apply a threshold to a single featuteeahput vectox (cf. right
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part of Fig[2.1). Training a weak learner then means selgdtie feature and threshold
producing the lowest error on the training set. That wayjrdueach iteration AdaBoost
greedily picks the “best” feature. Compared to other leaymilgorithms this has the ad-
vantage that the user does not have to put much effort inexted a small number of
optimal features. Instead, one can run AdaBoost with a laegj@fsfeatures and let the
algorithm perform the feature selection along the way. Aadditional benefit, the result
provides insight into the nature of the underlying clasatfan problem and the usefulness
of certain features.

Algorithm 1 The AdaBoost algorithm [Freu 96].
Input:  (X1,Y1),---,(Xn,Yn) Wherex; € R™ y; € {—1,+1}.

1: Initialize D1 (i) = 1/n.

2. fort=1...T do

3:  Train weak hypothesis; : R™+— Y using distributiorD;.

4:  Getweighted training error of hypothedis= 5  Dx(i).

izhe (Xi) #Yi
Seta; = 31n (%)
Update
 Dy(i)e avihe(xi)
Drya(i) = i) Z
with
Z =y Dy(i)e M) = 2,/6(1-&).
|
7. end for

Output: Final hypothesi$i (x) = sign( % atht(x)> = sign(g(x))-
t=1

Error Bounds

One reason why AdaBoost was quickly adopted by the commusiteitainly its sim-
plicity, another is the guarantee for success stated bywentors. Freund and Schapire
provided a thorough analysis of expected error rates [Fsgudot only could they show
that the training error for AdaBoost is bounded by

0< tﬁzmztﬂ\/l—mZ < exp(—ziyﬁ) . ¥ =05—8, (2.4)

they also analyzed the expected generalization error anakgrt is with high probability

at most
C) Tv
— —). 2.
~+0(1/ =) (2.5)
vin this equation denotes the VC-dimension of the hypothesegasure for the complex-

ity of the hypothesis space that is named after Vapnik andv@henkis, who developed an
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extensive theory around this concept. While it was later egffiseveral times, the bound in
Eq. (2.5) already gave some hints on what to expect from treBadst learning algorithm.

Choice ofa

The error bound in Eq[(2.4) can be confirmed by unraveling#ieulation of the weight
updates for the training examples postulated in Alg. 1. Reskake of notational simplicity,
we usey, for 31, andy; for S ,, as well ag]; for []{_;.

1 e Oyiha(xi) g—aryihr(xi)

Droq(i) = =
Tl === Z:

et —oyihe(xi)
N[t Z
e Vi 2t athe(xi)
N4
e_yg(xi)
= 2.
N4 (2.6)

In the case of a misclassified example we he\&;) # Vi, such that;g(x;) < 0 and thus
exp(—Yig(xi)) > 1. For the following conversions, we use the notation

- 1 if (condition is true
[(condition] = {0 otéerwise d (2.7)
With this, it is easily agreed that
[H(xi) # i < e %9 (2.8)
and, summing over all feature vectors in the training set,
LS ) £yl < 5 3 e va, (2.9)
n4 n4

Bringing together the findings from Ed. (2.9) and Eq.(2.6) eomes to the conclusion
that

0= %IZ[[H (xi) #Yi] < %Ize—yig(xi)
= ZDT+1(i> I_lzt
| t
=[1%> Dr+ali)
t [
=12 (2.10)
t

The last conversion step is possible due to the fact thatigteldition D is normalized in
each iteration, so thgt; Dt 1(i) = 1.
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One interesting conclusion that can be drawn from this iaétyus, that AdaBoost es-
sentially performs a steepest gradient minimizatiofjgf; by minimizing in each iteration
the exponential loss function

Z=2/6(1-6) :_iDt(i)e—“tyihﬂxi). (2.11)

In order to minimizeZ;, two parameters have to be chosépanda;. The former is the
result of the weak learner training. As mentioned beforeaBabst is a meta-learning
algorithm and does not make a statement as to what kind of igaaker has to be used, as
long as its error on the weighted training set remains bel&w Dhus, we takéy as given
here. With that set fixed, what remains is to minimize Eq.Ipv. r.t. a;.

The optimal value fora; can thus be determined by solviﬁé‘% = 0. For better
readability, we will do this for a single iteration and as aasequence leaveout of the
following formulation.

dZ(a) _ d i)e—avih(xi)
da  da Z bli)e
— S D(i)yih(x;)e )
i
_ S D(i)yh(q)e ™) — F D(i)yh(x)e )
i:h(X)#Yi i:n(xi)=Yi
U Y D(i)e” - S D"
i:h(X)#Yi ith(x)=yi
= ¢ S D) ~e 3 D)
i:h(X))#yi ith(x;)=Yi
(|:|) e“0 —e_a(l—G)
B 96146
- ed
L 0 (2.12)

In step(i) of this calculation, we make use of the fact thiat {—1,1} andh(x;) € {—1,1}.
Step(ii ) applies the definition of the training error of a hypothesisf Alg.[1 and the fact
thatD is a distribution.

Reformulating Eq.[(2.12) further yields

99-11+6=0
=

1-6
a_
e = 0

o= :—ZLIn <ﬂ> . (2.13)
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Plugging this intoidzg confirms, that this value af in fact represents the minimum of
Z(a) and thus the optimal choice for the hypothesis weight inthision of AdaBoost.

Proof for this claim as well as the error bound above has beesepted in several
publications. The one that is formulated here largely fefiahe argumentation by Freund,
Schapire and Singer [Freul95, Scha 99].

Interpretation of AdaBoost

Since its publication, AdaBoost and its capabilities of sfanming weak classifiers into
strong ones have been the subject of extensive researcly. difterent views of the learn-
ing algorithm have been proposed, though none of them calaiexall of its behavior.
While algorithmically clear and simple, mathematically Aaest is very hard to grasp.
One of the more widely accepted perspectives is the margioryh It basically states
that AdaBoost training maximizes the margin of the hypotheadich is defined as the
distance of a sample to the decision boundary [Scha 98]

%at X|

a(H) ) (2.14)

7

With this concept, Schapire et al. explained an effect akegkin many experiments: Even
after many iterations, when the training error has reacleed, zhe generalization error
keeps decreasing. In most learning algorithms, the gamratiain error would increase in
this situation, as the classifier adapts too closely to @eitrg data; a phenomenon that is
known as overfitting. The margin idea was picked up and deeeldurther in several other
publications, leading to approaches directly optimizihg tnargin via gradient descent
methods/[Maso 99, Maso 00, Rats 01].

Whether AdaBoost overfits or not has long been subject to dsgmus The current
consensus is summarized, e. g., by Dietterich [Diet 00] aead¢ and Wyner [Meas|08]:
AdaBoost in general shows little overfitting, but it can seWeoverfit for datasets with a
high noise level. The reason for the latter is founded in teeit modification procedure
for misclassified samples.

A second view of AdaBoost originated from an influential papgrFriedman et al.
[Erie 0Q]. There, the authors develop a statistical argunuEscribing AdaBoost by means
of additive models. This leads them to the conclusion thaaBabst approaches logistic
regression with

g(x) ~ Sin PY=F1)
2" ply=-1[x)
for posterior probabilitiep(y|x),y € {—1,+1}. The most important implication from this

for the work at hand is that the output of the AdaBoost classifia directly be translated
into an approximate probability value.

(2.15)

2.2.2 Probabilistic Boosting Tree

The PBT is a hierarchical classifier proposed by Tu in 2005 BJu @esigned as a two-
class classifier, it builds a binary tree of strong learnering training (cf. Figl 2.1). Much
like a decision tree, the PBT classifies examples in a dividedycer manner where at
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each node of the tree the result is refined. However, beatiogglearners, the nodes of
a PBT have much more discriminative power than those of a idedisee, which usually
consist of only a single feature. Also, the decisions madeaah node of the PBT while
traversing the tree are not binary but represent probisiliby default incorporating both
subtrees. It is due to this latter fact that its mode of openat therefore often referred
to as that of a soft decision tree. Its way of decision makilsg atrongly resembles
the hierarchical mixture of experts approach [Jord 94, F#®jkwith a dynamic gating
network.

Base classifier

PBT AdaBoost classifier (Decision stump)
l Output
O class T
y 1 R +1
R4 I Il } }

) L. Pid T T
O O - Feature -1
y ‘1 value

Figure 2.1: Structure of the PBT. Each tree node contains aBAdst classifier, which in
turn consists of a number of weak learners, in this case idacsumps.

Training Phase

The training procedure of the PBT is recursive: Starting witbet of weighted training
examplesS, at the root node of the tree a strong learner is trainedpsigearly. Using
AdaBoost to train these as Tu recommends has the advantagiegin@utputH allows the
computation of approximate posterior probabilitigg|x) for a samplec as (cf. Eq.[(2.15))

q(£1x) = 1?&;192(;2)). (2.16)

Using these probabilities, the training samples are s&atay the newly trained strong
learner (cf. Figl 2Z2):

« Samples, for whicly(+1|x) > %+ € are put into a positive subset;
» samples, for whiclgy(—1|x) = 1—q(+1|x) > %+ € are put into a negative subset;

« samples, for whicly(+1|x) € [% —&, % + €| for a user defined are considered am-
biguous and put into both subsets.

Ambiguous samples are those located close to the decisiomdiaoy of the strong learner,
so thatg(x) id close to 0. The two subsets are then reweighted, placsgdmphasis on
the ambiguous samples, and used to train the right (posdive left (negative) subtrees.
For the full training procedure see Ald. 2.
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Negative Both Positive
subset subsets subset
0 05-¢ 05 05+¢ 1 q(+1]x)

Figure 2.2: During PBT training, at each node the sampleseparated into positive and
negative subsets according to the approximate postermdapilitiesq(y|x) calculated by
the node’s strong learner. The softness of the spBta user defined training parameter.

Algorithm 2 The training procedure of the PBT.
Input: S = {(X1,Y1,W1),..., (Xn,Yn,Wn) }. Wherex; € R™, y; € {—1,+1}, andyjw; = 1.
Maximum tree depth. Split softnesg € [0,0.5].

1: Compute and store empirical distributiga(y) = 5 wi.
iyi=y
2: Using AdaBoost, train strong learnidg for current node from S;, stopping early, for

example when hypothesis errér> 0.45.

3: if reached tree depththen

4:  return

5. else

6:  Split S into Seft andSright:

7.  forall xj € S do

8: UsingHc, computeg(£1|x;).
o: if q(+1/x;) > 0.5+ € then
10: Add (xi,yi,1) to Sright -
11: else ifg(—1/xj) > 0.5+ ¢ then
12: Add (X, Vi, 1) to Sett.
13: else
14: Add (xi,Yi,d(—1|xi)) to Siest and(xi, ¥i, d(+1/xi)) t0 Srignt.
15: end if
16: end for

17:  Normalize sample weights; in Seft, so thaty;w; = 1.
18:  Train left subtree witt§e+:.

19:  Normalize sample weights; in Siignt, SO thaty;wj = 1.
20:  Train right subtree wittSgnt.

21: end if

Output: Trained PBT
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Figure 2.3: The PBT splits the feature space hierarchicattjia to a decision tree. Sam-
ples can, however, end up in both subtrees.

Inference Phase

Applying a previously trained PBT to classify a new patterrrkgoanalogously: Start-
ing from the root, the sample is passed down the tree. At eadh,rthe strong learner’s
posteriorsq(y|x) are computed. Based on these, the subtrees’ results are t=zhygnd
combined, so that at the root node the overall approximastepor p(y|x) is returned.
Whenever a strong learner is very certain about the sampless €(y|x) > € + %), the
respective other subtree is omitted, or more preciselgntpirical class distribution deter-
mined during training is assumed as posterior. This orfithsubtree pruning can speed
up classification considerably. At the same time, it doesnfltence accuracy negatively,
since only those subtrees are omitted that have a small nttuen the overall result. The
final resultp’can then be used to directly trade off the tree’s sensitistyits specificity
via a single threshold. The procedure is described in detailg. 3|

Since the output of the PBT is not a category but a probabititye, it is strictly speak-
ing not a classification. However, since the PBT is traineth@ibinary teacher signal, we
will stick to this terminology, interpreting the output asnfidence rated classification.

The PBT has been successfully applied to various challengiasggification prob-
lems such as polyp detection in virtual colonoscopy CT imd@ie€6], detection of fetal
anatomies in ultrasound images [Carn 08], and segmentatipadiatric brain tumors in
MR images [[Wels 08]. Its divide & conquer strategy makes itipalarly well suited for
problems with high dimensional feature spaces and high-citass variability. Splitting
the training samples at each node effectively subdividesctassification task by subdi-
viding the feature space (Figure R.3), restricting thesifecstion in deeper tree nodes to
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Algorithm 3 Calculation of the approximate posteripg(y|x) at nodec of a trained PBT
for a samplex. cright here means the subtree rooted at the right child of mpdedenotes
the weighted empirical class distribution at nades computed during training.

Using the node’s strong classifids, computeg(£1|x)
if q(+1|x) > 0.5+ € then
return q(—1{X) g, (¥) + A(+11X) Begn (YIX)
else ifq(—1/x) > 0.5+ € then
return g(—1[X) Beer (YIX) + A(+1[X) Geyigry (¥)
else
return q(—1/X) B, (Y1X) + A(+1{X) e (VIX)
end if

Output: Approximate posteriopc(y|X)

smaller subspaces. Compared to a monolithic design, thds leaa more efficient problem
representation, using less weak learners. Also, togethierstopping the training early, it
stabilizes AdaBoost: The AdaBoost classifiers are less pmoedrfitting and the occur-
rence of conflicting hypotheses is reduced. For the PBT jigedffitting can be controlled
via the tree depth and, to some extent, via the split softae$¥ith all other parameters
fixed, a lowere will lead to a stronger separation of the subtrees and thugheehrisk of
overfitting.

As additional benefit compared to other classifiers, theahddical subdivision of the
feature space together with the feature selection procdeseant to AdaBoost provide
insight into the nature of the classification problem at hand the relative importance of
different features. While features that are selected ay stabes are highly discriminative
and important for a rough estimate, those chosen in deegentides encode fine details
about the decision boundary and may only be useful for a smatber of samples.



CHAPTER 3

Automatic Segmentation
of Liver Lesions

3.1 Related Work . . . ... ... . . 27
3.2 PreproCesSiNg . . . v v oot i e [2¥
3.3 Pointwise Classification . . . .. ... .. . . . . . . . ... (26
3.4 POSIProCeSSING . . . . o vt e [33
3.5 Resultsand Discussion. . . . ......... ... i [35
3.6 Conclusion. . . . ... . . e (43

An automatic assessment of liver lesions requires autoraatitions for both their detec-

tion and segmentation. These two tasks could be carriedepatrately and consecutively
by first finding relevant lesion locations as regions of ieg¢r(ROI) and then running a

different algorithm to delineate the lesions. In contrdst,approach described on the fol-
lowing pages performs both detection and segmentationlsimaously. This is achieved

by letting a previously trained classifier mark each singlapin the input image as be-

longing to a liver lesion or to the background. The only regdiinput for this system is a

CT image of the patient’s liver with venous contrast enharezgm

The principle of segmentation by pointwise classificat®a fairly standard approach,
so there are many parallels between our approach and, beggne by Shimizu et al.
[Shim 08]. Algorithmically important differences to therethod will be pointed out along
the description throughout this chapter.

Before we detail on our own approach, a brief overview of exgstiterature on the
topic of liver lesion segmentation will be given. Next, thetiee processing pipeline
(Fig.[3.2) is described, from image preprocessing via theahcegmentation step to the
postprocessing necessary to generate contiguous lesisksroat of the point classifica-
tions. Finally, the presented system is evaluated in asefie@xperiments highlighting
different aspects of the method.

The work described in this chapter was published at the “R@rnational Conference
on Pattern Recognition” (ICPR) in 20110 [Mili 10].

