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Abstract

Nowadays, angiography is the gold standard for the visualization of the morphology
of the cardiac vasculature and cardiac chambers in the interventional suite. Up to
now, high resolution 2-D X-ray images are acquired with a C-arm system in standard
views and the diagnosis of the cardiologist is based on the observations in the planar
X-ray images. No dynamic analysis of the cardiac chambers can be performed in 3-D.
In the last years, cardiac imaging in 3-D using a C-arm system becomes of more and
more interest in the interventional catheter laboratory. Furthermore, the analysis of
the 3-D motion would provide valuable information with respect to functional cardiac
imaging. However, cardiac motion is a challenging problem in 3-D imaging, which
leads to severe imaging artifacts in the 3-D image. Therefore, the main research
goal of this thesis was the visualization and extraction of dynamic and functional
parameters of the cardiac chambers in 3-D using an interventional angiographic C-arm
system.

In this thesis, two different approaches for cardiac chamber motion-compensated
reconstruction have been developed and evaluated. The first technique addresses the
visualization of the left ventricle. Therefore, a whole framework for left ventricular
tomographic reconstruction and wall motion analysis has been developed. Dynamic
surface models are generated from the 2-D X-ray images acquired during a short
scan of a C-arm scanner using the 2-D bloodpool information. The acquisition time
is about 5 s and the patients have normal sinus rhythm. Due to the acquisition time
of about 5 s of the C-arm, no valuable retrospective ECG-gated reconstructions are
possible. The dynamic surface LV model comprises a sparse motion vector field on
the surface, which can be used for functional wall motion analysis. Furthermore,
applying various interpolation schemes, dense motion vector fields can be generated
for a tomographic motion-compensated reconstruction. In this thesis, linear inter-
polation methods and spline-based methods have been compared. The combination
of the wall motion analysis and the motion-compensated reconstruction is of great
value to the diagnostic of pathological regions in cardiac interventions.

The second motion-compensated reconstruction approach uses volume-based mo-
tion estimation algorithms for the reconstruction of two - left atrium and left ventricle
- to four heart chambers. A longer C-arm acquisition and contrast protocol allows for
the generation of initial images at various heart phases. However, the initial image
quality is not sufficient for motion estimation. Therefore, different pre-processing
techniques, e.g., bilateral filtering or iterative reconstruction techniques, to improve
the image quality were tested in combination with different motion estimation tech-
niques.

Overall, the results of this thesis highly demonstrate the feasibility of dynamic and
functional cardiac chamber imaging using data from an interventional angiographic
C-arm system for clinical applications.



Kurzfassung

Heutzutage ist die fluoroskopische Angiographie das meist eingesetzte Verfahren zur
Darstellung von Koronargefäßen und Herzkammern. Jedoch ist die Herzkatheterun-
tersuchung mit Hilfe eines angiographischen C-Bogens beschränkt auf die Analyse von
2D Röntgenbilder. Allerdings würde eine funktionale dreidimensionale Untersuchung
des Herzens wichtige zusätzliche Information direkt im Katheterlabor bereitstellen.
Basierend auf 2D Röntgenbildern, die während einer Rotation eines C-Bogen Sys-
tems aufgenommen wurden, können 3D Bilder des Körpers mit Hilfe von Rekon-
struktionsalgorithmen berechnet werden. Allerdings stellt sich die 3D Darstellung
des bewegten Herzens als sehr schwierig dar. Hinsichtlich der längeren Aufnahmezeit
von mehreren Sekunden, verursacht die Herzbewegung Bildartefakte in der tomo-
graphischen 3D Rekonstruktion. Demzufolge war es das Hauptziel dieser Arbeit, Al-
gorithmen und Möglichkeiten zu entwickeln, welche die 3D Darstellung des Herzens
mit einem C-Bogen System erlauben und mittels verschiedener Verfahren funktionale
Parameter des Herzens zu extrahieren.

In dieser Arbeit wurden zwei unterschiedliche Ansätze zur bewegungskompen-
sierten Rekonstruktion von Herzkammern entwickelt und ausgewertet. Die erste
Methode beschäftigt sich mit der Darstellung des linken Ventrikels. Hierfür wurde
eine umfassende Anwendung zur bewegunskompensierten 3D Darstellung des linken
Ventrikels und zu dessen Wandbewegungsanalyse entwickelt. Während der 5 s Auf-
nahme hat der Patient einen normalen Sinusrhythmus. Aufgrund der Aufnahme-
dauer können keine EKG-basierten Rekonstruktionen erfolgen. Daher wurde ein
oberflächenbasiertes Verfahren entwickelt. Hierzu wird das 2D Blutvolumen in den
Projektionsbildern segmentiert und unter Zuhilfenahme dieser segmentierten Daten
werden dann dynamische Oberflächenmodelle generiert. Diese Modelle erlauben es
die Bewegung an der Oberfläche zu bestimmen und diese für die Bewegungsanalyse
zu nutzen. Für eine tomographische bewegungskompensierte Rekonstruktion wer-
den jedoch dichte Bewegungsfelder benötigt. Diese dichten Bewegungsfelder können
mittels verschiedenster Interpolationstechniken generiert werden, zum Beispiel mit
linearen oder spline-basierten Methoden. Die Kombination aus funktioneller und be-
wegungskompensierter, tomographischer Darstellung hat einen hohen Wert für die
Diagnose von pathologischen Regionen während der kardiologischen Untersuchung.

Der zweite Ansatz arbeitet mit volumenbasierten Techniken zur Herzbewegungs-
schätzung. Für diese Anwendung wird nicht nur das linke Ventrikel, sondern auch
das linke Atrium beziehungsweise alle Herzkammern dargestellt. Hierfür wird ein
Aufnahmeprotokoll mit längerer Aufnahmezeit benötigt. Die Aufnahmetechnik er-
laubt es 3D Bilder des Herzens in verschiedenen Bewegungszuständen zu visualisieren.
Allerdings ist die Qualität dieser initialen Bilder nicht ausreichend für einen klinischen
Einsatz. Deswegen wurden verschiedene Vorverarbeitungsschritte, zum Beispiel ein
bilaterales Filter oder iterative Rekonstruktionsverfahren, zur Bildqualitätsverbesser-
ung in Kombination mit 3D Bewegungsschätzung und -kompensation untersucht.

Zusammenfassend zeigen die Ergebnisse der Arbeit, dass erste Anzätze für die An-
wendung von dynamischer und funktioneller Herzbildgebung mit einem angiographis-
chen C-Bogen im klinischen Umfeld möglich sind.
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C H A P T E R 1

Introduction
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1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

The European Society of Cardiology published the fourth edition of the European
cardiovascular disease statistics in 2012 [Euro 12]. They stated that diseases of the
heart and blood circulatory system are the main cause of death in Europe, account-
ing for over 4 million deaths each year. It is also the main cause of death for people
younger than 65 years in Europe. The potential risk of a patient to suffer from any
kind of coronary heart disease can be determined by the so called “Framingham Risk
Score” [Wils 98]. The Framingham risk score uses categorical variables, e.g. gender,
age, blood pressure, and total cholesterol, to predict coronary heart disease risk in
patients without indicating symptoms for heart diseases. If a patient indicates any
type of cardiac disease, several examinations need to be performed, e.g. a stress
electrocardiogram or stress echocardiogram. If the patient is diagnosed with a heart
disease, the patient will undergo an interventional coronary procedure. Nowadays,
coronary angiography is the gold standard for the visualization of the morphology
of the cardiac vasculature and chambers [Krak 04]. Up to now, high resolution 2-D
X-ray images are acquired with a C-arm CT system in fixed views and the diagnosis
of the cardiologist is based on the observations in the planar X-ray images. From
these, no dynamic analysis of the cardiac chambers can be performed in 3-D. In the
last years, cardiac imaging in 3-D gains more and more interest in the interventional
catheter laboratory. Cardiac motion is a challenging problem in 3-D imaging, which
leads to severe imaging artifacts in the 3-D image. The analysis of the motion pro-
vides valuable information with respect to functional cardiac imaging. Therefore,
the main research goal of this thesis is the visualization and extraction of dynamic
and functional parameters of the cardiac chambers in 3-D using an interventional
angiographic C-arm system.

In this chapter, a short introduction to the heart anatomy and the cardiac cycle
is given in Section 1.1. Furthermore, the importance and clinical relevance of cardiac
imaging, especially interventional cardiac imaging with a C-arm CT system is pre-
sented in Sections 1.2 and 1.3. This chapter ends with a summary of the achieved
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2 Introduction

(a) (b)

Figure 1.1: Schemes of the heart anatomy. (a) Front view of the heart and the lungs. (b)
Scheme of the human heart which shows the two ventricles and the septum. Images taken
from [Gray 00].

scientific contributions of this thesis to the progress of research and with an overview
of the individual thesis chapters in Sections 1.4 and 1.5.

1.1 Heart Anatomy and Cardiac Cycle
In this section, the heart anatomy and cardiac cycle are briefly described. The de-
scription is completely based on the work of Henry Gray in the book „Anatomy of
the Human Body“ (1821 to 1865). Only relevant anatomic details are given below -
for further details the reader is referred to the public domain online book of Henry
Gray [Gray 00].

1.1.1 Heart Anatomy
An adult human heart is a hollow muscular organ and is located between the lungs in
the middle of the mediastinal cavity, see Figure 1.1a. It is placed behind the sternum
and located generally farther into the left than into the right half of the thoracic
cavity. The heart measures about 12 cm in length, 8 to 9 cm in width and 6 cm in
depth. The weight varies for males between 280 to 340 grams and for women from
230 to 280 grams. Both, size and geometry of the heart change with increasing age
[Kitz 90]. Also variations can be observed between athletes and others in the normal
general population [Maro 06]. In general, the heart consists of four chambers. It is
divided into a right and left half by the septal wall or septum. Both halves are further
divided into two cavities, the atrium and the ventricle. The right atrium is usually
larger than the left, but has a thinner wall measuring about 2mm. The left atrial
wall measures about 3mm in thickness. The right and left ventricle are roughly of the
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(a) (b)

Figure 1.2: 2-D cine acquisition with a Magnetom Prisma MR scanner (Siemens AG, Health-
care Sector, Erlangen, Germany) of the heart chambers at systole (a) and end-diastole (b)
in an axial view.

same size, but the walls of the left ventricle are about three times as thick as those
of the right one, as it needs to pump the blood through the whole body. A scheme of
the human heart is given in Figure 1.1b. The heart itself consists of muscular fibers
and fibrous rings. It is covered by the visceral layer of the epicardium and lined by
the endocardium. In between these two membrane layers is the muscular wall, the
myocardium. The endocardium is a thin, smooth membrane which forms the inner
surface of the heart. The endocardium consists of connective tissue and elastic fibers,
and is attached to the muscle by loose elastic tissue which contains blood vessels and
nerves. A more detailed overview of the heart anatomy can be found in the online
book of Henry Gray [Gray 00] and in the human anatomy atlas of Frank H. Netter
[Nett 08b].

1.1.2 The Cardiac Cycle and the Actions of the Valves
When the heart is contracting, the blood is pumped through the whole body via the
arteries. Each wave of contraction or period of activity is triggered from the sinus-
atrial node. Every contraction period (systole) is followed by a period of rest, denoted
as diastole. The two periods form the cardiac cycle. Example MRI reconstructions
of the heart in systole and end-systole are given in Figure 1.2. Each cardiac cycle
consists of three phases: (1) a short contraction of both atria, called atrial systole,
followed by a small pause, (2) a prolonged contraction of both ventricles, denoted
as ventricular systole or systole and (3) a period of rest, where the whole heart is
relaxing, named diastole. During (1), the blood is pumped from the left atrium
into the left ventricle and from the right atrium into the right ventricle, respectively.
Regurgitation into the veins is prevented by the contraction of their muscular layer.
When the ventricles contract (2), the valve between left atrium and left ventricle
(mitral valve, also called bicuspid valve) and the valve between right atrium and
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Figure 1.3: Temporal correlation of the left ventricular pressure, volume and ECG-signal
over the heart cycle. Detailed scheme can be found in [Schr 09].

right ventricle (tricuspid valve) are closed to prevent the back flow of the blood into
the atria. When the pressure inside the ventricles is high enough, the valves (aortic
valve and pulmonary valve) into the aorta and pulmonary artery are opened and the
blood is driven from the right ventricle into the pulmonary artery and from the left
ventricle into the aorta. When the systole of the ventricle fades, the pressure inside
the pulmonary artery and the aorta closes the valves to again prevent regurgitation.
The valves remain shut until the next ventricular systole. During the period of rest
(3), the tension of the mitral and tricuspid valve is relaxed, and blood flows from the
veins into the atria and slightly also from the atria into the ventricles. The average
duration of a cardiac cycle lasts about 0.8 s. It is divided into 0.4 s total systole (atrial:
0.1 s, ventricular: 0.3 s) and 0.4 s total diastole (atrial: 0.7 s, ventricular: 0.5 s). The
temporal correlation between left ventricular pressure, volume and ECG-signal is
illustrated in Figure 1.3. In Figure 1.4, the left ventricle, the aortic and the mitral
valve are shown in a CT reconstruction at end-diastole.

1.2 Clinical Relevance of 3-D Cardiac Imaging
Death due to any kind of cardiac disease causes over 4 million deaths in Europe and
1.9 million deaths in the European Union. Cardiac vascular disease causes 47% of
all deaths in Europe and 40% in the EU [Euro 12]. It was also the leading cause of
death in the US in 2011 according to the Centers for Disease Control and Prevention
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(a) (b)

Figure 1.4: Somatom Definition Flash CT scanner (Siemens AG, Healthcare Sector, Forch-
heim, Germany) reconstruction at end-diastole, showing the mitral valve, aortic valve and
the left ventricle in two different views (left/right) in multi-planar images and the volume
rendering. The bright spots around the mitral valve and aortic valve are calcifications.
The image data was provided by Dr. med. Abt and Dr. med. Köhler from the Herz- und
Kreislaufzentrum Rotenburg a. d. Fulda, Germany.

of the National Center for Health Statistics (CDC/NCHS) [US D12]. In addition to
the therapeutic advances, the progress in cardiac imaging and diagnostics has lead to
consistently declining death rates. The most common modalities for cardiac imaging
are presented in the following paragraphs. The overview is based on Frangi et al.
[Fran 01].

1.2.1 Cardiac Ultrasound (US)
Ultrasound (US), also called echocardiography, provides the ability to study the car-
diac contraction behavior non-invasively via emitted ultrasound [Moyn 81]. Ultra-
sound is an easy tool for primary standard diagnosis of morphological or cardiac
dysfunction. One limiting factor of this imaging modality is the attenuation of the
ultrasound wave before it reaches the actual tissue of interest. Therefore, trans-
esophageal echocardiography (TEE), transthoracic echocardiography (TTE), and in-
tracardiac echocardiography (ICE) were developed in order to increase image quality
for cardiac applications. Orienting the imaging slice in a 2-D scan can be challenging
in an interventional setting using TTE [Jain 09]. TEE requires sedation of the patient,
which may not be necessary for all cardiac interventional procedures. The ICE does
not require the patient to undergo anesthesia and therefore, the use of ICE for mitral
valve repair and electrophysiological procedures is growing [Hija 09]. Up to now, in
contrast to TEE, ICE represents a purely intraprocedural guiding and navigation
tool unsuitable for diagnostic purposes [Bart 13]. In recent years, three-dimensional
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echocardiography (3DE) allows quantitation of the heart in 3-D [Hung 07]. The 3DE
is used to compute the ventricular volume over time and to perform wall motion
analysis [Kape 05]. The 3DE images can also be registered and overlayed onto 2-D
fluoroscopic images to enable soft tissue contrasting and functional imaging [Jain 09].
The parameter extracted from the 3DE exhibit some variances depending on the
vendors analysis software [Sach 11]. Clinical studies were initiated to evaluate the
deviations of the parameters among different software solutions [Mura 10, Wang 12].

1.2.2 Computed Tomography (CT)

Cardiac CT imaging is clinically important and can be used for diagnosis and risk
analysis of coronary diseases. For example, for patients with an intermediate risk
for coronary artery diseases, a so called coronary artery calcium (CAC) score can
be assessed. In general, there exist two CT calcium scoring systems: the Agatston
method and the “volume” score method [Budo 06, Qian 10, Erbe 07]. Both methods
provide valuable information of atherosclerosis burden and for tracking changes over
time in order to assess therapy efficacy [Budo 01, Hoff 03].

In CT systems, the hardware design limits the temporal resolution [Ache 06]. The
acquisition is usually performed in a quiescent cardiac phase with less motion. How-
ever, the duration of the cardiac phase with small motion reduces with an increased
heart rate. Image artifacts due to motion can occur in the reconstructions, especially
in less advanced CT systems. Consequently, reconstruction algorithms that account
for the motion need to be developed [Tagu 08, Schn 11, Rohk 13, Tang 12]. With
new scanners, a temporal resolution of 75ms can be achieved with a dual source CT
system [Floh 08, Rohk 13]. In order to reduce radiation dose and to minimize the mo-
tion artifacts, minimum-dose scans are designed, which cover the whole heart during
a single cardiac cycle, e.g., a high-pitch dual source CT spiral called “Flash spiral”
or “Flash CT” [Ache 09].

In general, 4-D CT imaging is not performed for functional or dynamic analysis
due to the high X-ray dose applied to the patient [Mang 05]. Furthermore, CT imag-
ing can only be performed before or after the procedure for diagnosis, but not for
interventional guidance or imaging.

1.2.3 Magnetic Resonance Imaging (MRI)

Cardiac MRI is a rapidly advancing technology for extracting functional and mor-
phological information of the cardiac chambers and cardiac vasculature [Form13].
Different acquisition sequences are used in order to acquire dynamic images of the
heart. These images provide the ability to segment and to analyze the cardiac function
[Matt 12, Ma 12]. Contrast enhanced MRI provides the possibility to show necrotic
myocardial tissue. For the visualization of necrotic tissue, an additional scan after the
administration of gadolinium-based contrast agent is performed about 10min after
the first non-contrast enhanced image aquisition [Mahr 08]. The necrotic tissue shows
a higher concentration of contrast agent while the healthy tissue shows no contrast
enhancement [Mahr 08].
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In general, an MRI scan duration even with optimized scan sequences takes several
minutes (6min–10min) [Form13] and hence respiratory motion becomes a problem
and needs to be taken into account [Nehr 01, Mank 02]. In general, MRI is used pre-
or post-intervention for diagnosis, but in the recent years interventional MRI (iMRI)
becomes of more and more interest [Kahn 12, Roth 11]. Interventional cardiac MRI is
available in some clinics [Lede 06]. However, each device has to be designed specifically
to work in a permanent magnetic field, leading to higher costs. Additionally, a
challenging problem in MRI is imaging of patients with implantable devices, like
permanent pacemakers. It is possible with special supervision and safety protocols,
however, it is still dependent on the used MR system and the implanted device
[Naza 13].