25
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Preprocessing

Liver
segmentation

Y

Extract liver mask

Y

Intensity standardization of liver points

*- Postprocessing
Median filtering

-

-

Thresholding

| Morphological opening E

Lesion mask

Figure 3.1: Liver lesions are segmented by classifying @agkl inside the liver as tumor
or background. The probability image output by the classidsismoothed and binarized.
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3.1 Related Work

A number of automatic methods for liver lesion segmentatiave been proposed over the
past few years. These include histogram based methodsdikbining adaptive multi-
thresholding with morphological operators [Bil€ 04] or k-amne clustering on mean shift
filtered images/[[Mass 08]. Such methods require, howevenaa @nd fairly constant
contrast between lesions and parenchyma.

Machine learning techniques like AdaBoost seem more proisi this respect due
to their higher flexibility and the resulting ability to adap different tumor types, lesion
shapes and sizes, image qualities, or contrast enhanceniéry have been used to lo-
cate lesion boundaries by classifying 1D intensity profdakulated around a manually
set seed point [Li06a] or to automatically identify tumosdissue based on its image tex-
ture [Pesc 08]. If the lesion position is known, ML and level methods can be used in
combination to delineate its boundaries [Smee 10].

As part of the MICCAI conference in 2008, a workshop on liveidassegmentation
was held in order to compare state of the art methods. Sepsralising algorithms at
different levels of automation were presented, the bebt &ultomatic one yielding a Jac-
card index of up to 0.71 [Shim 08] on the provided set of testges containing 10 tumors.
This system, which was proposed by Shimizu et al., is the cvst olosely related to ours.
They trained two AdaBoost classifiers with a set of gray vatagstical and gradient fea-
tures calculated on normalized images, as well as feat@®sdbon a convergence index
filter that enhances blob-like structures. One classifies i@ned for segmenting large,
the other for segmenting small lesions. After applying bd#ssifiers to the points of an
image separately, their results were merged to form a firpludu

3.2 Preprocessing

Machine learning methods have proven to be highly flexible eapable of adapting to
most complex environments or tasks if provided with suffitteaining data. Nevertheless,
in order to improve robustness of the classification andeedhe need for training data
and feature dimensions, one wants to keep problem complesilow as possible. To this
end, the preprocessing step in the presented system resexasl sources of variability
by first automatically segmenting the liver and then stadidarg image intensities in the
input data.

3.2.1 Automatic Liver Segmentation

Providing a segmentation of the liver to the lesion segniemtesystem has two great
benefits. Identifying the liver region in the image allowsstraining the search space to
relevant areas and thus saves computation time. From tiné gioview of the classifier
used in the segmentation step, all image points outsidevitreelong to the background.
Not considering these at all therefore also reduces the lexityof the feature space and
especially the intra-class variance of the backgrounds Tiakes the classification task
more feasible and reduces the risk of spurious detections.

The method adopted for liver segmentation here was firstqaeg by Ling et al.
[Ling 08]. They model the liver by a hierarchical mesh-baskdpe representation. First,
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(b)

Figure 3.2: Images of two patients illustrating the needritensity standardization. Both
images were acquired with a protocol for venous contrashecdment. Still, the tumor in
has approximately the same intensity as large partsegfahenchyma ip (b). For both
images the displayed intensity window is centered at 100 Wit a width of 200 HU.

the liver is detected estimating its location, orientatol scale on the coarsest level using
the marginal space learning scheme. Then, the model is dedimglying a learning-based
boundary localization which helps the system to becomestobgainst heterogeneous in-
tensity patterns. The liver surface is decomposed intcheatdepending on the surround-
ing anatomic structures, and patch dependent classifiersraployed to cope with the
different texture patterns.

The result of this step is a binary mask of the liver, whichsedito define the region
of interest in the image for the intensity standardizati@psind all further processing.

3.2.2 Intensity Standardization

Several factors influence the distribution of contrast agreside the liver at the time of
acquisition and thus the image intensities. One factordgiiadion timing, another, even
less controllable, the perfusion of the liver, which depeod the health status of the patient
and his metabolism. Stenoses or other local disturbanceerinsion may also cause
changes in intensity. The result is that even images tha¢ wequired during the same
phase of contrast enhancement can have a very differerdlbwveensity level.

In order to make the input images more comparable, intessitiside the liver are
standardized. This is a fairly common preprocessing stgegmentation. Its realization,
however, in our case differs from the standard approach. dstwases, voxel intensities
| are either modified using histogram equalization [Pesc@8]ch has a mainly visual
effect, or normalized according to [Shim/08]

/_I_“
= (3.1)
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with I’ being the processed intensity andand o being the mean and standard deviation
of intensities inside the liver. For simple cases like spstictly hypodense lesions in oth-
erwise healthy livers, this will usually be sufficient. In reccomplex cases, however, like
partly hyperdense or rim-enhancing lesions, cirrhosidloeidbasal diseases, the histogram
of the liver voxels may be multi-modal with varying distasdeetween the single modes,
so that normalization will not match intensity ranges astiosages correctly.

To be able to handle these cases as
well, we took a different approach, which
was originally developed for standardiz-
ing intensities in nuclear magnetic reso-
nance images (MRI) and was there ap-
plied to head and even full body images
[Jage 09]. The idea is to select a repre-
sentative image, in which the liver has

_ an appearance that is considered typical
Intengity f_or the data_b_ase. This imag_e’s i_ntgnsi-
_ _ _ ties’ probability density function inside
Figure 3.3: The histogram of the target imagg, jier defines the ideal histogram. Each
(red) is non-rigidly registered to the hlstograrfhrget image is then standardized by
of the refgrence image to det.ermine the inteﬂiatching its histogram non-rigidly to that
sity mapping for the standardization. of the reference image and applying the

resulting intensity mapping to the intensities in the tamgege (FigL3.B).

>

Relative frequency

3.3 Pointwise Classification

The core of the system, responsible for the actual segn@mtabnsists of a classifier that
assigns a value in the rang@ 1] to each voxel within the liver. This value reflects the
estimated posterior probability(y = 1|x5) of the voxel belonging to a liver lesion. It is
calculated by a cascade of previously trained ProbaloilBtosting Trees (PBT), based
on a vector of features, describing the appearance of the voxel in the image. Strictl
speaking, the result is not a real classification, but sined”BT is trained with class labels
as target values and the output values are a mere confidetimag t&e will stick to this
terminology.

There are two standard ways to use classification in objeettden: window classifi-
cation and point classification. The former receives a largaber of rectangular regions
of various sizes and positions in the image (windows) anddéscowhich ones contain a
target object. The latter decides for each single point énitiiage, whether it belongs to
a target object, providing a segmentation at the same timeleWlndow classification
allows the simple incorporation of features describing atire target object like in tem-
plate matching approaches, point classification has theradge of allowing the detection
of objects of arbitrary size and shape. Especially in the cddiver tumors, which vary
greatly in their size and appearance, this is an invaluabeffect. Also, the point clas-
sification approach requires a much smaller patient da¢atmasclassifier training, since
each single tumor point can function as a positive examgl@pposed to each tumor in
the window classification case.
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Figure 3.4: The red point in the center marks the current y@emage location. The
boxes denote the neighborholdd ) around this voxel (left) and the neighborhoods around
the voxels inN(l) (right). N(I) marks the region from which the probability features for
the voxel at locatiom are calculated.

3.3.1 lterative Classifier Setup

The highly variable appearance of both parenchyma andngsitakes it difficult for a
single classifier like AdaBoost or a support vector machingdpto globally find an ap-
propriate model for each target class and thus an optimasidadooundary in the input
space. To be able to account for at least different lesi@ssand thus eliminate one source
of variation, Shimizu et al/ [Shim 08] used two AdaBoost dféess in their segmentation
step. The approach presented here is more general, scaihfpmsegmentation tasks of
different complexities. The classifier we chose to adogtésecently proposed Probabilis-
tic Boosting Treel[Tu 05] in combination with AdaBoost as sgem@and decision stumps as
weak learners (compare Sec.12.2). Due to its hierarchi¢ateahe PBT should be able to
handle the high dimensional feature space at hand, as wék dsgh intra-class variability
of the task.

One drawback of the voxel classification approach is the thett it treats the clas-
sification of each point in the image as an independent pmpb¥ehich is obviously not
true when segmenting contiguous objects. This wrong assomig usually compensated
for by incorporating context information into the classfion, e. g. by designing special
features or averaging features over some neighborhood. nArely different approach
is proposed by Morra et all_[Morr08], who exploit the facttthaighboring points with
similar properties tend to belong to the same class. Themnal# is the following: When
classifying a point it would be helpful to know the corredbdh of the surrounding points
and incorporate this information into the decision makihgpractice, during application
phase class labels are not available, but the classifierptoggle an estimate of the pos-
terior probabilities. Consequently, each point’s clasaifan is formulated to depend on
that of the surrounding points. Since these depend on th#t festhe current point, this
leads to an iterative scheme, in which all points initialgvk the same lesion probability
of 0.5 and are updated alternatingly until convergence. The éstainated posterior prob-
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ability of the voxel at location with corresponding feature vectry afterk iterations is
then calculated as:

k=0: p(y|l) = po(y|l)
k=1: p(y|l) = pa(yll)

Po(Y|Xa)
P1(YXr) = P1(Y[Xa, {Po(Y/I") [ I" € N(1)})

k=K: p(yll) = pc(Yll) = P (YIXr) = Pk (Y[Xa, {Px—1(y[I") [I" € N(D)}) (3.2)

N(I) here denotes the voxel locations in a neighborhood of londt{Figure[3.4) and,
accordingly{ pi(y|l*) | I* € N(I)} denotes the probability values at these locations as pro-
vided by classifiei. We incorporated this scheme into our voxel classificati@p 9y
training a sequence of PBTs. Each PBT in the sequence recsivgswa not only the fea-
ture vectorx, describing the appearance of the voxel under considerdtidralso a vector
Xp of features calculated from the output probability imagehefpreceding classifier (Fig-
ure[3.5). Both feature vectors are concatenated as(xa, Xp) to form a combined feature
space for the PBT. That way, when classifying a point, preslipgained knowledge of
the classes of surrounding points can function as a prias itdrative training procedure
is also described in Ald.]4. For the task at hand three to flawations turned out to be
sufficient; further steps rarely brought any benefit.

Algorithm 4 Training procedure for the iterative classification scheme
Input: V = {(Xa1,Y1),.--,(Xan,Yn)} Where thexaj € R™ were calculated from image
locationsl; in the training images ang € {—1,+1}. Number of iteration¥ + 1.

1. Train classifier PB§ using example¥

2. fork=1...K do

3: Use PBT_1 to classify the training images, i.e. for every single volkelation
lj in the images, calculate the corresponding feature vegtprand the posterior
P(Y|Xa j) (cf. Alg.[3).

4:  For each training sample locatidn .. ., I, calculate probability feature vectmp
from the output of PBI[_;

5: Concatenatexaj and Xpj to X to form new set of training examplegy =
{(Xr,1,¥1),-- -, (Xr,n,¥n) }

6: Train classifier PB using example¥y

7. end for

Output: Cascade of classifiers PBT..,PBTk

3.3.2 Feature Calculation

Selecting features describing the objects to be classiieddrucial step in designing a
classification system. Only if they capture the full varidypiof the objects and the differ-
ences between the classes, the classifier can learn togdistinthem. At the same time
adding new dimensions means additional complexity for faesifier and can decrease
robustness. AdaBoost in the version that is used here doesiffiet from this latter issue
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Figure 3.5: The iterative classification scheme used foarsgimg tumor from background
voxels, here with three iterations (in our experimentsehefour iterations turned out to
be sufficient for convergence). Each voxel of the input imegeassified by each PBT
sequentially. The feature vectgy consists of appearance featurgscalculated from the
inputimage and probability featurgg calculated from the output of the previous iteration.
In the output images, bright parts denote voxels that wesigiasd a high lesion probability
by the classifier. The arrow in the input image shows the lonatif the target lesion.
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due to its built-in feature selection mechanism that retstrihe learning to the most rel-
evant dimensions. This is not only convenient but also opgnsew worlds of features
that might be too weak to be used in other classifiers. Insiéedrefully selecting a small
number of strong and uncorrelated features, an AdaBoostasawrork with a large num-
ber of features and experiment with new types. Not only wilbBoost still learn the task,
it will also provide information about which features are thost useful ones.

A good example for this policy are the rectangular Haartfesst often used in ob-
ject detection. Originally, these were designed for a keeplate detection task [Papa 98,
Papa00]. With the introduction of integral images by Violedalones[[Viol01], these
became a standard set of features for object detection. featire is calculated as the
difference between the integral over two or more rectanguatage regions around the
current locatiod. A number of different combinations have been proposed ifPdpa 00,
Viol 01, [Lien02], 3D [Tu06] and arbitrary dimensions [Fedkl. Calculating these at
various scales leads to a number of features that can eaaith several hundreds of thou-
sands, often even exceeding the number of training examples

For detecting and segmenting liver lesions, we designed afdeatures capturing
different aspects of the appearance of liver parenchyrsaris, their borders, as well as
other structures in the liver that might be confused withtdrget lesions. The feature set
comprises

* intensity statistics of neighborhoods of various sizes,
* the skewness of an intensity profile sampled across thd poder consideration,

» gradient based features, including a simplified versiothefadaptive convergence
index [Shim 05, Shim 08],

* a number of Haar-like features, as well as

» avesselness measure [Satb 97].

The adaptive convergence index is a gradient based filtenfoancing spherical structures
and was proposed by Shimizu et al. for detection of HCC. A deddibt of the features is
given in Tab[311.

In contrast to other approachés [Shim08, Lil06a], our nesgihdod is computed not
on a voxel but on a millimeter scale, making the approachsbagainst the use of images
acquired with different CT scanners and acquisition prdgco

The features that are calculated from the intermediategiiéty output images to form
the feature vectax, are the point’s own probability value, as well as some sirsfaéstics
and weighted sums of the values in the point’s neighborhobdréb[3.2).

3.4 Postprocessing

The iterative classification in the previous step smoothgelaregions in the output im-

age as well as the course of lesion boundaries, renderingelaiwprate postprocessing
unnecessary. The final probability map is therefore onigtee with a median filter and a
morphological opening operation with a kernel size of 4 x 4 in order to eliminate last

small and isolated false positive detections. Finally,ithage is converted into a lesion
candidate mask by thresholding the probability values.
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Feature category| Feature name | Scales/NeighborhoodsTotal # |

Intensity 1
Max
Min
Range
Contrast 1.2mm—-16.0 mm
Mean

Variance

Skewness

2D Median

3D Median

Difference from global mean
Absolute  difference  from
global mean

Intensity statistic

W Ww| o1l 01 o1 01 U1| 01| U1 O] U1

1.2mm—-4.0 mm

Mean profile skewness 3
Max profile skewness 3
Central differences in,y, z 3
Sum of squared central differ- 1
Gradients ences
Sobel operator 6
Laplace operator 2D 1
Adaptive convergence index | overlap 1.0 mm - 5.0 6
mm, radius 2.0 mm -+
10.0 mm
Vesselness Sato vesselness 1
Edge inx,y, z 735
Haar features L|_ne Inxy,z 0.8 mm —41.0 mm 735
Diagonal inxy,xz yz 735
Center-surround 245
\ \ | 2526 |

Table 3.1: Appearance featungsused to separate tumor from background points.
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| Feature category| Feature name | Scales/NeighborhoodsTotal # |

Intensity 1
Mean

Sum over 2D surrounding
Sum over 3D surrounding
Variance

2D Median

3D Median 0.8 mm —16.0 mm
Gaussian-weighted sum in 2D
Gaussian-weighted sum in 3D
Difference from global mean
Absolute  difference  from
global mean

| | | [61 |

Intensity statistic

D O O O O O OO OO OO O

Table 3.2: Features, calculated from the probability image generated by theipres
classification stage.