1.2.4 Nuclear Imaging

Myocardial perfusion scans play an important role in cardiac diagnostics. Positron
emission tomography (PET) allows for perfusion and viability studies in order to find
coronary artery diseases [Di C 07a, Schi 10]. Concerning the long acquisition time of
a PET scan, respiratory and cardiac motion estimation and compensation techniques
are required [Blum10]. Another possibility is provided by the single positron emission
tomography (SPECT) imaging. Despite that PET provides a higher sensitivity in
the event counts, an improved image quality and shorter scans compared to SPECT,
the workhorse in nuclear imaging is still SPECT imaging [Rahm08]. This is due to
the fact that a SPECT scan is cheaper than a PET examination [Kuwe 06, Di C 06],
mostly due to the different tracer costs. Today, since PET and SPECT provide no
valuable visualization of morphology, combined scans of SPECT/CT and PET/CT
are performed to access the anatomic extent and the functional pathology in one
scan [Di C 07b]. However, all presented modalities are for diagnostic use and do not
provide interventional cardiac imaging.

1.2.5 Angiography & C-arm CT

Common cardiac procedures, e.g., pacemaker placement, valve repair and replacement
or coronary vasculature assessment, are performed under interventional fluoroscopic
X-ray imaging. These systems provide high resolution 2-D projection images during
the intervention. Usually, contrast agent is administered intra-arterially or intra-
venously to enhance vessels or corresponding tissue regions [Stro 09]. The C-arm
system offers a high flexibility of imaging the patient from various views while pro-
viding accessibility to the patient during imaging. A combination of, e.g., a CT scan
performed before the cardiac examination and the interventional 2-D acquired X-ray
images from a C-arm system [Metz 13] can provide navigational assistance to the car-
diologist. Additionally, angiographic C-arm systems provide volumetric computed
tomography capabilities within the interventional suite [Fahr 97, Orth 09]. Therefore,
the interest arises to use this system for 4-D (3-D+t) interventional imaging of the
cardiac chambers.
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1.2.6 Discussion
Most of the above presented modalities and techniques can only be applied before
or after the intervention in order to provide quantitative and functional information
about the heart and coronary vessels, e.g. CT or MR imaging. Therefore, the patient
needs to be transferred from the interventional suite to another examination room
for 3-D imaging and vice versa. Some modalities, e.g. MRI, are also limited to 2-D+t
visualization, if imaging time plays an important role. TTE is also not feasible in
an interventional setup, due to the positioning problem. TEE is able to overcome
this problem, but requires sedation of the patient. ICE does not require anesthe-
sia, however, it still provides only a limited field of view and a low image quality.
Consequently, interventional 3-D+t imaging providing functional and morphologi-
cal information can be further improved, which would then advance the outcome of
cardiac diagnosis and procedures [De B 13a, Wiel 14].

1.3 C-arm CT for 3-D Rotational Angiography
The technical progress of the last decade allows for 3-D in-vivo imaging during clin-
ical routine. One modality providing anatomical 3-D information of a patient is
computed tomography (CT). However, these systems can only be applied pre- or
post-interventionally, i.e. before or after the actual cardiac procedure. In between
the acquisition and the intervention, the patient needs to be transferred from different
examination rooms and patient beds. Therefore, a need for 3-D imaging directly in the
catheter lab became of major interest in the mid-nineties [Roug 93, Sain 94, Fahr 97]
and continued in the last years [Beck 09, Wall 09]. This interventional 3-D imaging
can be performed with an angiographic C-arm CT system, already available in most
catheter labs in order to perform 2-D fluoroscopic imaging. A C-arm CT system offers
the possibility to acquire 2-D high-resolution X-ray images while the source-detector
pair rotates around the patient. In order to be able to reconstruct a three-dimensional
object from the acquired projection data, theoretical and technical difficulties need to
be resolved [Orth 09, Wall 09]. For static objects enormous progress has been made
over the last years [Zell 05, Stro 09, Stru 09].

In comparison to conventional CT imaging, the X-ray source and detector are
mounted onto the flexible C-arm. Usually, the C-arm acquires projection data while
performing a sweep around the patient, e.g., at least 200◦ degrees. In order to avoid
artifacts caused by geometrical instabilities, the C-arm needs to be calibrated for
each acquisition protocol to perform 3-D reconstruction. There exist also additional
methods for online misalignment correction based on the reconstructed data, e.g., the
image entropy is used as measure for misalignment [Wick 13]. Current state-of-the-
art detectors in C-arm CT are flat-panel detectors to provide a homogenous image
quality across the image, good 2-D soft tissue imaging and a dynamic range with 12
bits [Stro 09]. Table 1.1, shows a basic comparison to conventional CT systems.

Nowadays, most medical vendors offer C-arm CT solutions using C-arm systems
equipped with a flat panel detector, called syngo DynaCT (Siemens AG, Healthcare
Sector, Forchheim, Germany), XperCT (Philips Healthcare, Andover, MA), Innova
CT (GE Healthcare, Chalfont St. Giles, UK), Infinix (Toshiba Corporation, Mi-
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CT C-arm CT

Detector multidetector ceramic flat-panel

Number of detector rows ≈ 100–320 ≈ 2000

Acquisition time (cardiac) 75ms 5 s–15 s

Fluoroscopy - 3

Radiation/Dose comparable

Interventional 7 3

Spatial resolution inferior high

Contrast resolution high inferior

Flexibility 7 3

Scan field of view ≈50 cm ≈25 cm (large volume ≈47 cm)

Truncation artifact moderate severe

Scatter moderate high

Dynamic imaging 7/ 3 3

Table 1.1: Difference between conventional CT and C-arm CT based on [Gupt 06, Kale 08,
Ulzh 09, Stro 09].

(a) (b)

Figure 1.5: Example of C-arm systems: (a) Artis zee ceiling-mounted C-arm (b) Artis zeego
(both Siemens AG, Healthcare Sector, Forchheim, Germany).
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nato/Tokyo, Japan), and Trinias or Bransist (Shimadzu Medical Systems, Kyoto,
Japan). Also companies in the small business sector, as Ziehm Imaging GmbH (Nürn-
berg, Germany) provides Ziehm Vision (FD) Vario 3D. Two variations of a C-arm
system are given in Figure 1.5.

Several studies were published for different applications of C-arm CT, for exam-
ple cardiac vasculature applications [Al A 08, Newe 09]. Furthermore, several research
topics exploit the interventional C-arm CT data, e.g. transcatheter aortic valve im-
plantation [John 10], 4-D digital subtraction angiography [Davi 13] and brain perfu-
sion imaging [Manh 13]. However, due to the long acquisition time of the C-arm CT
(several seconds), dynamic imaging is still an open and challenging problem [Rieb 09].
Therefore, the main research goal of this thesis is to develop and evaluate a concept
for dynamic imaging of the heart chambers using a C-arm CT system. A detailed
review of state-of-the-art algorithms for dynamic 3-D imaging is given in Chapter 2.

1.4 Scientific Contribution to the Progress of Research
In this section, the contributions of the thesis to the progress of research are shortly
reviewed and the resulting scientific publications are listed below the individual topic.

Motion Estimation and Compensation
Motion estimation and compensation algorithms integrate the motion information in
the reconstruction in order to use all acquired image data:

• A novel framework was developed for the computation of dynamic surface
meshes of the left heart ventricle from a series of calibrated rotational 2-D
X-ray images.

• For motion-compensated reconstruction, a dense motion vector field is required.
Therefore, the sparse motion vector field, given by the dynamic surfaces meshes
need to be extrapolated. Different approaches to generate dense motion vector
fields from the surface meshes were evaluated with respect to the resulting
reconstructed image accuracy and quality.

• Development of a complete new approach using a 3-D/4-D multiple heart phase
registration in order to estimate the cardiac motion between different heart
phases. Here, a longer scan protocol of approximately 15 s is required.

• Development of a motion estimation technique combined with a pre-processing
pipeline utilizing 3-D/3-D registration to provide motion-compensated recon-
structions using a longer scan protocol of about 15 s.

The algorithmic contributions were presented at five international conferences [Chen 11,
Mlle 12b, Mlle 12a, Chen 13c, Mlle 13d], parts of the work have also been published in
two journal articles [Mlle 13c, Mlle 14b] and three patents have been filed [Chen 13a,
Chen 13b, Mlle 13a] related to that topic.
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Clinical Aspects
Novel technical development is the basis for the progress in medical imaging. In
cooperation with our clinical partners, the following achievements were accomplished:

• Design of a specific acquisition and contrast protocol for imaging the left ven-
tricle with a 5 s C-arm CT scan.

• Development of the first framework to perform quantitative analysis of left ven-
tricular wall motion directly in the catheter lab using an interventional C-arm
system.

• All algorithms were tested on either real clinical patient data or on comparable
animal models.

The acquisition protocol and the interventional wall motion analysis framework were
published in one international conference publication [Mlle 12b] and two journal ar-
ticles [Mlle 13c, Mlle 14c].

Phantom Creation for Research Community
The development and the evaluation of algorithms require commonly available datasets
in the research community. In this thesis, three different simulated phantom datasets
were created which are publicly available:

• Design of a dynamic left ventricular heart phantom with contrasted blood in the
aorta, myocardial wall and left ventricle.

• A dense object, e.g., a contrast-filled catheter can be placed inside the left heart
ventricle of the heart phantom. The same motion vector field as for the heart
chambers is applied to the catheter. It allows evaluating the influence of streak
artifacts due to dense objects on different motion estimation and compensa-
tion techniques. Two simulated datasets closely designed to real image data
with a polychromatic spectrum similar to a clinical C-arm CT spectrum and
monochromatic simulations are available.

• Left ventricular phantom datasets modeling different pathological defects were
created in order to evaluate parameters for wall motion analysis. Akinetic and
dyskinetic wall motion behavior was simulated to test the effect of the motion
defect on the computed parameters.

The generated phantom data was presented on an international conference [Mlle 13b]
and used in different publications [Mlle 13c, Mlle 13d, Maie 13, Mlle 14b, Mlle 14c,
Mlle 14a].

In summary, the results of the thesis were presented on seven international conferences
[Chen 11, Chen 13c, Mlle 12a, Mlle 12b, Mlle 13d, Mlle 13b, Mlle 14a] and three journal
publications [Mlle 13c, Mlle 14b, Mlle 14c].
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1.5 Structure of the Thesis
In this section, a chapter-wise overview of the thesis is given and acts as a direction
through out the next chapters.

Chapter 2 State-of-the-Art in Cardiac C-arm CT
In the second chapter, a basic introduction to cardiac reconstruction algorithms using
data acquired with a C-arm system is given. The necessary reconstruction notation
is introduced as well as the geometry of the used C-arm device. In order to describe
the dynamic reconstruction, first, the static reconstruction problem is explained in
more detail. In clinical practice, an approximate analytical cone-beam reconstruc-
tion algorithm named FDK after the inventors Feldkamp, Davis and Kress [Feld 84]
is used. In literature, also several iterative reconstruction techniques are presented,
but up to now - to the best of the authors knowledge - no clinical C-arm scanner is
applying an iterative reconstruction algorithm. For some applications, a tomographic
reconstruction of the heart chambers is not required, but the geometry and morphol-
ogy of the heart chambers might be of interest. Hence, geometric reconstruction type
algorithms are shortly described.

Most dynamic reconstruction algorithms employ the information of an electro-
cardiogram (ECG) acquired synchronously with the X-ray images. With the ECG-
signal, the heart phase of motion and rest can be identified. Only a subset of projec-
tions where the motion is neglectable are used to reconstruct one quasi-static state
of the heart. However, the quality of these initial images is degraded due to the
streak artifacts caused by angular undersampling and residual motion. Therefore,
motion-compensated reconstruction algorithms are used, integrating the heart mo-
tion into the reconstruction and using all available projection images. Several motion
estimation and compensation techniques or combined approaches exist and a short
overview is given in Chapter 2. The last part covers the difference of cardiac cham-
ber to cardiac vasculature reconstruction algorithms and presents the challenges of
three-dimensional heart chamber reconstruction in clinical practice.

Chapter 3 Surface-based Motion Estimation, Reconstruction and
Analysis
In this chapter, the focus is on the tomographic reconstruction and motion analysis
of the left ventricle with a short acquisition. As previously described, the quality
of the initial ECG-gated reconstructed volumes is hampered by streak artifacts due
to the angular undersampling or even impossible since the number of projection
images is limited. A motion estimation technique is presented based on dynamic
left ventricular surface meshes extracted from the 2-D segmented bloodpool. As
initialization, a surface mesh is fitted to the standard FDK reconstructed volume
using all projection images. Then, the 2-D segmented bloodpool is used to detect the
heart phase of each projection image. The projection images belonging to a certain
heart phase are used to deform the initial surface mesh to the current heart phase. In
order to perform a motion-compensated reconstruction, a dense motion vector field
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is required. Therefore, different interpolation techniques are used to map the sparse
motion field defined on the surface control points to a dense motion vector field.
Furthermore, it is possible to analyze the motion of the left ventricle using the left
ventricular surface meshes. Functional parameters used for the analysis from other
modalities are adapted to the C-arm CT mesh. Thus, the method has the potential to
provide 3-D functional information directly in the interventional catheter lab which
is not possible today. The last sections cover the evaluation of the methods, as well
as the clinical challenges and a short summary.

Chapter 4 Volume-based Motion Estimation and Reconstruction
In contrary to the previous chapter, the focus is on the tomographic reconstruction of
the whole heart based on a single sweep scan protocol without surface models to visu-
alize the cardiac chambers. In comparison to the previous chapter, a longer scan and a
different contrast protocol are used to visualize the whole heart. With the new imag-
ing protocol, the quality of the retrospective ECG-gated reconstructions is increased
and these volumes provide the possibility to use them as basis for cardiac motion
estimation. Three different volume-based cardiac motion estimation approaches are
presented utilizing multi-dimensional image registration techniques. One technique
incorporated cyclic constraints into the registration process, the second approach
combines the initial volume for registration and the last registration approach uses
a deformable B-spline registration with different pre-processing steps. The methods
are analyzed with respect to their computational complexity for comparison. In the
evaluation section, the algorithms were quantitatively tested on simulated phantom
datasets, as well as on clinical porcine models. The end of the chapter covers first
patient results and a summary and conclusions section.

Chapter 5 Summary and Outlook
The last chapter provides a summary of the investigated approaches, conducted re-
search and the scientific progress achieved by the work performed in this thesis.
The chapter concludes with challenges and limitations of the presented contributions
which open up new research topics and directions for further investigations.
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Nowadays, 2-D angiography is the standard of reference for imaging and guidance
of cardiac interventions using a C-arm system. Additionally, these systems provide
the possibility of 3-D imaging. C-arm CT reconstructions of dynamic objects are
quite challenging, however in some clinical procedures, e.g., pulmonary vein isolation
and pulmonary artery interventions, standard 3-D reconstructions without motion
compensation have proven to be useful, despite a slight motion blur, since these are
relatively static structures [Nlke 10, Schw 11].

In recent years, various approaches have been presented in the field of motion-
compensated cardiac vasculature reconstruction using C-arm CT [Blon 06, Hans 09,
Rohk 10b, Schw13]. Up to now, the reconstruction of cardiac chambers using an an-
giographic system is not widespread among the research groups [Laur 06, Prmm09b,
Thri 12c, Mory 14]. Therefore, in this chapter an overview of dynamic cardiac imaging
beyond C-arm CT is provided. Throughout this chapter and thesis, the mathematical
description is based on the notation introduced by Rohkohl [Rohk 10a]. In the first
section, Section 2.1, the basic notation and geometry of the C-arm system is formally
introduced, followed by a summary of state-of-the-art techniques for reconstruction
of static 3-D objects with a C-arm CT in Section 2.2. In Section 2.3, techniques to
map the reconstruction problem of dynamic objects to the reconstruction formulation
of static objects are presented. The most popular approach utilizes an electrocardio-
gram (ECG)-signal acquired synchronous with the acquisition in order to use only the
projection data belonging to a certain motion state. This results in a sparse angular
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sampling of the available projection data. Therefore, several techniques are deployed
to estimate the motion by different motion estimation strategies in Section 2.4, and
perform motion-compensated reconstructions, presented in Section 2.5 to make use
of all acquired projection data. Instead of performing the motion estimation and
compensation step sequentially, both steps can also be performed concurrently, see
Section 2.6. Section 2.7 explains the differences between cardiac vasculature and
cardiac chamber reconstruction. The chapter ends by pointing out the clinical chal-
lenges of cardiac imaging with an interventional C-arm system in Section 2.8 and the
summary of this chapter is provided in Section 2.9.

2.1 General Notation of Reconstruction Algorithms
In this section the basic definition of the term reconstruction is explained, which is
needed throughout this thesis.

The reconstruction formulas can be written as a function

f : R3 × RKs 7→ R, (2.1)

where f(x, s) returns the reconstructed object value for a spatial three-dimensional
location (voxel) with x ∈ R3,x = (x1, x2, x3)T and a Ks-dimensional vector of real-
valued parameters s ∈ RKs . The vector s includes parameters to represent the
object as well as the motion model and varies from algorithm to algorithm and will
be explained accordingly in the sections used.

The basic C-arm CT geometry is illustrated in Figure 2.1. Parameter S denotes
the X-ray source. The detector origin is denoted with O, and u ∈ R2, u = (u1, u2)T is
the position vector on the detector plane. The orthogonal projection of S is given by
uS on the detector. The origin of the 3-D world-coordinate system is set in reference
to the C-arm isocenter I, i.e. the center of rotation. The rotation axis is oriented
along x3.

2.2 Static Image Reconstruction
A short review of the necessary details regarding cone-beam reconstruction for static
objects is provided. Most of the motion-compensated reconstructions are adaptations
of the static reconstruction algorithms.