3.5 Results and Discussion

To assess the system’s performance, a series of experimvastsonducted, each high-
lighting a different aspect of the algorithm. In total, 15 @/ datasets with venous phase
contrast enhancement from three different clinical sitesawused in the experiments. All
images had been acquired at 120 kVp. Their voxel resolutasies from 0547 to 0832
mm in x andy directions, and 1 to 3 mm imdirection. For training and testing, datasets
were subsampled to a slice thickness of 3 mm where applicAblenentioned in Se€. 1.4,
the images contained only lesions that were mainly hypaslens

Each single experiment was set up as a 5-fold cross-vainaburing each fold, 12
images were used to train the classifiers and the remainieg ware held out as indepen-
dent test set.

3.5.1 Subsampling of Training Data

While the tests were performed on all available points of #stitig images, the training
images were randomly subsampled to reduce training time.stibsampling was not uni-
form: Homogeneous image regions can easily be represantbd fraining data by only a
few points. On the other hand, regions around tumor bouesland blood vessels, as well
as regions with generally high entropy, contain a high degfevariation which is difficult
to capture in a few examples. The sampling routine therefmrased on these difficult
regions to ensure that in the training set each image regasrepresented proportionally
to its importance, not its size.

A sampling probability map for each training image was adaby combining two
filtered versions of the image:

» One was based on each point’s absolute distance to thestles®sn boundary, with
a value of 1 at the boundary and falling off exponentiallynfrthere.



36 Chapter 3. Automatic Segmentation of Liver Lesions

» The other was based on the variability of the intensity imjageasuring for each
point the absolute difference in intensity between thelloegghborhood and the
global mean. Only the top 0.5% of the points were kept, withrtiialues scaled to
the rang€0, 1].

Both images were combined additively, plus a small constanbt completely suppress
samples outside these regions. Training images were tisasyled without replacement
according to these sampling maps.

The learning algorithm was started with 50,000 positive aB@00 negative instances.
During training, additional samples could be drawn wheneseessary. While this is a
rather coarse subsampling, experiments indicate, thates @apture the entire variation
contained in the training data.

3.5.2 Evaluation Measures

For segmentation quality assessment, receiver operaaactieristics (ROC) curves were
generated. ROC curves are one common way of presenting tf@rpance of a classi-
fication or segmentation algorithm graphically, plottihg system’s sensitivity against its
false positive rate. The point of perfect classificationhage diagrams is the upper left
corner; the closer a curve is located towards this cornerp#tter is the classifier it was
generated by [Fawc 06].

Since the output of the presented algorithm is a probabifiap containing a lesion
probability for each individual image location, a threshbhs to be applied to determine
the final segmentation. Varying this threshold from O to 1 ealtulating sensitivity and
specificity values from the resulting confusion matriceed(fA.1, Tab[[All) yields the
points of the ROC curve. Here, each curve is the result ofl@fos-validation experiment
and is obtained by calculating the confusion matrices oNelatasets.

In addition to the ROC curves, several overlap measures eacalated in the experi-
ments (Appendix A, Talb. Al2) to allow a quantitative assessrof the results. The Jaccard
and Dice similarity coefficients are widely used for evaillomtof segmentation methods.
Like sensitivity and specificity, they both try to capture thccuracy of a method by mea-
suring the similarity of the reference segmentation andtherithm result, however taking
into account both over- and under-segmentation.

While these measures allow a simple comparison of differethods, their meaning is
hard to grasp intuitively, especially in a domain with veewfpositive samples such as the
problem at hand. Thus, we resorted to a measure with a simipi¢ive meaning, namely
the positive predictive value, also known as precision.ciBren denotes the probability
of a positive decision made by the classifier being correctil@\far a cancer patient the
sensitivity seems most important, precision is equallyangmt for physicians in clinical
routine, as it describes how reliable the decisions by tlstesy are and thus how many
false positives one has to expect on average. The simpldshast intuitive performance
measure in this respect is the ratio of false positives amjnositives##tf—g, since it describes
directly what to expect visually.
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Figure 3.6: ROC curves comparing the classification perdmee with and without the
standardization step during preprocessing. The showresuppresent a system designed
with only one PBT, which is equivalent to using the output af first iteration in our
scheme as result. Standardizing image intensities clbatps the PBT by simplifying the
task.
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3.5.3 Effect of Standardization on Segmentation

Figure[3.6 compares the classification performance of PBT&ing with standardized
images and those having to deal with the original intersiti€his experiment was run
without the filter based postprocessing in order to show timdyaccuracy of the classi-
fier. Also, no iterative classification was used. The systemgiintensity standardization
clearly outperforms the one using the unprocessed imabesiirsg an increase in preci-
sion of 39.2% at 90% sensitivity (cf. Tdb. B.3). While the PBTpiinciple is capable of
finding the decision boundary with the original images ad,veinplifying the task will
certainly result in more compact and robust classifiers.

3.5.4 Effect of Iterative Classification on Segmentation

Iteratively classifying image voxels can stabilize thesslfication, resulting in smoother
and more homogeneous probability images. Figure 3.7 iteidhat the provided prob-
ability features were extensively used by the classifierb.classifiers use the same set
of appearance features, yet when adding the probabilityfes, each classification stage
outperforms the preceding one. In this cascade, the pesficengain becomes smaller
with each step. While adding the first classifier with prolgbfeatures improves preci-
sion at the point of 90% sensitivity by 26.6%, the next twgstgield only improvements
of 8.6% and 3.3%, respectively (cf. Tab.13.3). The improvenachieved by training
more than three iterations turned out to be marginal in mqstements. If the filter based
postprocessing is activated, the gain becomes even spaslean be seen from Fig. B.7
[(b). Like the iterative classification, the filters smoothgioms in the probability image as
well as lesion borders, and remove small false positivectietes. Figuré 318 shows how
similar the effects of both techniques are. While in the fitsstation the postprocessing
has a visible effect on the ROC, in later iterations an effeonly noticeable in those parts
of the curve with low specificity. Still, deactivating the giprocessing completely is not
recommended. Not all isolated misclassifications are rehdy the iterative classifica-
tion, so that the postprocessing filters are necessary tweeitie number of false positive
detections.

Figure[3.9 finally shows curves for a system trained anddesteémages that were not
standardized. The same effect as in Eigl 3.7 can be obsekgadith the postprocessing,
the improvement caused by the standardization step becemaker in later iterations,
showing how heavily the classifier relies on the probabflfgtures in these cases.

Table[3.8 contains the performance figures for the segmentataluation without
postprocessing. All numbers are calculated for the thidskadue yielding 90% sensitiv-
ity. The effect of the iterative scheme is clearly visibldt gpecificity related measures im-
prove considerably in later iterations, the improvememivien the iterations being higher
in the early steps.

Table[3.4 presents the maximum Jaccard and Dice similaoigfficients that could
be yielded in the experiments for a single threshold, tagettith their corresponding
sensitivity values. In contrast to the previous experiragtitese values were determined
not by setting the desired sensitivity. Instead, for eadssvalidation experiment and
each iteration the single threshold value was determiregd/telded the maximum average
Jaccard and Dice similarity over all images in the experimen
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Figure 3.7: ROC curves visualizing the performance gairothiced by the iterative clas-
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w/o Standardization \ w/ Standardization

Iteration
0 1 2 3 \ 0 1 2 3

Sensitivity (%) 90 90 90 90/ 90 90 90 90
Specificity (%) 94.3 97.7 98.2 98)696.8 98.2 98.6 98.7
Jaccardindex  0.35 0.55 0.60 0.69.48 0.60 0.64 0.66
Dice coefficient 0.51 0.71 0.74 0.79.65 0.75 0.78 0.80
Precision (%) 36.2 59.0 63.4 70304 63.8 69.3 71.6
#ipl#tp 1.76 0.70 0.57 0.40.98 0.57 0.44 0.40

Table 3.3: Comparison of segmentation performance of éiffeclassifiers. All numbers
were calculated from the unprocessed classifier output,with no filter based postpro-
cessing involved.

w/o Standardization \ w/ Standardization

Iteration
0 1 2 3 \ 0 1 2 3

Jaccard index 0.57 0.67 0.67 0.69.64 0.70 0.71 0.71
Dice coefficient 0.72 0.80 0.80 0.820.78 0.82 0.83 0.83
at sensitivity (%) 68 78 83 84 72 79 81 81

Table 3.4: Maximum values for Jaccard and Dice similaritgftioients, measured from
classifier output without filter based postprocessing.
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3.5.5 Lesion Detection Performance

The presented segmentation method requires no sepaiatedesection step beforehand.
Instead, detection and segmentation of lesions are pegtbaimultaneously by classifying
each single voxel within the liver. While it does not seem osable to discard the seg-
mentation and use the method for detection purposes omstill interesting to see, how
many lesions can be found by the algorithm and how many fdésena are raised, since
this has a major influence on its acceptance by cliniciansoftimately, this is rarely done
in literature. Massoptier and Casciaro [Mass 08] do repoutrég on lesion detection per-
formance, however, they do not clearly state their criteniaonsidering a lesion correctly
detected or not, which makes a comparison difficult.

Thus, detection quality is assessed in this section in anesased evaluation. The
images in these experiments all underwent the filter basstppressing. Lesion candi-
dates were identified from the segmentation mask genergteételalgorithm by running a
connected components analysis. A reference lesion wagdeved detected if

1. its axis aligned bounding box overlapped with the bougiox of a lesion candidate
so that the candidate covered at least 25% of the referentce an

2. the candidate box’s center lay within the reference box.

While the first criterion measures only the sensitivity of thethod, the second one ensures
a certain specificity as well, since it penalizes too largedadates. Any candidate that was
not matched by these criteria for a reference lesion wasderesl a false positive or false
alarm. The entire analysis was restricted to objects witllame larger than 0.125 ml,
which corresponds to a cube with 5 mm edge length.

Applying these criteria to the final output of the system, wkiaved a maximum de-
tection rate of 68% in the last iteration at 3.4 false poegiper correctly detected lesion,
which equals 10.5 false positives per patient on this datba

In Fig.[3.10 and Fid. 3.11, the detection sensitivity wagstpbbagainst the false alarms
per volume and per true detection. Each data point in theespédt corresponds to one
value of the threshold that is applied to the probabilitypotitof the segmentation algo-
rithm. The points were not interpolated to form a curve, beeahe detection criteria do
not produce a continuous output for increasing values opthbability threshold.

While the false positive rates appear very high, closer ematimn reveals that most
of the false positives are located at the liver boundary dissures and exhibit character-
istic shapes, so that they could probably be filtered usimghen classifier. Experimental
support for this conjecture, however, has to be providedliow-up projects.

A look at the segmentation result generated with the saneslttloid as for the maxi-
mum detection sensitivity value illustrates the differemnin the requirements for the two
tasks: The corresponding segmentation sensitivity is@s & 94.3%, however at a speci-
ficity of only 95.3%, meaning there are 1.39 false positiviels per true positive. This
impression is confirmed when Tab.13.5 is considered. This Gilees the detection results
of each configuration and classifier stage at the settinddifge90% segmentation sensi-
tivity. At 61.7%, detection sensitivity is far below its menum value of 68%, however, at
the same time detection errors are much lower as well (1.3.¥sfalse positives per cor-
rectly detected lesion). Of course, the mentioned classific based candidate filter would
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improve specificity not only for detection but also for segwagion, potentially allowing
lower thresholds and thus a higher sensitivity.

w/o Standardization \ w/ Standardization
Iteration
Method o 1 2 3|0 1 2 3

Segmentation sensitivity (%) 90.0 90.0 90.0 90@0.0 90.0 90.0 90.0
Detection sensitivity (%) 47.7 415 415 50.84.4 54.4 589 617
Detection precision (%) 18.1 26.2 28.7 40.189 25.2 32.0 36.8
Detection #fp/#tp 45 28 25 1543 30 21 17
Detection #fp/volume 93 51 45 32106 73 57 48

Table 3.5: Detection quality at the setting yielding 90%rsegtation sensitivity.

3.6 Conclusion

In this chapter, we presented a system for automatic deteatid segmentation of focal
liver lesions in CT images. Itis based on pointwise clasgiboeof liver voxels. Compared
to previous approaches, we incorporated a novel intenstydardization step adopted
from MR imaging. For classification we used a cascade of Ritbtc Boosting Trees
instead of a single classifier, increasing flexibility angpraving the handling of complex
input spaces. Both measures account for an increased rebasth the system, setting
track for the segmentation of difficult cases like rim enhagdesions.

The validity of the approach was shown in an experimentduew@n with 15 clinical
datasets containing mostly hypodense liver lesions.
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Figure 3.10: Detection performance of classifiers whengustandardized data. Each
marker represents the result for one value of the threstpglieal to the output probability
image.
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As described in Se¢. 1.3.2, there are many scenarios in whightumors are not
removed surgically. Such tumors have to be monitored ugrg, CT images in order
to detect growth or shrinkage and thus rate disease progmesstreatment response. To
this end, after the initial examination, follow-up exams @erformed every few months.
During these, images are acquired and the lesion sizes aasunegl and compared. As
a patient may have well over a dozen lesions, performingetihesasurements manually
is error prone and tedious. The RECIST guidelines for lesi@@ssnent in follow-up
examinations|[Eise 09] therefore define their criteria fisedse progression based on the
largest axial diameters of a subset of representativerissiselected by the physician.
While this approach somewhat reduces the effort for the playsiit also introduces new
sources of error: Changes might occur either in lesions tlegie wiot selected as target
lesions and are thus not monitored, or in lesions that aratored, but grow or shrink in
a direction other than the measured one.

Hence, there is a great need for automatic segmentationmitalgps to overcome the
limitations of this manual approach, allowing volumetrieasurements and taking into
account all liver lesions of the patient. Follow-up exantimias are therefore the primary
use case for such automatic segmentation methods. Whileicigde any of the automatic
lesion segmentation methods presented in Chap. 3 could lbeirusieis setting, the fact
that several images of a single patient have to be segmeaited the question whether the
results of the earlier examinations might be helpful forltter ones.

Incorporating prior knowledge is a common way of prevenaingegmentation proce-
dure from choosing a wrong parameterization or evolvindgn@wrong direction. This can
be knowledge of the expected appearance of the image ot tgets, of their size, or of
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their location. For level set methods, for instance, theafishape priors is well established
[Rous 02, Nain 04, Farz 10]. These are modeled manually [NHirs@atistically from a set
of training shapes [Rous D2], or even dynamicelly [Farz 16§ eategrated into the level
set function.

Statistical atlases, consisting of a mean shape and a rajtfoequent deviations, have
been used in organ segmentation tasks [Lat] 10, Zhan 06]ide@eof a statistical atlas has
been transferred to lymph node detection by Feulner et all[E0]. In an offline training
phase, they generate an atlas of common lymph node locdtimmsa patient database.
For an image of a new patient, a spatial prior is calculatecebystering the image to the
atlas and combining the atlas information with a multi-ergagmentation of the patient.
The prior is then multiplied with the probability output dfdir classification based lymph
node detector to steer its attention.

Adopting the idea of prior knowledge for the problem at hamd,do not treat a se-
ries of images of the same patient as several isolated segtioentasks, but instead use
information gained from earlier images to improve the ressoih later ones.

To this end, we propose a novel learning based approach evajery priors for follow-
up lesion segmentation. This chapter describes, how sudoracan be trained and inte-
grated into our lesion segmentation system, discussingfit®and drawbacks of different
integration methods. This work was already published ini[Mb].

In a training step, we first use a Probabilistic Boosting Toeleuild a combined model
of changes in tumor volume over time and corresponding aisimgmage intensities from
a set of patient images. In the application phase this medbken used to guide the lesion
segmentation in follow-up images of new patients by caloujga patient specific prior
lesion probability.

Two different methods for building the model and integrgtininto the segmentation
system introduced in Chapl 3 are described and compared. r@ne & PBT only for
calculating the prior. This prior is then combined with tHassifier output of the exist-
ing lesion segmentation system. The other method fusesritverpodel and the original
segmentation system into a new lesion detector that is &l on follow-up images by
incorporating all information into a single classifier.