Medical image reconstruction algorithms are of a complex nature and several mod-
ified algorithms for specific tasks and applications are published every year. In this
thesis, we confine the introduction of reconstruction algorithms to the relevant parts
needed. An extensive overview of the theory of reconstruction algorithms and their
details can be found in the literature [Kak 99, Dsse 99, Buzu 08, Zeng 09, Shaw 14].

The family of reconstruction algorithms can be divided into three major groups:
analytical, iterative reconstruction and geometric methods. Geometric reconstruc-
tions are a special type of reconstructions. In this case, the algorithms provide struc-
tural and morphological information instead of tomographic reconstructions. The
different algorithms are now explained in more detail.
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Figure 2.1: Geometry of a C-arm CT system and the corresponding coordinate systems.
Parameter S denotes the X-ray source, the detector origin is denoted with O, and the
orthogonal projection of S is given by uS on the detector. The origin of the 3-D world-
coordinate system is I.

2.2.1 Analytical Cone-beam Image Reconstruction
For analytical reconstruction, a function is given explicitly, describing the relation-
ship between the reconstructed object attenuation value and the acquired projections.
Due to the geometry of the system, different mappings or functions are required.
Most of the reconstruction algorithms differ in their accuracy and practical applica-
bility [Tuy 83, Gran 91, Kats 03, Noo 07]. In today’s available C-arm CT scanners,
an approximate cone-beam algorithm named after the inventors Feldkamp, Davis
and Kress (FDK) is applied [Feld 84]. It is an extension of the widely used filtered-
backprojection (FBP) fan-beam algorithm to 3-D cone-beam geometry. It produces
acceptable results in clinical practice with a low computational effort compared to
exact or iterative reconstruction algorithms. The reconstruction of a volume with the
FDK formula is given in a discrete version with respect to the projection number i
by

hFDK(i,x) = wD(i,x) · pF (i, B(i,x)), (2.2)
pF (i,u) = C ·

∑
k

(
p(i, (k, u2)T ) · c(i,u)

)
? g(u1 − k), (2.3)

f(x, ·) =
N∑
i=1

hFDK(i,x). (2.4)

The index i denotes the i-th projection image, the function wD : N×R3 7→ R is the
distance weight of the FDK formula and based on the distance from source-to-detector
and source-to-object. The pre-processed, filtered and redundancy weighted projection
data is denoted as function pF : N × R2 → R, where pF (i,u) returns the value of
the i-th projection image at the position u. The position u is determined by the
perspective projection B : N×R3 7→ R2 with B(i,x) = u. The function hFDK (i,x)
denotes the i-th distance-weighted and pre-processed projection value contributing to
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value x. The function c : N× R2 7→ R describes the cosine and redundancy weighting
of the pre-processed projection data, given by the function p : N × R2 7→ R, where
p(i,u) returns the pre-processed value of the i-th projection image at the position
u. The number of projection images is given by N . The redundancy weighting is
required as a C-arm covers an angular range of about π+ 2 · (fan angle) for a circular
short-scan trajectory [Park 82]. C is a scaling constant and dependent on the scanner
geometry [Rohk 08]. The function g(n) describes the filtering kernel, an example is
the row-wise 1-D Ram-Lak filter [Zeng 09]

g(n) =


1
4 , n = 0
0, n even
−1
n2π2 , n odd.

(2.5)

In this thesis, no physical effects are considered and hence the term pre-processed
projection data means that line integrals are given at this point. As mentioned before,
the position u is determined by the perspective projection B : N × R3 7→ R2 with
B(i,x) = u. If the mapping to the detector coordinate u is at a non-integer pixel
position, the value is computed by bilinear interpolation. The perspective mapping
needs to be calibrated for each projection angle for a specific trajectory [Roug 93,
Nava 98, Wies 00].

2.2.2 Iterative Image Reconstruction

Instead of describing the relation between a 3-D reconstruction and the projection
data in an analytic form, a 3-D reconstruction can be alternatively achieved by op-
timization of an objective function. Assuming that a perfect 3-D reconstruction for
a set of 2-D projection images is given, the forward projections (also called digitally
reconstructed radiographs (DRRs)) should match the originally acquired projection
data [Buzu 08]. Therefore, an optimization problem can be defined in order to mini-
mize the difference between the DRRs of the reconstructed volume and the original
projection data. The reconstruction problem can be defined as a system of linear
equations. In practice, however, more projection data are available than voxels to be
reconstructed. Hence, the system of linear equations is overdetermined and cannot
be solved by direct methods, such as matrix inversion [Dsse 99]. Consequently, the
optimal solution is found iteratively by optimization of an objective function, e.g., by
using a gradient descent optimizer [Rohk 10a].

For iterative image reconstruction, the object needs to be represented by a set of
basis functions. There exist different types of basis functions in order to represent the
3-D image, e.g., discrete grid voxels [Buzu 08], spherically symmetric basis functions
(blobs) [Lewi 92, Mate 96] or new designed basis functions [Noo 12, Schm12]. In this
thesis notation, the representation of the basis functions is stored in the parameter
vector s ∈ RK , in which all necessary basis function parameters are stored together,
and named sim. Here, the object is represented by voxel-based basis functions. The
value at a voxel is then computed by the image representation f(x, s) at the position
x ∈ R3 with the parameters s. The DRR value of the reconstructed value f(x, s) is
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Figure 2.2: Illustration of the relation between the 3-D image space and the 2-D projection
space. The pixel position u is the projection of x along the line Li,u for the i-th projection
according to B(i,x). O denotes the detector origin.

given by r(i,u, s) with r : N× R2 × RK 7→ R, with the position u ∈ R2 in the i-th
projection image. In order to generate the DRR value,

r(i,u, s) =
∑

x

A(i,x) · f(x, s), (2.6)

with the function A : N×R3 7→ R returning a view angle and ray dependent weight
according to the contribution of the position x to the observed line integral. Or
in the case of a discrete reconstruction, the contribution to the sum of the line is
returned. In the literature, these weights are often called system matrix, where the
entries describe the contribution of each position to the line integral measured at
the detector [Buzu 08]. There exist various approaches to define these contributions,
e.g., as a simple binary mask if the ray crosses a voxel or not [Gord 70], as a ratio
between intersection area and the voxel volume [Shep 82] or with the length of the
intersection with the voxel [Sidd 85]. In this thesis, a ray casting approach is used
similar to [Wein 08, Sche 11]. Hence, the DRR value is given as

r(i,u, s) =
∑

x∈Li,u
f(x, s), (2.7)

where Li,u = {x ∈ R3 |B(i,x) = u} defines the ray from the detector pixel u and
projection image i to the X-ray source S. Only the measurement values along this
ray are considered. For the voxel-based object representation, the value f(x, s) along
the ray Li,u is computed by trilinear interpolation [Jose 82]. An illustration of the
relation between 3-D image space and 2-D projection space is given in Figure 2.2.
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2.2.2.1 Non-constrained Iterative Image Reconstruction

In order to formulate the optimization strategy of an unconstrained iterative recon-
struction algorithm, an objective function L : RK 7→ R needs to be defined, i.e.

ŝim = arg min
sim

L(sim), where (2.8)

L(sim) =
N∑
i=1

d(i, s). (2.9)

The function d : N×RK 7→ R measures the dissimilarity of the i-th projection image
to the i-th DRR. The dissimilarity measure varies between different applications and
several can be found in the literature [Soti 13, Hahn 09, Mode 03].

2.2.2.2 Compressed Sensing as Constrained Iterative Image Reconstruction

In the literature, a particular type of constrained iterative reconstruction is also often
called compressed sensing (CS). The compressed sensing idea was first published
by Donoho [Dono 06] and Candès [Cand 06a, Cand 06b]. In general, compressive
sampling or compressed sensing deals with the recovery of signals or images from
fewer measurements than conventional methods. There is an extensive introduction
in the literature about the mathematical background from signal processing [Cand 07,
Cand 08, Zeng 09]. The basic idea for the adaptation to 3-D image reconstruction is,
a sparsified volume is reconstructed instead of the target volume, where the sparse
volume has significantly fewer non-zero voxels. Consequently, the sparsified volume
can be reconstructed from undersampled measurements without artifacts. After the
reconstruction of the sparse volume, the “inverse” of the sparsifying transform is
applied to obtain the target image. No explicit form of the “inverse” transform is
required in practice [Chen 08]. The basic formulation of a CS image reconstruction
problem is

L(sim) = ||Ψf(x, s)||1, s.t.
∑
i∈N

d(i, s) < ε2, (2.10)

d(i, s) =
∑

u

(p(i,u)− r(i,u, s)) 2. (2.11)

The sparsifying transform is denoted as Ψ and ||f(x, s)||1 = ∑
x |f(x, s)| is the

l1−norm of the function values of f(x, s). The objective function L(sim) is mini-
mized subject to the data constraint, where the DRRs of the reconstruction need
to fit to a subset N ⊂ N of the original measured projection images. The upper
bound of the data error is given by ε2. Various sparsifying transforms are known in
the literature, e.g., discrete gradient transforms [Sidk 06, Sidk 08], or wavelet trans-
forms [Lust 07]. For cardiac chamber and coronary artery imaging, there exist also
approaches which additionally take into account temporal similarity between succes-
sive heart phases [Lang 12, Mory 14]. In general, various optimization schemes exist
and the optimization schemes can vary.