In both cases, the input for the system consists of sets eétimages each: The CT
iImage acquired at the initial examination, called baselnage in the remainder of this
chapter; a lesion segmentation of this image; and a CT imagarad during a follow-
up exam of the same patient, which is thus called follow-upge For training of the
classifier that forms the core of the system, in additions@alesegmentation mask of the
follow-up image is provided as reference. Both baseline sreatd baseline segmentation
mask are registered to the follow-up image in the processoghe point correspondences.

In the remainder of this chapter, we will first review relevafgorithms from fields
related to the segmentation of liver lesions in follow-u@ages. Next, a basic prior model
is described in Se€. 4.3, before in Sec] 4.4 the proposezhlgsior model is explained in
detail. The used methods are evaluated in Set. 4.5.

4.1 Related Work

While in Sec[ 3.1l general methods for automatic lesion setatien were outlined, here
we shift the focus towards algorithms addressing issue® rapecific to the follow-up
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setting, first listing some publications describing methéat detecting changes between
images, and then methods dealing with the problem of defitoman temporal image
series. Finally, some existing work from the field of prioos fletection and segmentation
is detailed on.

4.1.1 Image Change Detection

The methods in Se€._3.1 segment lesions in an image usingirfolynation from this
image. We on the other hand are dealing with follow-up imagesaning that previous
acquisitions of the same patient are available. Thesegeaadditional information, which
can be used to improve segmentation performance in basiwvatl ways: Information
gained from the baseline image and its segmentation candjecped to the follow-up
image, or changes between the images can be measuredrdtuliég there is a wide range
of methods for detecting changes between images [Radk GbOBdpPaja 09]. The fact that
changes in medical images indicate growth or other patholmgcesses has been used in
automatic detection or segmentation systems before.

Saha et al[[Saha11] take advantage of the symmetry prepe@itihe brain to identify
brain tumors and edemas by comparing local intensity stzisf the hemispheres. Similar
to the scenario presented here, Rey et al. [Rey 02] work witipoeah image series of the
brain to detect and segment multiple sclerosis lesions. ohitrast to the task at hand,
however, they have no baseline segmentation available tarsddnly build upon tissue
deformations and intensity changes that occur betweensitous.

4.1.2 Follow-up Image Registration and Segmentation

In order to segment lesions in follow-up images, one woughlly map the baseline le-
sion mask to the follow-up image and apply a model of tumowgnoin order to predict
the lesion boundaries in the follow-up image and thus p®@degmentation. For brain
MR images, Gooya et al| [Gooy/11] achieve this by using a bysgal model of lesion
growth and tissue deformation. Starting from a lesion segat jn an atlas, they grow their
virtual tumor based on the model and register it to the paireage using an expectation-
maximization framework. However, they focus their work osirggle type of brain tumor
(glioma). In the liver, on the other hand, about 30 types wiichlly relevant tumors can
occur, each of which would require a different model. Thifuigher complicated by the
fact that their actual identification is generally conseteimpossible without biopsy.

A prerequisite for fusing information from different imagjis a coordinate mapping be-
tween them, which usually implies their registration. Thamchallenges in intra-patient
registration of follow-up liver images lie in the nature ofdr tissue, i.e. its low contrast
in CT images and its elasticity. It is very soft, allowing largeformations even within
a single breathing cycle. Tumor growth or other structuternges inside the liver of a
patient may change its shape and appearance even further.

Charnoz et al.[[Char 05] try to overcome these issues by usiatpamical landmarks
for their registration algorithm. They calculate the defation field by matching hepatic
vessel trees of baseline and follow-up images and intetipgléhe deformation for the
remaining image points. The baseline lesion mask is mapp#eetfollow-up lesions, al-
lowing their comparison without segmenting follow-up t@ss. The interpolation scheme,
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however, is limited to space-occupying tumor growth simé#tiating growth of a tumor is
not necessarily reflected in a deformation of the surroupéessels. Also, while the ves-
sel tree provides very robust landmarks for registratitmségmentation is a challenging
problem by itself.

Moltz et al. [Molt09] propose a lesion detection framewook follow-up images that
requires only the segmentation of the lesions in the bassltan. They apply their algo-
rithm to the detection of liver metastases, of lung nodutekat lymph nodes. After arigid
registration step, baseline lesion masks are mapped tolibe/fup image. Around each
mask, lesion candidates are generated by gray value thdasth@nd detecting circular
structures. The correct candidate is then selected by da&mpatching algorithm based
on normalized cross-correlation and forms the input to ansggation algorithm. Large
deformations of the liver or the target lesions, or changeke lesion texture as they may
be induced by chemotherapy, naturally pose a problem femtigthod.

4.1.3 Prior Models for Detection and Segmentation

Feulner et al.[[Feul 10] show that detection or segmentatiethods based on classifica-
tion can be further stabilized by combining the output of ¢lessifier with a spatial prior
calculated from a statistical atlas. Assuming, the locatie R® of a point in the image
and its feature vector € R™ (with the number of features depending on the actual seg-
mentation task) are conditionally independent, this spoads to calculating the posterior
object probability as [Bish 07]

pyx,1) O p(x,1ly)p(y) = p(x]y)p(lly) p(y)
_ ply)piyl)

ply) ' (41)

wherey € {—1,1} denotes the point’s class labgl(y|x) the posterior generated by the
classifier ang(y|l) the spatial prior. Although the independence assumptiontisrue for
a given image, this simplification seems not to affect theesys performance negatively
while at the same time reducing the complexity of the leagmiroblem for the classifier.

Unfortunately, since the location of lesions inside thediis fairly random, an atlas-
based spatial prior as proposed for lymph node detectiofenl[10] is not suitable for
the task of liver lesion segmentation. A prior generatechfsuch a general atlas of lesion
locations would be almost uniform and certainly not discnative enough to restrict a
segmentation algorithm.

In a similar fashion, Feulner et al._[Feul 11b] use a priodtdodm a smoothed seg-
mentation of esophageal air to detect the esophagus positibin a CT image slice. In
their case, however, the air segmentation is based on the isaage the esophagus is to
be detected in. In the tumor follow-up setting at hand, solesiegmentation is mapped
from the baseline to a follow-up image. Thus, there are gnaavid shrinkage processes
involved, which are not known to the algorithm and causetaatdl variability and uncer-
tainty. These make two separately filtered versions of thep®d lesion mask necessary,
one for the growth and one for the shrinkage cases. Alsoe s volume change is not
known beforehand, manual interaction becomes necessaey tbe filter parameters.
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4.2 Processing Pipeline for Liver Lesion Segmentation

This section describes the framework in which we embeddedtbposed method for

follow-up lesion segmentation. It is based on the systersgumed in Chajpl 3, but adapted
to the special follow-up setting. The subsequent secti@ptaa how the lesion detector

was extended for this scenario. This includes a descrigifdhe image data occurring

in the follow-up scenario as well as information about thgiseation component that is

incorporated to allow handling of image series. Details ow leach image is used are
provided in the respective algorithmic sections, becahnedlifferent methods handle the
images in slightly different ways.

4.2.1 Input Images

What makes the follow-up setting special is the fact thatehemnot a single input image
but a series of images of the same patient. The initial CT scaalled baseline image. All
later ones, acquired in order to monitor the treatment nespor progression of the same
disease, are called follow-up images.

The goal in the scenario at hand is to segment liver lesiomasfollow-up image of a
patient. The baseline image is available, as well as a lesgmentation for this baseline
image. In practice, the baseline segmentation may be thdt riefsany general lesion
segmentation method, either manual or (semi-)automabc.okr experiments, however,
these lesion masks were the result of a manual segmentatovder to purely evaluate the
follow-up segmentation method. The segmentations weitdy/gmarformed by experienced
radiologists and partly by the authors and reviewed by tadists. In the same way,
reference lesion segmentations of the follow-up imageswenerated for training and
evaluating the system.

While in general any number of images may be acquired for &piatihe presented
system currently works with pairs of one baseline and onlevielp image. Thus, for
those patients in the test database that had more than twgesrecquired, the images
were split into several pairs, so that the input into theeysalways consisted of a set of
three images.

4.2.2 Follow-up Liver Lesion Segmentation

Figure[4.1 shows how the input images are processed in tlog/faolp setting. The depicted
segmentation pipeline is an extension of the one shown iNEly The first processing
step in this case consists of non-rigidly registering theebiae image to the follow-up
image and transforming it accordingly. The same transftionas applied to the baseline
segmentation, so that for any further processing, all irmdigein the coordinate frame of
the follow-up image, providing point correspondences.

The follow-up image is the target of the entire processimgth& result of the liver
segmentation step applied to this image defines the regimtesést for the detection step.
Both intensity images, however, are standardized as in fgmal method (cf. Se¢. 3.2.2)
before points in the follow-up image are classified.

This classification is where the proposed prior comes irag.gDriginally, classifying
an image positior in a follow-up image would involve assigning a lesion prohgb
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based on the appearance mop@f|xa), with features irx, calculated from the follow-up
image. To train this classifier, baseline and follow-up iesgould both be used to form the
training set. Since this classifier uses information frorty @me image for its decision, the
time point of acquisition would be irrelevant. The input tbe PBT training phase would
consist of a set ofi training sample¥ = {(Xa1,Y1), .-, (Xan,¥n) }, calculated at randomly
drawn locations in the selected training images, wiyeee{ —1,1} denotes the target class
determined from the corresponding lesion mask.

In addition, in the system described here, baseline anoWelip images are aligned by
the registration step. Thus, whenever a voxel in the follgmimage is to be classified, the
corresponding voxel position in the baseline image and &seline lesion mask is known.
This allows the calculation of features encoding informatnot only from the follow-up
image, but also from the other two images. This informat®msed to form the prior.
Depending on which of the methods described in §e¢. 4.4 isidered, the prior either
replaces or complements the appearance model in this setup.

4.2.3 Follow-up Liver Registration

While registration is not the focus of our work, it is a key campnt of the presented
algorithm, since a good mapping from baseline to follow-mage is required for fusing
their information.

The algorithm we chose to use for this task was originallygiesd for non-rigid multi-
modal image registration [Chefl02]. It is a variational agmio, optimizing a similarity
criterion based on local cross-correlation. A templategppgation method is introduced
to be able to deal with large deformations as they may occunuiti-modal scenarios.
These deformations are recovered by combining small dispients along the gradient of
the similarity measure. For regularization purposes, Gandiltering is applied to these
small steps that are calculated in each iteration.

For the setting at hand this algorithm yielded satisfyirgpits in matching the liver sur-
face and vessel structures. Tumor growth, however, resulisstrong local deformation
that can be very irregular and that will rarely be consisteith the overall liver defor-
mation caused by motion. After registering the images, lvaskesions will therefore be
correctly localized in the follow-up image, but becausehef tather strong regularization,
their boundaries will not necessarily match those of the¥olup lesions (Figure 412). This
is the desired behavior, since the volume change is thettafgeir learning algorithm.

For the remainder of this chapter, all mentioned coordmedéer to the coordinate sys-
tem of the follow-up image, i.e., it is assumed that the baseimage has been registered
to the follow-up image and transformed accordingly, togethith its lesion mask.

4.3 Spatial Prior Models for Follow-up Segmentation

Given a mapping of the baseline segmentation to the follpvimage, patient specific in-
formation about previous lesion locations provides a gfrcure on where to expect lesions
in the follow-up image and forms the basis for the prior medeé use for guiding our
lesion detector.
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Figure 4.1: Processing pipeline for segmenting follow-egidns. The baseline image is
non-rigidly registered to the follow-up image and tranefed accordingly, together with
its lesion mask. After segmenting the liver, the intensityages are standardized and the
points in the follow-up image are classified as tumor or bemkgd, using features calcu-
lated from all three images (depending on the type of pridhe classification step dif-
fers depending on how the prior is incorporated into the segation procedure (compare
Fig.[4.3,[4.4). Its output is a probability image, which issfpyocessed and transformed
into a lesion mask by a thresholding operation.



54 Chapter 4. Learning a Prior Model for Lesion Follow-up Segtagon

(b)

Figure 4.2: Checkerboard representation of a registeradopdiaseline and follow-up
imageqd (d) with a tumor that has grown between acquisitiéos.better visibility of the
checkerboard pattern, the images are shown using diffevemdowing functions. The
cutouts (white box) show a baseline](b) and followfup (cldesfter registration.

The simplest prior in this scenario, given only for refergneould be the registered
baseline lesion segmentation at locatigiself:

1, linside baseline lesion

. . : (4.2)
0, | outside baseline lesions

pYIl) =Mo(l) = {

Mo here denotes the baseline lesion mask image.ply@k,) be the posterior calculated
from the follow-up image by a previously trained appearanoéel as described in Chap. 3
and Sec[ 4.212, which forms the pointwise classificatiop steFig.[4.1. Following the
argument in{[Feul 10, Bish 07], this probability can then dgrapplication stage be com-
bined with the prior (compare Ed.(4.1)):

P(y[Xa,1) O p(ylxa) p(Yll) = p*(y[Xa,!) (4.3)

The prior probabilityp(y) is omitted here as a further simplification, since it is canst
for a given scenario and the final goal of the method is not tretguior probability itself
but rather a binary decision. The resulting probability npé&fy|xa, 1) is postprocessed and
converted into a lesion mask as before, where the scalirigp@t) is accounted for in the
final thresholding operation.

The underlying assumption that the target lesions did nahgh between acquisitions
is obviously too restrictive, but this naive version doesvte a reference result as well as
some insight into how the prior should be constructed. Sthiseprior is binary, multiply-
ing it with the output of the lesion detector completely siggses all regions not covered
by baseline lesions, so that no lesion growth nor new tumarshe detected. Within
the boundaries of the baseline lesions, the detector regsp@mains unchanged, without
suppressing shrunk lesions.

A seemingly straightforward extension that is similar te grior used by Feulner et al.
for esophagus detection [Feul 11b] involves filtering theskienageMg to soften the prior:
Assuming that the volume change of tumors follows a zerormmeamal distribution, the
mask image is filtered using Gaussian smoothing. The pritdreaa a combination of a
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growth component, filtered with standard deviatigyand a shrinkage component, filtered
with standard deviatioos:

d(1)2
1-2As-e 202 jf Mg(l) =1
pyll) = ° a2 0 (4.4)

Ag-€ 2007 else

with d(I) the distance of the locatidrto the closest lesion boundary. This prior is multi-
plicatively combined with the appearance model just likerask prior described above.

The weighting factordg, As € [0, 1] control the influence of the growth component vs.
the shrinkage component. Both the optimal values for thesghtieg factors and the
optimal width of the Gaussian filters vary between imagesndwetween lesions within
the same image. For best segmentation results, the parametald thus have to be
defined interactively for each lesion by the user. Even thdhg is not the fully automatic
solution that is sought for here, quantitative results fis prior are presented in Séc.14.5
for comparison. These were generated, however, using a $iedf parameters for all
images to allow a direct comparison with the other methods.

4.4 Learning a Prior Model for Follow-up Segmentation

To overcome the limitations of above’s mask based priork asanflexibility and need for
user interaction, a novel learning based approach wasamel As mentioned before, a
“generative” growth model that predicts lesion boundabi@sed on a biophysical model as
Gooya et al. developed for gliomas [Gooy 11] is not feasibleif’er tumors. Therefore,
we decided to use a data driven approach instead.

As for the original lesion detector, for the prior a disciaiive model for lesion proba-
bility at an image positiohis learned by the PBT algorithm. But in contrast to the previous
setting, now all three input images are taken into accounsdc[4.4]1 a prior is learned
from these images and combined with the result of the appearhased classification
p(y|xa) (Figure[4.B). Section 4.4.2 goes all the way and combinemtbemation from the
prior and the appearance model into one single classifigu(eid.4).

| Feature category | Feature name | Scales/NeighborhoodsTotal # ]
Time between scans 1
Mask value 1

Spatial features Distance to closest lesion 1

Gaussian of distance 0.1-10.0 13
Gaussian of distance, time0.1 —10.0 13
scaled

| | | [29 |

Table 4.1: Spatial features ¥ calculated from baseline lesion mask to learn the prior.
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| Feature category | Feature name | Scales/NeighborhoodsTotal # |

Intensity difference 0.0 mm —32.0 mm 10
Intensity statistics | Weighted intensity sums | 0.0 mm —32.0 mm 30
Difference between local 0.8 mm —32.0 mm 9

variances
Vesselness Sato vesselness 1

| | | [50 |

Table 4.2: Intensity change featuresxyused to learn the prior.