Prior Image Constrained Compressed Sensing (PICCS). In compressed
sensing applications, the number of projections i ∈ N , with N ⊂ N in Equation
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(2.11), which enforce the data consistency, are limited. The resulting volumes have
a low signal-to-noise (SNR) ratio. In order to improve the resulting SNR of the
reconstruction, a prior image is introduced in the optimization to inherit the high
SNR value of the prior volume [Chen 08]. This approach was published as prior im-
age constrained compressed sensing algorithm (PICCS) by Chen et al. [Chen 08].
The PICCS objective function was originally stated as a constrained minimization
problem

ŝim = arg min
sim

L(sim), s.t.
∑
i∈N

d(i, s) < ε2 with (2.12)

L(sim) = α · ||Ψ1 (f(x, s)− fP (x)) ||1 + (1− α) · ||Ψ2f(x, s)||1, (2.13)

where α ∈ [0, 1] is the control parameter. When α = 0, the PICCS algorithm re-
duces to the conventional CS algorithm stated in Equation (2.10). The prior image
is denoted as fP (x) and is usually reconstructed by a standard FDK algorithm as
described in Section 2.2.1 using all acquired projection data. The sparsifying trans-
forms Ψ1 and Ψ2 can be chosen arbitrarily. One common example of a sparsifying
transform is the discrete gradient transform given by

||Ψf(x, s)||1 =
∑

x

√√√√√ε+
∑
j

(
∂f(x, s)
∂sj

)2

. (2.14)

This function is also known as total variation (TV). The parameter ε is needed for
a robust analytical derivative of the objective function to avoid singularities at the
origin. This approach is controversially discussed in the literature [Boyd 04]. The
PICCS objective function is then given as

L(sim) = α ·
∑

x

√√√√√ε+
∑
j

(
∂ (f − fP ) (x, s)

∂sj

)2

+(1− α) ·
∑

x

√√√√√ε+
∑
j

(
∂f(x, s)
∂sj

)2

. (2.15)

In most publications, the optimization problem is solved iteratively using an alternat-
ing minimization procedure. First, the data consistency term is optimized to recon-
struct an initial image, as described in Section 2.2.2 to fulfill Equation (2.10). Then,
the objective function is minimized by a gradient descent method [Chen 08, Nett 08a,
Chen 12]. The optimization problem can also be formulated as a non-constrained
optimization problem [Rami 11, Thri 12a, Thri 12b, Thri 12c, Thri 13].

Improved Total Variation. As presented in the previous paragraph, the opti-
mization strategy for the constrained problem is often performed separately in an
alternating manner. Therefore, in order to increase convergence speed, it needs to
be ensured that the data consistency term reduces to an optimal value while the
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Figure 2.3: Schematic overview of the improved total variation (iTV) algorithm.

objective function value is kept at a low level [Rits 10]. The parameter ε in Equations
(2.10) and (2.12), characterizes the data consistency and the optimal value εopt needs
to be known beforehand. It depends on physical effects, like scatter, beam hardening,
and misalignment in the data and noise. If ε is not chosen to be close to εopt the
influence of the objective function increases. If ε is chosen too small, the impact of
the objective function decreases. A discussion on this can be found in [Bian 10]. The
key problem is that the objective function and the data consistency term are defined
in different domains. Therefore, the step-size determination of both optimization
procedures needs to be transferred to the projection data domain and adapted to
each other. This algorithm is called improved total variation (iTV) introduced by
Ritschl et al. [Rits 11]. The object parameters sData ∈ RKData , and fData (x, sData)
returning the value of the iterative reconstructed object at voxel position x and a
parameter set sSparse ∈ RKSparse , with fSparse (x, sSparse) returning the object value of
the optimized object at the 3-D position x are defined. The overall optimized pa-
rameters sk+1 ∈ RKS with k = {1, . . . , O} outer iterations (minimization of the data
consistency term and the objective function) are given as

sk+1 = (1− η) · sk+1,D
Data + η · sk+1,F

Sparse , (2.16)

where D denotes the data consistency and F the sparse-optimized iterations. The
parameter η ∈]0, 1] is used to adapt the TV step size in the 3-D image domain.
However, the data error is defined in 2-D projection space, therefore, another param-
eter ωiTV ∈]0, 1] is introduced in 2-D projection space, weighting the 2-D data error
accordingly, to find parameters sData and sSparse leading to the defined 2-D errors.
Due to the linearity of the X-ray transform, and the knowledge that the TV of the
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function f(x, sk+1) is reduced for all η [Rits 11], the step size η can be determined by
solving the following quadratic equation

∑
i∈N

d(i, sk+1) = (1− ωiTV)
∑
i∈N

dData(i, sk+1,D
Data ) + ωiTV

∑
i∈N

d(i, sk), (2.17)

where ∑
i∈N d(i, sk+1) denotes the error between the DRRs and the original

measured projections at the outer iteration k + 1 from the volume f(x, sk+1),∑
i∈N dData(i, sk+1,D

Data ) is the data error after D data consistency iterations and∑
i∈N d(i, sk) is the error at the previous iteration k , i.e. after D data consistency

and F TV optimization steps. The parameter η needs to be reset to 1 if η > 1 is
a possible solution [Rits 11]. The parameter ωiTV needs to be set by the user. A
schematic overview of the whole iTV algorithm can be found in Figure 2.3.

2.2.3 Geometric Image Reconstruction
The last group of reconstruction algorithms is the field of geometric reconstructions.
In the literature, several approaches to recover the 3-D shape of the left ventricle
with biplane X-ray systems are described. When using a biplane system, the epipolar
constraint [Hart 04] can be exploited in order to compute the 3-D left ventricle (LV)
shape from two orthogonal simultaneously acquired projection images. Backfrieder
et al. [Back 05] proposed to deform initial super ellipses until their projection profiles
optimally fit to the measured projections. The generated model can be used to
perform an LV wall motion analysis [Swob 05]. A similar approach is used in Medina
et al. and Mantilla et al. [Medi 06, Mant 08], where ellipsoidal approximations derived
from the input ventriculograms are deformed to match the input projections. Other
approaches make use of multi-view cardiograms to improve the accuracy of the LV
shapes. Moriyama et al. [Mori 02] proposed an iterative framework to recover LV
meshes from multi views by fitting a dynamic surface model defined by B-splines to
the LV. All of the previously mentioned approaches make use of the synchronously
acquired orthogonal ventriculograms from a biplane system. For a rotating C-arm CT
system, no projections of the same heart phase in the same heart cycle are acquired
synchronously, and hence, no 3-D point correspondences can be established by the
epipolar constraint. Most of the presented work utilizes ellipsoidal structures for
the reconstruction of the LV. This assumption may not hold for pathological LVs,
e.g., after a myocardial infarct [Gutb 13]. Therefore, more degrees of freedom for
the surface generation can improve the reconstruction of the dynamic LV surface. A
review on geometric modeling and reconstruction for different imaging modalities can
be found in Frangi et al. [Fran 01].

2.3 From Static to Dynamic Image Reconstruction us-
ing ECG-Gating

In order to increase the temporal resolution and minimize the imaging artifacts in
cardiac imaging due to the motion, only a subset of the projections belonging to
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(a) (b)

Figure 2.4: Example image of an ECG-gated reconstruction of a left ventricle from a 5 s
scan, a heart rate of 58.3±0.3 bpm, with the following parameters: (a) φr = 0.75, w → 0
and ϑ = 0 resulting in a total of 5 projections. Only streaks are visible in the reconstruction
and no structure is reconstructed. (b) φr = 0.75, w = 0.4 and ϑ = 4 resulting in a total of
54 weighted projections. The left ventricle is superposed by streak artifacts and no clear
endocardial structure can be delineated. The image data was provided by Dr. med. Schultz
from the Thoraxcenter, Erasmus MC Rotterdam, The Netherlands.

that specific motion state are used for reconstruction. Therefore, the dynamic re-
construction problem is reduced to a static reconstruction problem. There exist ei-
ther prospective [Guru 08] or retrospective [Desj 04] electrocardiogram (ECG)-gating
approaches. The latter approach is less sensitive to heart rate changes than the
prospective approach, however, at the expense of a higher radiation dose. The basic
principle of retrospective ECG-gating and two different reconstruction techniques are
described below.

An electrocardiogram (ECG)-signal is acquired synchronously with the image ac-
quisition. The single heart phase for each time step is then computed by linear
interpolation between two successive R-peaks in the ECG signal. In order to recon-
struct a certain heart phase, only those projections are considered for which the heart
phase is close to the cardiac phase of interest [Desj 04]. The closeness of two heart
phases φ1 and φ2 is given according to Rohkohl [Rohk 10a] by the distance function
dφ : [0, 1]× [0, 1]→ [0, 1]

dφ(φ1, φ2) = min
ζ∈{0,1,−1}

|φ1 − φ2 + ζ|. (2.18)

2.3.1 Single Sweep ECG-Gated Image Reconstruction
A single sweep acquisition means that only one rotation of the C-arm around the
patient is performed. For a single sweep ECG-gated reconstruction, a weighting
function λ : N × R3 7→ [0, 1] is introduced, that assigns an impact weight to each
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image on the reconstruction result. The heart phase is denoted with φ ∈ [0, 1] and
the relative heart phase of the i-th projection image is given by φ(i). The gating
function λ is parametrized by a vector sga = (φr, w, ϑ)> with the reference heart
phase φr ∈ [0, 1], the phase-width w ∈ (0, 1] and the shape-parameter ϑ ∈ [0,∞).
The gating function λ(i, sga) returns the gating weight. The weighting function is
centered at a specific heart phase φr and can have the shape of a cosine [Rohk 08]
or a rectangular window [Schf 06]. A general definition of the weighting function is
given accordingly to [Rohk 10a] by

λ(i, sga) =

cosϑ
(
dφ(φ(i),φr)

w
π
)

, if dφ(φ(i), φr) ≤ w
2

0 otherwise.
(2.19)

The function fφk(x, s) returns the reconstructed object at the 3-D position x and
the heart phase φk ∈ {1, . . . , K}, where K denotes a certain number of heart phases
to be reconstructed. The heart phase φk corresponds to a relative heart phase of
φ ∈ [0, 1]. Hence, different heart phases can be reconstructed with data from one
C-arm rotation by

fφk(x, s) =
N∑
i=1

λ(i, sga) · hFDK (i,x) (2.20)

=
N∑
i=1

hgFDK(i,x, sga). (2.21)

Since a small number of cardiac cycles are observed during a single rotation of a
C-arm system, which lasts between 5 s and 15 s, only a small number of projection
images are available for the reconstruction of one heart phase. For example, if the
rotation duration is 5 s and the patient has a heart rate of 60 bpm, and w → 0, i.e.
nearest-neighbor gating and only 1 image per heart cycle, only 5 projections per heart
phase are available. The ECG-gated images are of low quality and suffer from angular
undersampling artifacts. In Figure 2.4, an example of an ECG-gated reconstruction
of a left heart ventricle of a 5 s scan and a patient’s heart rate of 58.3±0.3 bpm is
given, with different parameter settings.

2.3.2 Multiple Sweep ECG-Gated Image Reconstruction
For the heart chambers, the ECG-gated projection data of a single sweep leads to
prominent streak artifacts and a poor signal-to-noise ratio, cf. Figure 2.4. Conse-
quently, multiple sweeps Sw in forward and backward direction of the C-arm can
be performed to acquire enough projections for each heart phase. Projection data
of several heart cycles can be combined to reconstruct images, which is also called
multisegment reconstruction. Data acquired at different heart cycles should provide
complementary coverage over the full angular range such that a complete dataset is
obtained [Laur 06]. In order to reconstruct a single 3-D volume from the acquired
dynamic data, projection images corresponding to the desired cardiac phase have to
be extracted from the series of acquired forward and backward runs. Thus, for each
angular position, only the projection acquired closest to the desired cardiac phase is
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used. Here, the heart phase is given by the function φ : N2 → [0, 1]. The closeness
of each current heart phase φ(i, sw) to the reference heart phase φr is computed as
described in Equation (2.18). Here, i ∈ {1, . . . , N} denotes the number of projections
of one sweep and sw ∈ {1, . . . , Sw} the total number of all forward and backward
runs. Now, the weighting function λ : N2× [0, 1] 7→ {0, 1}, returns the binary weight
of the projection image i in the sw-th run according to

λ(i, sw, φr) =


1 , if dφ(φ(i, sw), φr) ≤ min

s∈{1,...Sw}
(dφ(φ(i, s), φr))

0 otherwise.
(2.22)

The reconstruction is then defined by

fφk(x, s) =
Sw∑
sw=1

N∑
i=1

λ(i, sw, φr) · hFDK (i, sw,x) (2.23)

=
Sw∑
sw=1

N∑
i=1

hgFDK(i, sw,x, φr), (2.24)

where hFDK (i, sw,x) denotes the i-th pre-processed projection value contributing to
voxel x in the sw-th sweep, cf. Section 2.2.1. With no temporal smoothing introduced,
this will result in the highest temporal resolution possible with the available data.
But, the longer imaging time of multiple runs results in a higher contrast burden and
radiation dose for the patient. Furthermore, only a certain number of cardiac phases
can be reconstructed depending on the number of sweeps [Laur 06, Prmm09a].

2.4 Motion Estimation Techniques
A possible solution to improve the image quality is the use of all acquired projection
data in combination with compensation for the cardiac motion in the reconstruction
step. One possibility to estimate the motion is deformable image registration. De-
formable registration is a fundamental task in medical image processing. Depending
on the underlying image quality, defined by the used modalities for image acquisi-
tion and application, various optimization techniques and objective functions exist
[Soti 13, Mkel 02]. Therefore, two challenging tasks need to be solved: (1) initial
images need to be of good quality and (2) find a stable registration approach. A
broad overview of deformable image registration was recently given by Sotiras et al.
[Soti 13] and in particular for cardiac motion estimation in Mäkelä et al. [Mkel 02].
In the following subsections, different approaches for motion estimation are reviewed,
which exhibit similarities to cardiac motion estimation with a C-arm CT.

2.4.1 3-D/3-D Image Registration
Cardiac motion estimation via 3-D/3-D image registration is already extensively in-
vestigated for other imaging modalities, like cardiac computed tomography (CT)
[Tagu 08, Isol 10b], ultrasound (US) [Zhan 11] or cardiac magnetic resonance (MR)
imaging [Perp 05]. The deformation between a reference heart phase and other heart
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phases is computed by various optimization routines. The individual algorithms dif-
fer in the used motion model, objective function, constraints, and optimization tech-
niques. In Isola et al. [Isol 10a], a fully automatic registration for recovery of a motion
vector field for cardiac CT with a multi-resolution and adapted optimization routine
was proposed. The cardiac motion is represented by cubic B-splines [Unse 99, Rcke 99]
and the sum of squared differences (SSD) was used as similarity measure. The opti-
mization is done with a stochastic gradient descent of Robbins-Monro [Robb 51]. A
similar approach was presented by Tang et al. [Tang 12, Tang 13], the cardiac mo-
tion is modeled by cubic B-splines, the weighted least-squared difference is used as
objective function and optimized by an iterative nested conjugate gradient.

In the field of motion estimation for cone beam CT, some approaches deal with
respiratory motion during radiotherapy procedures. In Brehm et al. [Breh 12] differ-
ent respiratory-gated images are registered to each other by a demon’s algorithm and
cyclic constraints are introduced to lower the influence of the undersampling streak
artifacts. An extension of this approach utilizes a patient specific artifact model
to improve the registration result [Breh 13]. Another approach computes an inter-
mediate volume with low spatial but high temporal resolution. From this dataset,
principal components are extracted, which represent the temporal variation [Chri 13].
These principal components are used to reconstruct an intermediate volume with full
spatial and temporal resolution. On this data, optical flow registration is applied to
estimate the motion and finally to compensate for it.

All proposed approaches have initial images of sufficient quality or employ strate-
gies to improve the image quality before the registration. The motion estimation re-
sult is highly dependent on the quality of the initial reconstructed images [Mlle 12a].
Especially in cardiac C-arm CT, the initial images, e.g., based on retrospective sin-
gle sweep ECG-gating, suffer from temporal undersampling and the image qual-
ity is highly degraded by streak artifacts. Furthermore, the reconstruction of sev-
eral images with equivalent good quality is problematic. Mostly the mid-systolic
phase is more challenging to reconstruct due to the fast movement of the coronaries
and the cardiac chambers [Prmm06b, Husm07, Rohk 08]. Up to now, there exists
one 3-D/3-D registration approach for cardiac C-arm CT data. In Prümmer et al.
[Prmm09b, Prmm09a], a multiple sweep cardiac protocol is used and different heart
phases are reconstructed as described in Section 2.3.2. The motion is estimated by
minimizing the SSD between the volumes applying various regularizations.

2.4.2 2-D/3-D Image Registration
As described in Section 2.4.1, for the 3-D/3-D image registration approach, initial
reconstructed volumes of equivalent good image quality are required in order to es-
timate the motion. A 2-D/3-D image registration approach has the advantage that
only one volume of satisfactory image quality is needed. The goal of 2-D/3-D regis-
tration is to estimate the 3-D transformation of the reconstructed volume that aligns
the 3-D volume with the measured 2-D images. The 2-D/3-D registration is often
used to align pre-interventional images, e.g., CT or MR volumes with the interven-
tional X-ray images for guidance of the physician [Prmm06a, Wang 13b, Wang 13c].
Most of the approaches make use of an affine or rigid transformation. However, in
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some clinical applications it is more reasonable to describe the transformations by a
free-form displacement field as in Prümmer et al. [Prmm06a].

A challenging problem for 2-D/3-D registration for rotational angiography is pre-
sented by the overlapping structures in the 2-D projection images. Therefore, in order
to estimate motion, e.g., from coronary arteries, most approaches use a geometric rep-
resentation like their centerlines [Blon 06, Shec 03]. The motion model parameters in
3-D are adapted such that the transformed centerlines for one heart phase, match
the centerlines in the 2-D projection images.

2.4.3 2-D/2-D Image Registration
In general, a 2-D/2-D motion estimation algorithm cannot be applied directly to the
2-D projection images, since the heart and its coronaries are moving rapidly during a
C-arm CT scan and overlapping structures can mislead the registration. Up to now,
it has only been applied to the motion estimation of sparse high contrast structures
such as coronary arteries. Hansis et al. [Hans 08b] proposed alignment of the 2-D
vessel centerlines from an initial ECG-gated reconstruction to the 2-D centerlines
detected in the original projection images. The 2-D and 3-D centerline detection,
however, is a challenging task and the registration result is highly dependent on the
segmentation.