4.4.1 Multiplicative Learned Prior

Rather than explicitly modeling tumor growth [Gooy 11], tleained prior model should
implicitly encode volume changes in the tumors. To achiéi® & feature vectors € R/
is used for classification that is a combination of two seteafures.

One set consists mainly of spatial features (Tablé 4.1)utatled from the baseline
mask and encodes the actual tumor growth and shrinking.ufésainclude various fil-
tered versions of the signed distance from the current in@gionl to the closest lesion
boundary, as well as the time between acquisitions. Thegarfs basically contain the
same information as the filtered mask prior in $ed. 4.3 antharenot much more flexible
or patient specific. In order to facilitate patient specifilaptations of this model, these
purely geometric features are complemented by a second festtores encoding changes
between the baseline and the follow-up intensity imagebl€Td.2). Instead of complex
change detection methods, simple difference featuresacelated from the registered
baseline and follow-up images, leaving their interpretatio the learning algorithm of
the PBT. This feature set contains weighted intensity diffiees and sums over various
neighborhoods of the current location, as well as a vesseimeasure.

With a number of patient datasets for training, the PBT modg(y|Xs) is built. Using
this prior to guide the segmentation in the follow-up imaggds (compare Eql(4.1))

P(Y|Xa, Xs) O p(y|Xa) P(Y|Xs) = P*(Y|Xa;,Xs)- (4.5)

Thus, for this version of the prior, the classification stepig.[4.1 becomes the product of
the output of the original lesion detector and the ppdy|xs) (cf. Fig.[4.3).

Due to its hierarchical nature, the PBT can be seen as leanoing single but a whole
family of models, very similar to the hierarchical mixturéexperts scheme [Hayk 99].
When the trained PBT is then used to classify a new instanc@tiesity change features
guide it in its decision which model should be applied, andpadhe geometric model to
characteristic deviations from the normal lesion volumenge found in the current patient.
Moreover, they also support the detection of newly emergsths. Large changes in
tumor structure or texture induced by chemotherapy maytsseflected in these features.
However, since on a larger scale these changes only leadlightlysdifferent intensity,
they do not affect the prior learning negatively.

Overall, in our experiments the vecteg heldl = 79 features. The PBT for the prior
is then trained with a set aftraining sample¥/ |, = {(Xs1,¥1),--, (Xsn,¥Yn) } calculated at
randomly drawn locations in the training follow-up image$ere the target class labgis
are determined from the follow-up lesion mask.
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Baseline image  Baseline lesion Follow-up image
mask

——

4

—

P (y|xs,Xq)

Figure 4.3: Setup for classification step using a learnedipfichtive lesion prior. In
addition to the original lesion detector that works with epmance features, calculated
from the follow-up image, a second PBT is trained. It receavg@sctor of prior featuress
calculated from baseline image, baseline lesion mask dlahvfaip image and computes
the lesion prior. Both classifiers’ outputs are multiplieddom the final lesion probability

P* (Y|Xs, Xa)-
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The formulation in Eq.4l5 again considers the feature yesotgandx, being con-
ditionally independent. While it is almost certainly noteruhis model assumption does
help dealing with the complex, high-dimensional featuracgpat hand. It allows splitting
the space and training two separate models on the two suspahis has the advantage
of making the classification task more manageable. Furtbwenit is also convenient and
intuitive in that the same appearance based classifier fierariginal segmentation system
Is used to segment all images, only refined in the follow-lgeday the prior generated by
the second classifier.

4.4.2 Integrated Learned Prior

One of the major benefits of the PBT is its hierarchical denisi@aking. This characteristic
allows the PBT to learn complex feature spaces and shoulddhable it to correlate
Image appearance, changes in intensities, and tumor jgeeséfactively. In fact, as could
be shown in a different context, training a PBT on a more comf#ature space might
even be superior to manually splitting the problem and ingirseveral PBTs on smaller
subproblems [Mili09]. So, to see whether the PBT can explkigteg correlations and
dependencies in the data to improve classification accuesmther PBT was trained to
calculatep(y|xa, Xs) as p(Y|Xc), Xc = (Xa,Xs) € R™!. The feature vectors were simply
concatenated, so that all the input images and features wge@ in a single classifier
(Figure[4.4), dropping the independence assumption inted before. The training data
then consists of sampl&s, = {(Xc.1,Y1), --, (Xcn, Yn) } @gain calculated at randomly chosen
locations in the follow-up images selected for training,engnthe target class labels are
determined from the follow-up lesion masks as before. Thassifier can then be used for
lesion segmentation in follow-up images directly, rephgidihe combination of the original
lesion detector and the prior described in $ec. 4.4.1.

While it seems desirable to leave the decision on the optimralbination of features
to the training procedure, the higher dimensional and amitisily more complex feature
space makes greater demands on both the training data afehthang algorithm. This
effect could be observed in some of the experiments conddiotehis work, so the topic
is addressed further in Séc. 415.5. Also, from an appliogbioint of view, this scenario
has the potential drawback that different features may bsaby the learning algorithm
for segmentation in baseline and follow-up images, leatbrdifferent behavior of the two
systems and different types of errors. Still, provided thdficient training data is avail-
able, this is the method of choice, because it combines trendages of the multiplicative
learned prior with the detection capabilities of the oraisegmentation system.

4.5 Results and Discussion

In order to evaluate and compare the priors described abamat, of experiments was per-
formed on clinical images. First, the accuracy of the ngdrregistration was measured.
Next, various aspects of the methods’ segmentation pedocewere evaluated. The sys-
tem’s lesion detection capabilities were investigatecssely, before finally the features
selected by the learning algorithm were analyzed.

The segmentation methods compared on the following pages ar
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Figure 4.4: Classifier setup used for integrating the priftarmation into the lesion detec-
tor directly: The feature sets of the lesion deteckgj &nd the priorXs) are combined into
one feature vectaxc. A single PBT is then used to assign the posterior lesion fibtya

P(Y[Xc)-
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* “No Prior” - The lesion detector of the original segmerdatsystem as described in
Chap[3, using only follow-up images as input.

» “Mask Prior” - Uses the registered baseline lesion maskrias for follow-up seg-
mentation by multiplying it with the lesion detector’s pasor probability output
p(y|xa) (cf. Sec[4.B).

 “Filtered Mask Prior” - Applies two Gaussian filters to tregrstered baseline lesion
mask before multiplying it with the lesion detector’s po&ie probability output
p(Y|Xa) (cf. Sec[4.B).

» “Learned Prior” - Trains a PBT to generate the pnigy|Xs) and multiplies this prior
with the lesion detector’s posterior probability outgady|xs) (cf. Sec[4.41).

* “Integrated Prior” - Trains a PBT that combines the featueax the “Learned Prior”
with the appearance features of the lesion detegatirectly calculatingp(y|Xc) (cf.
Sec[4.4D).

The feature vectors used by the different classifiers armaganmarized in Tal. 4.3.

| Feature vectof Description | Calculated from |
Xa Appearance of voxel, used forSingle (follow-up) image
general lesion segmentation
Xs Encodes lesion growth, usedaseline lesion mask (geo-

for calculating lesion prior metric features), baseline and
follow-up images (change fea-
tures)
Xc Combination of above featureSingle (follow-up) image (apt
vectors (concatenation), useghearance features), baseline
for follow-up lesion segmenta-lesion mask (geometric fea-
tion tures), baseline and follow-up
images (change features)

Table 4.3: Feature vectors used in different discrimirathodels.

4.5.1 Image Database

To the best of our knowledge there is no publicly availablealase containing follow-
up series of liver CT images. Therefore, we used our own teéabdae, which comprised
liver CT images of 14 patients, acquired at 4 different clihgites. The images had a voxel
resolution between.B31 and B30 mm inx andy directions, and 2 to 4 mm indirection.
All had been acquired at 120 kVp. For each patient at leasbaseline and one follow-up
image were available, with a free interval between the sodds- 13 months. For some
patients several follow-up images had been taken at diftammes, so that a total of 17
image sets of baseline image, baseline lesion mask anevfoloimage could be built. All
images were acquired after injection of a contrast agenshoded a venous enhancement
of the liver. The baseline images contained 80 mostly hypsédesions. In 6 of the 17
image sets a growth of the contained lesions was observéd.avnedian growth of the
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total lesion volume per image of 41%, a minimum of 3% and a maxn of 564%. In
the remaining cases, the lesions diminished, with a medit volume loss of 35%, a
minimum of 1% and a maximum of 95%. 13 new lesions emergedhdtine studies. This
broad range of variations in the images poses a great chellen the algorithm, making
this a very realistic test scenario.

4.5.2 Experimental Setup

As before, each single experiment was set up as a 5-fold-geds&tion. During each
fold, 13-14 image sets were used to train the classifierstenteimaining ones were held
out as independent test set, making sure no patient ocaarkexdh training and test. This
was also ensured for the experiments with the multipliealéarned prior, where for each
fold two classifiers had to be trained and tested. That wainitrg and testing data were
kept separated in all experiments.

The training images were again subsampled using the proeddscribed in Sec. 3.5.1;
for testing all liver voxels were used.

4.5.3 Registration Evaluation
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Figure 4.5: Cumulative histogram of registration errors @st tlatabase. For each error
level on thex-axis, the bar shows how many of the 124 marker pairs falliwithis error
range.

The quality of the registration results was assessed witarken based approach. For
each image pair in the test database, 5-10 markers weralpteareually at landmarks such
as vessel bifurcations or inside tumors in both baselindalfamv-up images (124 marker



62 Chapter 4. Learning a Prior Model for Lesion Follow-up Segtaton

pairs in total). After registering the images, the Eucliddatance between corresponding
markers was measured. The average distance was 4.68 mnm(mind.58 mm, maxi-
mum 23.44 mm). Even though this evaluation was performed bygle observer and
thus the placement error was not considered, it does givenaression of the algorithm’s
capabilities (compare Fig._4.5).

The evaluation above shows, that the registration methablésto match landmarks in
baseline and follow-up images. It does not evaluate, howé&wesv the non-rigid warping
influences the lesions contained in the liver. It turns oat,tivhile it did not match lesion
boundaries perfectly, the algorithm did slightly deforne thsions during registration. In
most cases, the volume difference between baseline armvtalp lesions stayed in the
same range as without the registration, changing e.qg. fl@¥h ® 33%. Only in one case,
it changed from 33% growth to a 12% shrinkage. However, ictpra the registered and
thus deformed baseline lesion mask is only used to segmeninitieformed follow-up le-
sions. After segmentation, the volumes of the unregistaretithus undeformed lesions
are compared, so the differences introduced by the retistratep do not affect the ac-
curacy of the clinical growth assessment. The only congtraithat the same registration
algorithm has to be used in all cases since the learningmysted for segmentation adapts
to its behavior.

4.5.4 Segmentation Evaluation

Segmentation performance of the system was assessed hsimgethods described in
Sec[3.b. A threshold was applied to the system’s outputaginitibes to allow calculation
of the volumetric overlap of the manual reference segmiemtaind each algorithm result.
From this overlap, several performance figures were cdkdiland by varying the thresh-
old, ROC curves were generated. As before, this analysidimésd to points inside the
liver.

The first set of curves given in Fig. 4.6 reflects the systesggrentation performance
without the filter based postprocessing, i. e. the classibicaccuracy. As a reference re-
sult, the dotted curve shows the performance of the origimethod as described in Chap. 3,
without including any prior knowledge (“No Prior”). The “N& Prior” curve was gener-
ated directly using the registered baseline lesion maskias(pf. Eq. [4.2)). The “Filtered
Mask Prior” curve is the result of filtering this mask as désexl in Eq. [4.4). As expected,
especially the unfiltered mask prior version features arlé specificity, since its only
false positive classifications stem from misregistereitesoundaries. On the other hand,
sensitivity drops considerably because lesion growth ceba handled by this primitive
prior. While the filtered mask prior generally supports lesjoowth, its potential is limited
by the fixed filter parameters.

If a PBT is trained to generate the prior using the featuras fiables 4.11 and 4.2, this
limitation is overcome. The resulting prior effectivelylike a filtered mask, where the
filter parameters are adapted for each single voxel basedfomiation from the current
image, generating a patient specific prior. As the “Learneor’Pcurve implies, this flex-
ibility results in potentially higher false positive rajdsit at the benefit of a better overall
segmentation. Finally, providing all information to a dmglassifier and leaving the deci-
sion on how to combine it in the best possible way yields vanjlar results (“Integrated
Prior” curve).
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Figure 4.6: Segmentation performance without postprangs3 he reference curve (“No
Prior”) reflects the performance of the original lesion datethat uses no prior for follow-
up segmentation. As expected, the versions using a masét peeeshow excellent speci-
ficity at the cost of low sensitivity, missing any lesion gtovas well as newly emerged
lesions. Training a PBT to generate the prior can overcomeethmitations and yields
the best overall performance, independent of whether fioe imodel is trained separately
(“Learned Prior”) or integrated into the lesion detectdn{égrated Prior”). Area under the
curve (AUC) values are provided for the partial ROC up to aefglssitive rate of 0.15 and
for the entire ROC.
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Figure 4.7: Segmentation performance with postprocesstgmpared to Fig. 416, the
curves are all slightly shifted towards the upper left corfdneir relative positions, how-
ever, are nearly the same. AUC values are provided for theap&OC up to a false
positive rate of 0.15 and for the entire ROC.
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Figure 4.8: Comparison of segmentation performance withvatitbut filter based post-
processing for two exemplary configurations. The curvesaka slight improvement in
specificity at the cost of a slight decrease in sensitivityewlpostprocessing is applied.
The latter explains, why for some configurations the AUC dased between Fig. 4.6 and

Fig.[4.7.
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The curves in Fig_417 reveal that the improvement due taéhtcing the prior seen
in the experiments above is substantial: Here, the segm@mtaerformance is measured
after postprocessing. While all curves are slightly shittethe left compared to the ones
without postprocessing, their relative positions to eatifeoremain nearly unchanged.
Figure[4.8 demonstrates the influence of the postprocessepyeven more clearly by
comparing the unfiltered and the filtered results of the “NoPand the “Integrated Prior”
curves directly. The effect shown in Flg. 4.6 is thus not lesteout by the postprocessing
filters. Still, unless otherwise noted, the remainder o$ #ection builds upon the raw
classification results to eliminate all possible influentthe postprocessing.

Table[4.4 presents various performance figures for segmmmtguality for the thresh-
old value yielding 90% sensitivity. The change in spec¥itiy adding prior information
appears to be very small. However, since in most patientsatigest part of the liver is
made up by healthy tissuez(95% on the test database), this may still have a large vi-
sual effect. The same observation holds for Jaccard anddoe#icients. For these two,
the maximum value achieved in the experiments is given in [@dh together with the
corresponding sensitivity value.

Method \ No Prior Learned Prior Integrated Prior
Sensitivity (%) 90 90 90
Specificity (%) 98.6 99.3 99.4
Jaccard index 0.76 0.83 0.83

Dice coefficient 0.86 0.90 0.91
Precision (%) 82.7 90.8 91.9
#ip/#tp 0.21 0.10 0.09

Table 4.4: Comparison of the segmentation quality of theniegrbased priors and the
reference method at 90% sensitivity without postprocessin

Method \ No Prior Learned Prior Integrated Prior
Max Jaccard index 0.79 0.83 0.84
Max Dice coefficient 0.88 0.91 0.91
At sensitivity (%) 84.4 88.4 88.3

Table 4.5: Comparison of the optimal segmentation quality wespect to Jaccard and
Dice similarity coefficients, together with correspondsensitivity level.

The results for precision and the ratigx show the full potential of the method in re-
ducing the number of false positives: The positive predictialue is improved by 9.8%
for the “Learned Prior” and 11.1% for the “Integrated Priattie ratio;%g is reduced by
51.8% (“Learned Prior”) and 57.8% (“Integrated Prior”) pestively, meaning a huge im-
provement for the physician.

Splitting up the testing data according to their treatmesiponse reveals, that the
shown improvement affects mainly those cases, where tgettisions responded to the
chosen therapy (Figufe_4.9). The fact that this is the cas®mly for the mask based
but also for the learning based priors indicates, that tiselbee lesion mask has a strong
influence on these as well.
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Figure 4.9: Segmentation performance without postprangss those datasets with le-
sion growth between acquisitions](a) and on those with klminlesiong (§). AUC values
in both cases are provided for the partial ROC up to a falseiyp®sate of 0.15 and for the
entire ROC.
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45.5 Detection Evaluation

As for the original lesion segmentation system, we evatu#tte detection performance
of the different configurations described above separafétyure[4.10 is a scatterplot of
the detection results, which was generated just like the R@€es above: Each point in
the plot corresponds to one value of the threshold appliedg@utput probability of the

system. The first aspect to notice in Hig. 4.10 is that, just &% segmentation evaluation,
including prior information considerably improves detestspecificity, reducing the num-
ber of false alarms. A closer look at only the newly emergsibles reveals, however, the
limit of this claim. Both “Learned Prior” and “Integrated Bri actually lead to a decrease
in detection rate in these cases, yielding a maximum detecte of 38% compared to
54% if no prior information is used.

The “Learned Prior” can hardly do better. It has only accedbé prior features mak-
ing up X, i.e. the geometrical features in Tab.]4.1 and the intertiffgrence features
in Tab.[4.2. Therefore, it acts very similar to the mask bgseors and may suppress
new detections in the follow-up image if the intensity chamd this image location is not
substantial.

The “Integrated Prior” on the other hand has access to théshture set, i. e. the prior
features<s as well as the appearance featutgghe original system uses for detection and
segmentation. In principle, it should thus be able to segdresions that are present in
both images as well as new ones. The limiting factor hereadriuning database: Only
13 lesions emerged between the acquisitions, meaningahgilses from these lesions are
highly underrepresented in the training data, which posgsa#ienge to the PBT with its
greedy learning strategy. On the other hand, reducing tta mamber of cases in the
database to achieve a more balanced dataset is not an optieadditional input images
compared to the “No Prior” setup and the prior features dated from them increase
the complexity of the feature space considerably. Redutiaglataset would thus lead to
instabilities in the training procedure and overfitting.eféfore, a larger training database
with more new lesions is necessary to improve this somewkapgointing result.

What may seem surprising is the performance of the “Mask Piiermaximum sensi-
tivity is the same as that achieved by the other methods pékmethe “Integrated Prior”, at
an even better false positive rate. This result is rootederegistration algorithm. While
this prior suppresses all tumor growth, all baseline lesiare mapped to their follow-up
counterparts by the registration step. Thus, if the thriestsosufficiently low, these will
be detected, even if not well segmented. At the same timeeg $ifas a value of 0 outside
the mapped baseline lesions (cf. Hg.4.2)), this prior segges not only lesion growth
but everything that is not within a baseline lesion, inchglany false positive the lesion
detector might otherwise produce. The only way this systammake a false positive is
in case registration fails or if a lesion disappeared, wlgchy the data points for this
version are all located at very low false positive rates. Jdmme effect, slightly weakened
by the smoothing filters used during prior generation, camtmerved for the “Filtered
Mask Prior”, which also exhibits an excellent specificitytiwsensitivity quickly dropping
off at about four false positives per volume.

The same drop-off can be observed for the “Learned” and dhated” priors. The rea-
son for this behavior is not algorithmic but simply the détatcriterion. As the threshold
on the probability image is increased, the connected regrothe resulting lesion mask
tend to fall apart, building lots of small connected compuageach of which is considered



4.6. Conclusion 69

one lesion candidate. At the same time the number of coretettons decreases because
of the failing overlap criterion. This effect can be seendlbmethods, where a drop-off at
lower false positive rates means a higher overall spegifiEdr the “No Prior” version the
specificity is so low that the drop-off is outside the showmgea

The findings about the mask priors already indicate that #teation results given in
Fig.[4.10 do not allow to draw conclusions about the qualitthe segmentation generated
with the same parameters, even though the detection erdegibased on an overlap mea-
sure. This is confirmed by looking at the setting yielding 988asitivity for segmentation
again. The corresponding numbers for detection given ind@show that there is a slight
trade-off between optimal detection and segmentation.

Method \ No Prior Learned Prior Integrated Prior
Segmentation sensitivity (%) 90.0 90.0 90.0
Detection sensitivity (%) 61.8 63.2 63.2
Detection precision (%) 37.5 61.4 66.2
Detection #fp/#tp 1.7 0.63 0.51

Table 4.6: Detection quality at the setting yielding 90%rsegtation sensitivity.

456 Features

Finally, we examined the effectiveness of the features tedaining the prior. Generally,
two findings are worth noting. First, adding the spatial amensity change features to
the appearance features as in the “Integrated Prior” vemda@s not change the relative
distribution of the latter. Second, this version uses tlensity change features much more
extensively than the “Learned Prior” version, putting {dimited over the entire PBT) 16
times as much weight on these as on the spatial features.h&dtearned Prior”, this
factor is only 1.2.

The spatial features used most extensively were the sigiséahde from the current
location to the closest lesion, followed by the time scaledi§zian of this distance. Of
the intensity change features, the difference betweenibasand follow-up image over
some neighborhood was the most important feature, folloyethe difference of local
variances.

4.6 Conclusion

We presented a novel approach for integrating prior knogéeof expected lesion loca-
tions into a classification based algorithm for follow-ugsentation of liver lesions. A
discriminative model is trained, which combines inforroatabout lesion appearance in
CT images, lesion volume changes and intensity changesrtodatecision. Two versions
of this method were compared: One combines all informatima single PBT which is in
turn used to segment follow-up lesions. The other method tvee PBTs, one for general
liver lesion segmentation using the appearance featuresyther for calculating a lesion
prior for follow-up examinations. This prior is then muligd with the output of the lesion
detector.
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For both methods, an improvement in classification presismmpared to the original
system with no prior knowledge could be shown in a set of arpaits with clinical im-
ages. For the former version, the improvement was 11.1%attex achieved 9.8%. The
two methods yield comparable results, where the improvemiéects both segmentation
and detection accuracy. Only for the detection of lesioas ¢émerged between image ac-
quisitions an improvement could not be shown, as these wetertepresented in the used
database.
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CHAPTER 5

A Cost Constrained
Boosting Algorithm for
Fast Object Detection
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In the previous chapters, a system for automatic segmentafiliver lesions in CT im-
ages was introduced. It is based on categorizing imageswitd tumor and background
by means of a Probabilistic Boosting Tree. The focus of therj&son so far was en-
tirely on the accuracy of the system. While reliability is @iucse a prerequisite for any
algorithm in this field, when it comes to clinical routine acerd criterion gains impor-
tance: Response time. Since such learning based detectersohelassify large numbers
of possible target object positions to filter out the truesdgdns, this approach requires
classification algorithms that are both accurate and effiicie

5.1 Related Work

In terms of accuracy, besides the boosting technique wstimibst popular descendant,
AdaBoost [Freu 95], especially the support vector machingdBs[Vapn 95], has to be
mentioned. Together with derived methods these are clyrret most widely used tech-
niques. However, for complex feature spaces like the ond fmgethe task at hand, both
the SVM and AdaBoost classifiers tend to become very largejstpdown classification.
In domains with real-time requirements or with large ameuwftdata like CT images this
is an issue. While recent speed increases in object detdatigely stem from faster pro-
cessing hardware or the incorporation of special domaimientge, there have been a few
influential algorithmic developments that made it to thedtad repertoire in classification
based detection. Regardless of whether sub-windows of Hrelsspace are classified to
identify possible target positions or single points aregatized as belonging to either an
object or the background, there are two starting points éssjble speed-ups: Making the
search space smaller to reduce the number of classifieragiaala, or making the classifier
itself faster.

73
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A widely used representative of the former category aressmto-fine strategies. The
search space is first scanned on a very coarse grid and oskyplaots that induce a detector
response are investigated with finer sampling as well. Tlgtlarge portions of the search
space can be omitted in the fine scans, greatly reducing tinéeof classifications.

Another very successful approach for speeding up detestistems is the implemen-
tation of rejection cascades. They are advantageous intagteettings, in which most of
the input space consists of background and large partsob#tukground are well separa-
ble from the target objects. Probably the best known exaofgdlés architecture is the face
detection cascade by Viola and Jories [Viol 01]. It meantpieavard in object detection,
as one of the first methods allowing real-time face detectoa by now is considered a
standard approach. The cascade is built by training an AdstBdassifier at each stage.
The complexity of each classifier is controlled by stopping training as soon as either
the number of false rejections rises above a certain thiésit@a desired rejection rate is
reached. As the classification task becomes more diffictit @ach stage, more and more
hypotheses are admitted to generate stronger AdaBoosfielessT his mechanism, which
Viola and Jones call “focus of attention”, has the effect ttlassifiers at later stages are
much slower than those at early stages. Or, put differetitdy first stages can filter out
most of the image background with very fast classifiers,iteathe few hard decisions to
later, more complex ones.

The principle of the rejection cascade has been transfésradhierarchy of SVMs by
Heisele et al.[[Heis 03] and picked up by Sahbi and Geman [8@hlHere, a cascade of
linear SVMs is installed to filter out most of the backgrounaitarget image, before a final
SVM with a second-degree polynomial kernel function sefgsrthe true detections from
the most similar background regions. While lacking the aw@tercontrol over classifier
complexity characterizing the AdaBoost cascade, this alldve combination of simple
but fast linear SVMs with slow but accurate non-linear omeadhieve a similar behavior.
An additional coarse-to-fine scheme yields a further spged-inally, a feature reduction
technique is applied for the non-linear SVM.

When optimizing the speed of classification systems, the, coeaning the classifier
itself, is often left untouched. Still, a number of modificais to learning methods aiming
at faster classification have been developed. For the S\Wérakauthors described ways
of reducing the number of support vectors in the final denisimction, thus potentially
reducing the computational complexity.

These authors either introduce a pruning step to removendasheies from the set of
support vectors [Down 01, Nguy 06, Li07], or modify SVM traig in a way so that less
support vectors are generated. Li et al. [Li06b] achieve ltyi iteratively re-training the
SVM on a dataset that is reduced in each step to more impqutants, generating an ever
more compact solution. Parado-Hernandez et al. [Parr @BKaerthi et al. [Keer 06] also
devise iterative schemes, however starting with a simpI&¥M and expanding it in each
iteration, thus directly controlling the size of the cldiesi Osuna and Girosi take a more
formal approach, reformulating the central optimizatioalpem in a way that yields the
same separating hyperplane in a possibly more compactsapetion[[Osun 98].

For AdaBoost, there exist similar optimization approactgsveral pruning methods
that try to reduce the number of hypotheses in the decisiontifion after training have
been presented and compared for effectiveniess [Marg 97 U8n These methods select
the optimal set of hypotheses based on diversity in ordesédte available features most
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efficiently. While they were introduced to reduce memory cwngtion and overfitting
effects, these techniques may also lead to a speed-up dbfier.

Mahmoood and Khan [Mahm 09] and Utsumi et al. [Utsu 09] both aidrick to im-
plement an exact on-the-fly pruning during application phaBhey sort the hypotheses
by their contributions to the final decision, in descendingeo. These contributions are
measured by the hypothesis weights. When classifying a neplsathey can then limit
the sequential evaluation of the hypotheses to those teateatly necessary. Kawakita
et al. [Kawa 11] extend this by learning an optimal order friv@ training data.

Taking on the gradient descent view of boosting, BahimannYan@Buhl 06] present a
method for generating sparse classifiers withLifi#oosting algorithm described by Fried-
man [Frie 01], which could be transferable to AdaBoost as.well

5.2 Constrained Boosting

In this chapter, a simple yet effective way of speeding upBatsst based classification is
presented that is orthogonal to the ones mentioned above.

A first description of this approach was published in 2011IjMi], a more elaborate
version followed in 2013 [Mili 13a]. In the meantime, the saidea was independently
picked up by Xu et al. [[Xu 12, Xu13], wrapped, however, intagawise regression of
limited depth regression trees [Xu 12] and a decision trek gtrong learners at the nodes
[Xu 13], respectively.

Like Margineantu and Dietterich [Marg 97], we aim at redefgqivhat the “best” hy-
potheses for the final decision function should be. The aarpohowever, is a different
one. (1) Our criterion for good hypotheses is not based oersity but on computational
complexity, leading not necessarily to less hypothesdagplfaster evaluation. (2) In con-
trast to the post-pruning approaches above, our solutiooristructive. Instead of training
the classifier with the original AdaBoost algorithm and adapit afterwards, we modify
the way the classifier is built in the first place.

In a nutshell, we yield a faster evaluation of the decisiarcfion by making the weak
learner training prefer features that are fast to compute.dverall algorithm is defined so
as to maintain classification accuracy. There are seveng Waw the desired effect can
be achieved. A manual pre-selection of preferred featuightrbe sufficient, although it
requires a profound knowledge of the feature space and igharrstrict limitation of the
learning algorithm. Restricting a learning algorithm actédlly based on heuristics always
bears the risk that it is prevented from learning certairtgpas in the data. To keep the
need for manual interaction at a minimum, we decided to atsegjuip the weak learning
algorithm with some notion of feature cost, leading to a gen®rmulation of a cost
constrained boosting algorithm. Two different options hboe influence of the cost term
can be controlled were investigated. They will be describeflec[5.2.2 and Selc. 5.P2.3.
A thorough analysis and discussion of their individual b#ges given in the evaluation
section.

Though modifying the AdaBoost training procedure directhys optimization aims
at hierarchical systems based on AdaBoost. It was origirsiyeloped for use with the
Probabilistic Boosting Tree that is the core of our segmenmatystem described in the
previous chapters, but works just the same with the cas@AdEOL] or similar architec-
tures. Nevertheless, the PBT is used for the description@fottowing pages.
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The modification can be seen as a realization of the focustefitadn mechanism of
the cascade for feature sets with inhomogeneous comgexitihe objective is that early
stages of the hierarchy contain particularly simple cfassi, which in our case is realized
by constraining the feature selection performed duringBxsst training. To prevent a
loss of classification accuracy compared to the unconsla@approach, the condition is
weakened for later stages of the hierarchy.

As will become obvious from the description, the method iglinaited to runtime opti-
mization. It is fully generic, allowing for the optimizaticof arbitrary secondary objectives
during AdaBoost training.

5.2.1 Speeding up Classification in the Probabilistic Boosting Tree

The PBT distributes a decision to a hierarchy of classifieshe&omponent of which can
in turn be rather small. As described in Sec. 2.2.2, duringiegtion parts of the hierarchy
may be omitted if their influence on the decision would be toalsto matter. This on-
the-fly subtree pruning mechanism partially compensateth&éadditional complexity of
the hierarchical design. However, in contrast to the castael PBT’s primary design goal
was not classification speed but minimizing the average [blss sequential evaluation of
all the small classifiers in the hierarchy can therefore b&et than a single large classifier
of equal power.

Looking at this classifier architecture and its mode of openatwo approaches for an
additional speed-up come to mind almost immediately: Exgbruning by restricting the
depth of the hierarchy and implicit pruning by training stger learners in the nodes.

The effect of the former is obvious. A reduced tree depth rméess classifiers in the
hierarchy and can thus save a great deal of processing timee e PBT is a binary tree,
reducing the depth by one level can reduce the number of rixydas to 50%. As Carneiro
et al. [Carn0B] showed, a smaller tree does not necessarply itawer classification
accuracy. Since the PBT tends to overfit the training datapikgats depth minimal is
even beneficial for generalization performance.

In contrast, the implicit pruning approach does not add asyrictions to the training
procedure. Instead, stronger AdaBoost classifiers aresttdigy relaxing its stopping cri-
terion and using more or stronger hypotheses. While this mag to an increased worst
case classification time, on average less tree nodes wil ttalve evaluated. The stronger
node classifiers generate more certain results, which imléads to more pruned subtrees.

While both approaches reduce processing time and in the €aselait pruning also
help to avoid overfitting, they also both contradict the idédahe PBT. This classifier’s
power stems from the fact that it is hierarchical. Strondassifiers in the nodes would
mean giving up this concept and ultimately approaching glsiAdaBoost classifier.

We propose an entirely different method for speeding upsdiaation. As for Heisele
et al. [Heis 03] or the cascade, the starting point is the mhsien that for many samples
not the entire tree is evaluated. Since evaluation can $tapygpoint of the hierarchy, the
root node is the only one that is passed by all samples. Coas#ygtthis node should have
the fastest classifier. Going deeper in the tree, nodes batadsify less and less samples,
meaning that for these fast classification is of lesser itapae.

Since for simple classifiers like AdaBoost with decision gdgmmost time is consumed
by feature calculation, this is the target of the presengat@ach. The idea is to use
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simpler features in high tree nodes, where simple in thigexdnmeans fast to compute.
Using less complex features could obviously reduce theadivamplexity of the classifier

considerably. However, as simpler features often do noe hhe same discriminative
power, we do not want to discard the more complex ones entifdterefore, in deeper
nodes, where less samples have to be classified and thusispegsl crucial, all features
should be available to the algorithm. A side effect of resitng feature selection is that the
nodes using only simple features may be slightly weaker. ay thus happen that more
weak learners are used in total and some samples go furtivaridahe tree than originally,

but experiments indicate that, if the differences in feawowmplexity are big enough, this
will still lead to a substantial improvement.

In the following two sections, we describe two ways of inargiing this concept into
the learning process of a PBT. As mentioned before, the pli¢s transferable to other
hierarchical classifiers as well. Prerequisites are that eade of the hierarchy has its own,
separately trained classifier and that during applicateeper nodes classify less samples
than high nodes. Also, features of different computati@oahplexities have to be used.

5.2.2 Cost Constrained Hypothesis Training

In order to make AdaBoost prefer simpler features duringingi, the weak learning pro-
cedure has to be adapted. During each iteratiddaBoost calls its weak learning algo-
rithm that generates a new hypothegidor the ensembleh is the result of optimizing

a function¢ : 57 — R with J# being the hypothesis space containing all possible hy-
potheses that can be generated by the weak learning algorlththe simplest case, the
optimization criterion is solely based on the misclassiitaerror with respect to the cur-
rent sample weight distributioD;

¢(h) = Z De(i).
(KT Ay

This formulation is now extended by incorporating a cosinter : 77 — [0,1] that is
defined on the hypothesis space and assigns a cost to eadhéwsipo The new criterion
to be optimized by the weak learning algorithm then becomes

gh(h) = A -k(h)+(1—2)- () (5.1)

with A € [0,1] a weighting factor trading off the influence of the hypotBesist vs. its
training error.

In our segmentation system decision stumps are used for l@egters. Since a deci-
sion stump consists of the application of a threshold to glsifeature, its training origi-
nally comes down to selecting the single most discrimirsf@ature at each iteration based
on its weighted error on the training data. Consequentlylaggification speed is to be
optimized by this mechanism, the cost of a hypothesis hae ttebined as being the com-
putational complexity of the used feature, may it be deteediianalytically, empirically
(by runtime measurement) or heuristically (by manuallyisgtarbitrary values).

Since the primary goal of the AdaBoost learning is still emextuction, the cost term
is used exclusively for weak learner training while the i&fsthe procedure remains un-
touched (cf. AlgLb): The hypothesis err@r= 3., (- Dt (i) is used for calculatingr
andD¢, 1 as before. Consequently, looking at Sec] 2.2 again, thealienivof the error
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Algorithm 5 The cost constrained AdaBoost algorithm
Input:  (X1,Y1),--.,(Xn,Yn) Wherex; € R™, y; € {—1,+1}. A cost functiork : 7 — [0, 1].
A weighting factorA € [0,1].

1: Initialize D1(i) = 1/n.

2.fort=1...T do

3:  Train weak hypothesik; : R™ — Y that minimizes the objective functiogx (h) =
A-k(h)+(1—A)- ¢t (h) using distributiorD;.

4:  Getweighted training error of hypothedls= 5 D (i).

izhe (Xi)#Yi
Seta; = 3In (%)
Update
 Di(i)eaihe(xi)
Duiafi) = 2
with
Z = Dy(i)e ) =2,/ (1-@).
|
7. end for

Output: Final hypothesisi (x) = sign( % atht(x)) = sign(g(x)).
t=1

bounds for AdaBoost remains the same. All that is requiredhisrderivation is that the
hypothesis errof; stay below 0.5, which can always be guaranteed for a twe dks-
sifier. Therefore, the initial upper bound on the trainingpe®; of the final ensemble
identified by Freund and Schapire [Frel 95] remains intact as

T T
Or < [Ty/1- 4 < exp(—zz w2> % =05-8,
t= t=1

guaranteeing convergence as long as the minimum requiterf@ma weak learner are
met. By iteratively rejecting the found hypothesis and ushegnext best with respect to
yx where necessary, even stricter requirements for the hgpethmay be met leading to
tighter error bounds. Of course, using this combined op@tndn criterion can in general
lead to the selection of suboptimal (with respect to thaassification error) hypotheses.
This has two implications: Since the individualmay be larger than in the original ver-
sion, convergence might be slower in the end as AdaBoost mag teagenerate more
hypotheses than without the cost term. And, in the terms ofirRedal. [Rudi04], this
is not “optimal” AdaBoost. For this case Rudin et al. could shtbat AdaBoost is not
guaranteed to produce a maximum margin solution even if dipéirhal” version always
choosing the hypothesis with the lowest classificationresauld. However, experiments
with clinical data indicate that in practice, this does nif¢é@ performance negatively in
the hierarchical classifier setting.

To achieve the intended runtime optimization of the PBT, tHection of the weighting
factorA is crucial. The goal is to have fast AdaBoost classifiers atdpef the hierarchy
and slower, more accurate ones at deeper tree levels. Terthja has to be set to a high
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value for the root node to put a strong emphasis on the hypistlvtest and thus ensure

the selection of simple features. At deeper tree levkelsan be decreased to reduce the
influence of the cost factor. That way the most accurate featare chosen regardless of
their higher complexity.

One thing to note from Eqg[(8.1) is its generic formulatiorhisTapproach is by no
means limited to runtime optimization. The weak requireta@m the cost function allow
the introduction of arbitrary side conditions into the AdaBbtraining procedure. This
could be memory constraints, stability considerationssqeal preferences like the trans-
parency of a classifier decision, reliability or the actuadtdfor acquiring a feature value.
Also, for other types of weak learners or objective funcsidthe cost term can be incorpo-
rated in a similar fashion.

5.2.3 Adaptive Cost Constrained Hypothesis Training

Besides the hypothesis cost functionthe previous section introduced the weighting fac-
tor A as additional parameter into the training procedure. Traides off complexity vs.
discriminative power during weak learner training, allogithe generation of simple and
fast AdaBoost classifiers as well as slow but accurate onesidyging only the value of
A. In this section, the method is automated even further, ngakkimore elegant by re-
moving the need for setting the weighting factor manualhgtéad, it is set adaptively for
each AdaBoost training based on the importance of the AdaBtassdifier currently being
trained.

In our runtime optimization setting, node importance is suead by the amount of
data that has to be processed, which is the fraction of satipde have to be classified by
this node. During training, when starting a new AdaBooshtray, the number of available
training samples at the current ngdg| is compared to the total number of samplgishe
root node was trained with. If the training set is represrgdor the data to be encoun-
tered during application stage, the weight factor can treesdt according to the expected
fraction of data to be processed by this node. In our expetisnee set this parameter to be

A =05- % Depending on the classification problem and the structtileechypothesis
cost functionk, one might want to choosk to approach 0 more rapidly or actually reach

It.

5.3 Results and Discussion

The effect of the proposed constrained boosting method welsaed with the original
segmentation system described in Clhdp. 3 on the same set lifitaldmages. However,
since in this experiment we are only interested in changdsicomputational complexity
of the classifier, only the first PBT of the iterative classtiiza step was used and postpro-
cessing was deactivated.

As before, each experiment was set up as a five fold crosdatain. For the experi-
ments, the PBT was trained with= 0.2 and a maximum depth of 5. AdaBoost training
was stopped at a hypothesis erroBpf> 0.45 or after 30 iterations.
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5.3.1 Experimental Setup

The optimization of the learning algorithm described abawes at reducing the compu-
tational complexity of the classification system duringlaggtion stage. To measure this
effect, experiments were run with and without the optim@atand their outcome was
compared in terms of application cost and classifier costed Bxperiments were run for
each of the two described configurations:

» One training a classifier with the original learning meti{tddo Cost”),

 one with the cost constrained algorithm and a runtime bhagpdthesis cost function
(“Empirical Cost”) and

 one with randomly chosen cost values (“Random Cost”),

all other parameters set identically.

To determine the runtime based hypothesis cost function veseca very hands-on
approach. Each feature was calculated on the target maahohé¢he elapsed time was
measured, averaged over several thousand runs. For themarabt function, hypothesis
cost values were uniformly randomly drawn from the rafyé]. By using this cost that is
completely unrelated to any feature semantics or powegéheral optimization potential
for arbitrary side conditions is demonstrated.

If the used cost function is based on the feature calculdiioa, a reduction in cost
also means faster evaluation. A random cost function onttier dhand cannot be expected
to improve runtime, so the more general cost based appraatkohbe taken to show the
effect of the cost constrained training for this setup.

The overall cost of classifying a new sample with the PBT cabealetermined analyt-
ically because of the subtree pruning. Instead, one hasualfcapply the classifier to the
sample and accumulate the costs of all encountered hymstladsng the way. This yields
the classifier’s application coalynt(x) for a samplex. The overall cost for a datasgtrep-
resented as the set of sampks= {x1,..,Xu}, would then beQni(X2) = FiL 1 Wpbt(Xi)-
For each fold of the cross-validation, the total cost of allagets in the test set is calcu-
lated. Thus, after a full cross-validation, the final ressilthe total evaluation cost of all
datasets in the test database.

Besides comparing the actual cost when applying the differlassifiers to a sample,
we also analyzed how the modified training procedure chatigemternal structure of
the classifiers. To this end, their classifier cost was detetnand compared. For this
static analysis, the cost of the single hypotheses forntieg?BT is accumulated. More
precisely, the values for all hypotheses at a certain tnes# &se summed up and averaged
over the number of nodes at this level. This procedure alseilsnthe influence of the
weighting factorA.

Obviously, measuring the improvement in runtime or cosbissufficient to show the
validity of the approach. We have to show, that the compjesgduction does not de-
grade classification accuracy over proportion. To this &@IC curves of the classification
accuracy of each configuration are compared.
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5.3.2 Cost Constrained Hypothesis Training

For this set of experiments, the hypothesis cost vatfeswvere scaled to the rand@ 0.5].
This range was used instead0f1] in order to have the cost values in the same range as the
hypothesis errors. Having the two values in the same rangiesrsetting and interpreting
the weighting factoA during training straightforward. Hera, was initially set to 06 and
then linearly decreased to reach 0 at the deepest level bid¢harchy.

Compared to the standard PBT training, the total applicatish could be reduced by
58% by the proposed feature selection method with an enapicizst function, without
losing classification accuracy as can be seen from the RO @uiFig.[5.1(d). This cost
takes into account only the feature calculation part of faesification, not the overhead
produced by the hierarchical classifier. The actual runtietiction depends on various
implementation factors. For the system used in these erpets, the 58% lower cost
translates to a runtime reduction of 52%.

Figure[5.2 shows the result of the static analysis, compathia classifier cost for the
different configurations. The constrained feature sedactvorked as expected: In high
nodes, AdaBoost chose features with lower cost than withtdredard PBT version, thus
the much higher cost per tree level and per node of the uneomsti PBT (“No Cost”)
for depths 1-4. In deeper nodes, which are rarely evaluated, the costtpanathe
constrained algorithm was decreased. Hence, the AdaBoostgure focused more on
the weak learners’ classification error and the averageicosased.

The fact that for the unconstrained training the averagedmseases with increasing
tree depth supports the claim that there is a loose comwalégtween feature complexity
and discriminative power. AdaBoost learning, by nature &dyeapproach, chooses the
strongest features first, which turn out to be the most expenses. For deeper tree levels,
these do not provide any additional insight, so that simiglatures are preferred.

The empirical cost constrained PBT exhibits the oppositaehn using the cheapest
features first and gradually switching to more expensivesonaleeper tree levels. That
way its curve for the total cost per tree level is steepem@xeeeding the unconstrained
one at leaf level, wherg is set to 0.

The experiments with random hypothesis cost show, howhatrthis correlation be-
tween feature cost and discriminative power is not requineduccessful optimization of
a side condition. In Fid. 5[2(d) the average node cost resraimnly constant, showing
the uniformity of the cost function. Still, even for theséitmary assignments of cost val-
ues to features, the evaluation cost is reduced by 42%. Tpisosts the claim made by
Eq. (5.1): The proposed method is by no means limited to mantptimization. Using
this method, the PBT training can optimize any secondary itiondvithout losing track
of the classification error.

5.3.3 Adaptive Cost Constrained Hypothesis Training

Trading off the cost and the training error of the hypothesiaptively as described in
Sec[5.2.B lets the learning algorithm control the optitidraprocess even further. The
importance of a node and thus the valueAohow does not depend on the depth of the
node any more, but directly on the fraction of samples th#lithwive to be classified by
this node. This method achieves an even higher applicatishreduction than before,
namely 76%. This equals a runtime reduction of 69%. The mnandost function yields
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63% improvement. Again, classification accuracy is not dégd as can be seen from
Fig.[5.1(b).

A side effect of this setup is that the interpretation of tlstcgraphs (Figuré 5.3)
changes. For the total cost per tree level (Fiduré 5.8(3), {loce shape of the curve is
still somewhat predictable: It starts with a low cost, sitice situation at the root node
remains the same as in the previous experiment. The slopdéenstgeper, because a good
separation at one node leads to a low valud @nd thus a high cost at one of the child
nodes. The total cost at leaf level is nevertheless lower thahe previous experiment,
because therg was set to O at leaf level while here the cost may still haveesioriftuence.

The average cost per node, on the other hand, does not sheardehavior any more.
Looking at the values ok alone, one could argue that the average cost should staly near
the same throughout the tree or decrease slightly. The sarapbny node are split up and
distributed to its children, s is distributed accordingly, with a small gain due to samples
put into both subtrees. There are, however, many influercteradisturbing this fragile
balance, such as the fact that any two nodes at the same layédlaxe very different values
of A, the greediness of AdaBoost, or outliers from the corretebetween feature cost and
discriminative power. The plots in Fig.$.3](p),](d) are tiomdy given for completeness.

5.3.4 Free Lunch?

At first glance the above results seem surprising. PBT trgicemn be modified so that
classification takes 69% less time without losing clasdificeaccuracy, just by restricting
the use of certain features. The algorithm can even be usetptove not runtime but any
(even random) constraint.

Thinking one step further it becomes clear what has to bedrapg during the training
procedure. As stated in Séc. 2]2.1, one advantage of AdaBeasbther learning methods
is its ability to deal with a large number of features. One lemve the algorithm with a
huge set of features and during training it will select thesmaseful ones. In the end,
the classifier will always use only a small subset of the mtedifeatures. Starting with a
smaller number in the first place could result in the samesitlag but then the user would
have to perform the feature selection. So, many featuressnayly be left out because
there are cheaper ones that are only slightly worse w. retcldmssification error. However,
this may lead, as mentioned in Sec.l5.2, to a higher numbeymftheses.

The second effect yielded by the constrained feature satecbmpensates for this
higher number of hypotheses: The order of evaluation of gatufes is changed. By
introducing the weighting factok and adapting it at different tree levels/nodes, one can
control the distribution of hypothesis cost over the tree. ewlooking at the case of a
runtime based cost function, one can shift the use of the exstnsive features away
from the first few nodes that have to classify the highest remab samples. That way
these nodes will likely lose some accuracy, so that some Isanapll move deeper in the
tree than in the unconstrained case. But this will not be tlse éar all samples, which
is why this constrained tree can, on average, be considefadier. If a sample needs to
be classified by all nodes of the tree, the effort needed &siflait is the same as in the
unconstrained tree, only the order of evaluation changed.

So, to summarize the above, taking the metaphor further,ntieithod does not claim
any free lunch, but the original method paid too much. Thenedncy in the original fea-
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ture set gives room for optimization. Apart from this, orietorder of feature evaluation
Is changed, with the goal to use the cheapest features aslafile=.

5.4 Conclusion

In this chapter, we introduced an extension to the AdaBoggstrighm that allows incor-
porating a user defined constraint into the hypothesis sa@heprocess during classifier
training. In a study with clinical CT images we showed thaingghis method, the com-
putational complexity of the PBT that forms the basis of ogeregly proposed liver tumor
segmentation system could be reduced by 76% by incorpgratimeasure of feature cost.
The same method can be applied to the AdaBoost cascade [Vioi 6ther, similar hierar-
chical algorithms that contain a means of pruning parts@tthssifier during application.

To fully optimize the runtime of an algorithm, a single mockfiion will rarely be
enough. The method presented here can be combined witlsditkeethe ones discussed
in Sec[5.1.

However, this extension to AdaBoost is by no means limitecbtogexity reduction.
The algorithm works independent of the semantics of thefoostion. This method thus
gives the user a powerful means of control over the AdaBoastquiure, allowing the
simultaneous optimization on any additional criterionttban be defined at hypothesis
level.
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Figure 5.2: Comparison of classifier costs for the PBT if thegiveng factorA is set to
decrease linearly from 0.5 at the root to 0 in depth 5. The PB&sanalyzed by accu-
mulating the cost of all hypotheses at each tree level (Fgdfd),[(c)) and averaging the
resulting values over the number of AdaBoost classifiersiatdépth [((B)[ (d)). The top
row shows the comparison of an unconstrained classifieneavithout any cost func-
tion (solid black curves), with a classifier trained with anpérical cost function. Both
classifiers were evaluated using the same cost functionow #te effect of said function
on the training procedure. The bottom row shows the same aosgn between the un-
constrained classifier and one that was trained with a ranmisnfunction. Again, both
classifiers were evaluated with the same random cost functio

In all configurations the total cost increases with deptithashnumber of nodes (and thus
the number of hypotheses) increases. The generally mublehogsts in the random cost
case (note the different scales at yhaxes) stem from the fact, that the feature set contains
mostly Haar-like features, which receive very low cost ealin the empirical cost function.
Since the random cost function is uniformly distributedsilikely to assign much higher
cost values to these features.

Analysis of the average cost per node shows, that incluti@gast function in the training
procedure has the expected effect: For the constrained P&3Ipeh features are preferred
in the higher nodes of the tree.
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Figure 5.3: Comparison of classifier costs for the PBT wtset proportionally to the

fraction of samples to be classified at the respective nodeinAig.[5.2, the cost of all

hypotheses is accumulated at each tree lével[((d), (c)) eerhged over the number of
AdaBoost classifiers at this depfh ((b),](d)).

The top row shows again the comparison of an unconstraiegitier (solid black curve)

with one that was trained using the empirical cost functidhe bottom row shows the
same comparison between the unconstrained classifier amdhahwas trained with a
random cost function.

The average node cost does not show a clear behavior, betasse®w independent of

the depth and thus at any given depth nodes can have veryediffeosts. The total cost
per level is similar to the previous experiment, with a dliglsteeper slope in early levels
and a lower total cost at leaf level.



CHAPTER 0

Outlook

This work takes another step towards an automatic solutiahe problem of segmenting
liver tumors in CT images. It analyses new ways of learningrgrirom data and presents
modifications of existing learning algorithms that reacti weyond the domain of medical
image processing. However, for every project borders haetdrawn at some point, so
that while many questions could be answered some new onesraised as well.

One limitation of this work is its focus on a single kind ofil@ss. The focus was put
on hypodense liver lesions in order to keep the complexitthefproblem space at bay
and that way reduce the necessary amount of training datprifoiple, the approach is
by no means limited to this type of tumors. It could just aslwelapplied to hyperdense,
rim-enhancing or even completely inhomogeneous lesidtmugh besides the additional
training data some more features capturing the intricaofebese targets may become
necessary. One natural extension in this context would hes¢onot only images with
venous contrast enhancement but combine them with arierd@les or even other contrast
phases. The combination could be either an early fusionoagpr combining features of
matched voxels into one feature vector and feeding thisasiagle classifier. Or one could
have separate classifiers for each image type and combimerdbalts afterwards. The
implications of this design decision would be similar togedormulated for the integration
of the lesion prior into the segmentation system describéite (Section 4.4). Preliminary
experiments with additional arterial phase images shownggiog results, especially for
lesions like focal nodular hyperplasia, which often préskeemselves isodense in venous
images but strongly hyperdense in arterial ones (cf. [Fig(al). With sufficiently large
databases one might even be able to settle the discussiomgaradiologists about the
benefit of multiphasic image acquisitions for diagnosiswartumors.

Regarding our work on learning priors for follow-up segméntathere is one ques-
tion that comes to mind almost immediately. One prerequisit learning the prior from
training image pairs and applying it to new ones is that thegenpairs are registered non-
rigidly. The state-of-the-art method used here perfornaseaably well on this difficult
task. It would, however, be interesting to see how differapthods with different errors
influence the performance of the learner and the segmemttgiem. Knowing the behav-
ior of a registration algorithm one may even be able to geaeealistic errors artificially,
providing a higher degree of control over the evaluationve@ia sufficient number of
follow-up images to allow reliable statements on influerax®drs this could provide valu-
able insight into the nature of the learning algorithm, éarhing task and the used feature
space.

In general, the methods and evaluations presented hereareeld on automatic seg-
mentation, i.e. a decision on voxel level what parts of therlconsist of healthy tissue
and what parts belong to a lesion. The voxel classificatiqgragch does also provide a
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detection and has the advantage that it is in principle iaddpnt of the size and shape of a
target lesion. Pure detection methods like the window iflaaton approach by Viola and
Jones|[Viol 01], on the other hand, provide access to newosésitures describing whole
objects as opposed to single points inside an object. Alsy, &re in general more robust
against noise in the input data. As a drawback, they requorertraining data because
each lesion makes only one positive example (plus possifihely transformed versions
of the lesion). For a voxel classification approach, eacleloka lesion makes one posi-
tive example. Nevertheless, it would certainly be worthestigating how such a window
based detection performs and how a separate module onlhefectibn can simplify the
subsequent segmentation task.

Regarding the detection capabilities of the system preddmaee, results can certainly
be improved by introducing a filter step into postprocessifys filter would consist of a
classifier that receives a feature vector for each lesiodidate and decides whether this
candidate is a true detection or a false positive. Of codhsefilter must not remove any
true detections, but still it should be able to identify sdalee alarms.



CHAPTER [

Summary

Modern medical imaging devices are able to acquire images @mazingly broad range
of targets. With X-Ray Computed Tomography, anything fromiiloed vessels of a beat-
ing heart to the entire muscoskeletal system can be captiitehks to various types of
contrast agents this modality even pushes into the origioadain of Magnetic Resonance
or Ultrasound imaging, the visualization of soft tissue.r Bmgnosis and monitoring of
liver tumors it has become a standard tool in clinical roeitilowever, while image ac-
quisition has made enormous progress over the past deaaeputers and algorithms
processing the ever increasing amount of images can haegly ¥p with the pace of de-
velopment. In fact, most processing to this day is focusethmamoving image quality in
order to give a better or more clear presentation to a humaareér while exposing the
patient to ever less ionizing radiation. While this effortsmgithout doubt very successful
when looking at today’s images in comparison to those of #my0s, this is not the
end of what computers can do. The tools for visualization easairements provided to
the physician are still very basic. A growing community oearchers and companies
therefore bring methods of artificial intelligence, patteecognition, statistics and image
understanding into the market in order to provide tools slguport clinical workflows by
actually interpreting images and generating condensednétion out of them.

The domain of medical images is a very complex one. Everyepatas a different
anatomy and metabolism. Many acquisition parameters mei¢he appearance of im-
ages. Differences between relevant structures and baskg@ noise may be very small.
That is the reason why to this day in most fields of applicatioralgorithm can match a
human when it comes to extracting relevant objects fromrieges or making decisions
on disease status. Despite all progress made in specifiktdsilike skin cancer diagnosis
or analysis of coronary arteries we are still barely sciatgthe surface of what could be
done if only we had the right tools: algorithms that can adaghis complex and ever
changing environment as the human brain does seeminglpuwtitffort.

The thesis at hand takes one more step in this directionstiigeging machine learning
methods for the segmentation of liver tumors in CT images.n@siontrast agent, CT
images of the liver can be acquired showing lesions that avothierwise be isodense to
the surrounding liver tissue. Especially useful for theeasment of liver tumors are images
in which the contrast agent just entered the liver via thegbeein, because most tumors
receive their blood supply via this path. In order to judge tlisease status of a patient
and to monitor it over time a physician will have to measure@esentative subset of the
lesions in each of the patient’s images. The goal of an dlgarc solution here would
be to provide a 3D delineation of all lesions of the patienbiider to allow for precise
volume measurements. For complex tasks like this, recemghine learning techniques
have proven most useful. These allow to build systems thasatheir parameters and
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thus learn their functionality based on examples. In the eafiand a classifier is built by
providing it with example images of healthy and diseasegldiv After this training phase
the resulting classifier is ready to be used on new imagepuffsose is to decide for single
points (=voxels) of a CT image whether they are part of a liuerdr or not. The classifier
that is used here is a Probabilistic Boosting Tree (PBT), attéical classifier combining
a number of AdaBoost classifiers.

The PBT forms the core of the presented segmentation systeeinput to the system
consists of a liver CT image acquired during portal venouselwd contrast enhancement.
The image is preprocessed by automatically segmentinguieih the image and stan-
dardizing image intensities of the voxels inside it. Therfer reduces the search space for
the further processing, the latter simplifies the clasgiioatask by eliminating differences
in the images due to acquisition timing or other externaidex In the main segmentation
step, for each voxel inside the liver a vector of about 25@@uiees describing the voxel's
appearance is calculated. From this feature vector the Pi@haes a probability for the
voxel to belong to a tumor. From the resulting probabilityage about 60 additional fea-
tures are calculated and appended to the vector of appeaf@aitires. This new vector
forms the input to another PBT. This process is repeated witio tour PBTs, resulting in
a cascade of classifiers. Due to its hierarchical decisickingathe PBT as a classifier is
very well suited for complex problem spaces like the one atlh&Jsing a cascade instead
of a single classifier leads to more robust results with Ipssisus misclassifications, im-
proving precision by 38% at 90% sensitivity. Very similantural information processing
the classifier cascade has the effect that neighboring saxilience each other iteratively
in such a way that each voxel's probability value stabiliaesr time. Therefore, the final
output of the cascade needs no elaborate postprocesssigadn it is only filtered using
a morphological opening and a median filtering before tlokbhg it to yield the output
lesion mask.

To monitor disease progression over time, one could segarehimeasure lesions in
every image acquired from the patient during each exananageparately. However, we
chose to optimize the method for this task in order to furtbduce error rates. To this end
we propose a method for generating a patient specific lesiontpat can guide the system
in its segmentation task. A prior model is learned from regesd pairs of images of the
same patient acquired at different times together witheregice segmentation for the first
of the two images. This model encodes lesion growth and lshgim over time. Given the
first image of a new patient together with its lesion segntemand an image acquired a
few months later, the system can compute a patient speaibicfpgm the model providing
insight where to expect lesions in the second image. Two wayscorporating the prior
into the segmentation system are investigated. The priobeacombined multiplicatively
with the output of the original lesion segmentation systemtfie second image. Or it
can be incorporated into the system directly by trainingyane classifier that uses all
features of the classifier used for segmentation and the sgxin the prior model in one
vector. While the latter is preferable because it can detstteaploit additional patterns
and dependencies in the data, experiments indicate thejuires a substantial amount of
additional training data. In general, our experiments amaal data show a considerable
advantage of the systems using a learned prior, no matteirtiswsed. Measuring the
segmentation performance on voxel level, we found a reduaf false positive classi-
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fications per true positive by 57.8% at 90% sensitivity if fivér is integrated into the
system.

For systems like the one presented here, where a compleysanial required for each
image point, runtime can become an issue in clinical routW&h modern imaging de-
vices, large 3D datasets can be acquired, whose procesamntake several minutes up
to hours depending on the type of analysis performed. Witregsing capabilities of the
methods their runtime demands have therefore to becomet tafgesearch themselves.
Starting from the observation that in detection tasks ofterst of the input images con-
sists of background, large parts of which can easily be étterut, we therefore develop a
means to build a PBT that can save a great deal of processiagtimpared to the original
version. We propose a redesign of the PBT, where the topmdstsrare constructed much
simpler than the deeper ones. This makes use of a propettg ¢fBT during application
phase: A feature vector is handed down the tree and clasatfesach node along the way.
If, however, such a node classifier is very certain aboutdbellof the example, it is only
handed down the corresponding subtree instead of both.I8duds to the root node being
the only one that has to process all examples, while deepgsnonly have to classify
those that are most difficult to decide. Since most of the ggsing time in this classifier
is spent calculating features, we incorporate a new termthné AdaBoost training pro-
cedure, so that it does not only optimize classificationrdot at the same time also the
cost of the used features. During PBT training, the influeric¢ais cost factor is reduced
with increasing tree depth. That way more complex featuhad,may have larger discrim-
inative power, can still be used towards lower levels of tkee.t This modification of the
AdaBoost and PBT learning algorithms reduces classificatishio the presented system
by up to 76% without losing classification accuracy.

A topic of this complexity can never be studied exhaustivBlyiving one question will
raise two new ones that are worth investigating. In our cagetension to multi phase CT
imaging and more types of liver lesions would be the most jment directions of future
research. Approaches that include a separate detecthased on window classification
may improve performance further. And obviously a betterarathnding of the influence
of the used registration algorithm on the behavior of theesyisvould be desirable.
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CHAPTER A

Appendix

A.1 Evaluation Measures

Comparing the output of a segmentation algorithm with a ezfee segmentation on a
per-voxel basis yields the numbers of correctly and inatlyelassified points. With two
possible target classes there are two types of correctfatasi®ns and two types of error,
so four values in total. These can be representedkda@atrix known as confusion matrix
(Table[A.1). From the values in this table, several overlagasures can be calculated to

Classification \ Reference: lesion Reference: background
Algorithm: lesion True positive (tp) False positive (fp)
Algorithm: background False negative (fn) True negative (tn)

Table A.1: Confusion matrix. Based on the numbers of true pesitfalse positives, true
negatives and false negatives, the quality of the segmentatassessed.

characterize the performance of the classification or satatien algorithm (Table_Al2).
Each measure highlights different aspects of the segmemntay putting emphasis on dif-
ferent parts of the confusion matrix.

Sensitivity ‘ #tpﬁ-p#fn
Specificity \ #mﬂfp
False positive rate = 1 - specificity #fﬁi‘;n
Jaccard index ‘ #tp+#f p+#fn
Dice coefficient ‘ 2#tp-|2-§ B+#fn
Precision ‘ #tpﬁt_zfp

Table A.2: Performance measures calculated from the srafihe confusion matrix.
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