For small residual motion, Schwemmer et al. [Schw 13] proposed a 2-D/2-D reg-
istration method for coronary motion estimation and compensation. The mapping
of the forward projections of an initial ECG-gated reconstruction to the original pro-
jections belonging to the same heart phase is performed by a deformable B-spline
registration with normalized cross correlation as objective function. A successive
motion-compensated reconstruction results in a sharper 3-D reconstruction with im-
proved image quality without the need to extract centerlines.

Both presented methods require pre-processing steps in order to eliminate struc-
tures not belonging to the vasculature in the 2-D projection images. For the cardiac
chambers this is not applicable due to non homogenous contrast distribution inside
the bloodpool and lower contrast inside the chambers compared to the sparse and
high contrast coronaries.

2.5 Motion-Compensated Image Reconstruction
In general, there exist two kinds of motion-compensated reconstruction algorithms -
one compensates for the estimated motion in the 2-D projection space and the second
type compensates for the motion in the 3-D image space.

2.5.1 Motion Compensation in 2-D Projection Space
A motion-compensated reconstruction can be performed in the 2-D projection space
by warping the original projection image to the digital forward projections of an
initial reconstruction, e.g., of the coronary arteries. From the transformed projection
data, an improved reconstruction can be computed [Hans 08b, Schw13]. However,
the amount of motion for which it is possible to compensate is limited.
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2.5.2 Motion Compensation in 3-D Image Space
The 3-D motion compensation approach is more general and can be applied to various
kinds of motion. The parameter vector s ∈ RKS contains real-valued parameters to
represent the object. Now, the vector s is extended by parameters smm containing
the parameters of the used motion model function. In general, the mapping from 3-D
to 2-D space is deformed according to the motion model parameters. The adaptation
of the reconstruction formulas for iterative and analytical reconstruction are derived
in the following sections.

2.5.2.1 Iterative Algorithms

There exist a few techniques, which integrate the change of the projection operator
directly into an iterative reconstruction framework. They deform the DRR genera-
tor according to the motion information [Blon 04, Blon 06, Hans 09]. Therefore, the
dynamic DRR generator based on ray casting is reformulated to

r(i,u, s) =
∑

x∈Li,u
f(M(i,x, smm)︸ ︷︷ ︸

x′

, s), (2.25)

where the motion model function M : N×R3×RKmm 7→ R3 maps the voxel position
x ∈ R3 to the new position x′ ∈ R3 according to given motion model parameters
smm ∈ RKmm . The dynamic DRR generation needs to be propagated into the analyt-
ical derivative of the objective function for iterative image reconstruction Equation
(2.8), which can be done accordingly to [Blon 06].

2.5.2.2 Analytic Algorithms

Integration of motion into the analytical reconstruction formula is not as straightfor-
ward as for the 2-D motion compensation case. It requires adaptation of the redun-
dancy weights and the filtering step. One algorithm which integrated motion into the
backprojection formula showed that it is possible to exactly compensate for trans-
formations, larger than the affine class, in the backprojection step by adaptation of
the filtering step [Desb 07]. However, the motion model allows only a mapping from
lines onto lines and no free-form deformations. Taguchi et al. [Tagu 07, Tagu 08]
presented motion-compensated reconstruction using locally varying affine transfor-
mations. For cardiac motion-compensated reconstruction, this kind of motion is
not necessarily sufficient. An approximate reconstruction of the FDK formula was
proposed in [Gran 02, Schf 06]. The estimated motion vector field is incorporated
into a voxel-driven filtered backprojection reconstruction algorithm. The motion
correction is applied during the backprojection step by shifting the voxel to be re-
constructed according to the motion vector field. A schematic illustration of the
motion-compensated backprojection is given in Figure 2.5. The motion model func-
tion M : N×R3 ×RKmm 7→ R3 again maps the voxel position x to the new position
x′ according to given motion model parameters smm ∈ RKmm . The vectors u and u′

are the perspective projections of x and x′ given by B(i,x) = u and B(i,x′) = u′.
Instead of accumulating the 2-D projection value at position u to the position x, the
value at u′ is backprojected.
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B(i, x) = u
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Figure 2.5: A simplified scheme of the voxel-based motion compensation. The detector
origin is given by the the parameter O. Instead of the backprojection of u to the position
x, the value u’ corresponding to x′ is used.

Formally, a motion-compensated FDK reconstruction is described by

f(x, smm) =
N∑
i=1

wD(i,M(i,x, smm)︸ ︷︷ ︸
x′

) · pF (i, B(i,M(i,x, smm)︸ ︷︷ ︸
x′︸ ︷︷ ︸

u′

) (2.26)

=
N∑
i=1

hFDK(i,M(i,x, smm)). (2.27)

2.6 Joint Motion Estimation and Compensation
A challenging task is a combined approach for estimation and compensation of the
motion. A few approaches introduce the motion estimation into the iterative re-
construction presented in Section 2.2.2. In addition to the unknown intensity val-
ues in the reconstructed volume, the motion model parameters need to be estimated
[Scho 07, Chun 09, Hans 09, Camm11, Wang 13a]. The number of unknowns increases
the complexity of the optimization problem enormously. Consequently, the runtime
of the optimization is prolonged and the optimization may get caught in a local
minimum, i.e. a less optimal reconstruction quality is achieved [Rohk 10a].

2.7 Difference to Cardiac Vasculature Image Recon-
struction Methods

Up to now, only a few publications are specifically approaching motion-compensated
reconstruction of cardiac chambers with an interventional C-arm system [Laur 06,
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(a) (b)

Figure 2.6: Example of ECG-gated reconstructions (a) of a left ventricle from a 5 s scan,
a heart rate of 58.3±0.3 bpm, with the following parameters: φr = 0.75, w = 0.4 and
ϑ = 4 resulting in a total of 54 weighted projections. The image data was provided by
Dr. med. Schultz from the Thoraxcenter, Erasmus MC Rotterdam, The Netherlands. (b)
of a left coronary artery from a 5 s scan, a heart rate of 64.3±1.9 bpm, with the following
parameters: φr = 0.75, w = 0.4 and ϑ = 4 resulting in total of 52 weighted projections.
The image data was provided by Prof. Dr. med. Böcker and Dr. med. Skurzewski, St.
Marienhospital Hamm, Germany.

Prmm09b, Prmm09a, Thri 12c, Mory 14]. In contrast, considerable research has
been published in the area of cardiac vasculature reconstruction [Hans 08a, Hans 09,
Rohk 10b, Isol 12]. The main reasons for that are the high contrast and sparse struc-
tures, compared to the low contrast heart chambers with muscular texture. Therefore,
some pre-processing steps which eliminate background structures around the coronar-
ies in the 2-D X-ray images cannot be applied to cardiac chambers, e.g., morphological
top hat filtering [Hans 08b, Hans 08a]. Also reduction of the undersampling artifacts
in 3-D by a streak-reduced gated short-scan reconstruction [Rohk 08, Rohk 10b] can-
not be used. Furthermore, the ECG-gated reconstructions of the coronaries in a
quiet heart phase is of sufficient quality to use it, e.g., as initial image to estimate
residual motion by 2-D/2-D registration approach [Schw13]. Example ECG-gated
reconstructions of a left heart ventricle and a left coronary artery using almost the
same number of projection images are presented in Figure 2.6. It can be seen that
the sparse and high contrast structure of coronaries can be recovered using the ECG-
gated approach, compared to the heart chamber reconstruction. Some approaches
also use the ECG-gated reconstruction to detect geometric features like the center-
lines of the coronaries for motion estimation [Hans 08b, Hans 08a]. Consequently,
motion estimation and compensation algorithms presented in the literature for car-
diac vasculature reconstruction cannot be used for reconstruction of non-sparse and
low contrast objects such as cardiac chambers.
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2.8 Challenges in Clinical Applications
One main challenge in cardiac chamber reconstruction with an interventional C-arm
system is the long acquisition time. The scanning time lies between 5 s and 15 s. Only
a few hundred projection images are acquired, which is significantly lower than for
conventional CT systems. Consequently, retrospective ECG-gating results in highly
undersampled reconstructed volumes with severe streak artifacts, cf. Figures 2.4 and
2.6. The percentage of undersampling is defined by the patient’s heart rate, the
imaging frame rate and the scanning duration. The scan time cannot be arbitrarily
prolonged since the patient is exposed to X-rays and iodinated contrast agent has to
be administered continuously in order to visualize the bloodpool of the heart. The
total amount of injected contrast agent needs to be reduced, therefore, the contrast
that is achieved is not nearly as high as that seen in the coronary arteries. The
image acquisition and contrast protocol needs to be evaluated for 3-D imaging of
the heart chambers with the C-arm CT system using one single scan. The applied
reconstruction algorithms are highly dependent on the clinical acquisition.

2.9 Summary and Conclusions
In this chapter, a short summary of the state-of-the-art reconstruction algorithms
for cone-beam reconstruction was given. Since dynamic imaging of cardiac chambers
with a C-arm CT is a quite new and challenging task, up to now, only a limited num-
ber of publications and research teams tackle this problem. Therefore, the review of
dynamic reconstruction techniques is beyond cardiac C-arm CT and covers relevant
publications, which deal with similar problems. Due to the long acquisition time, the
motion of the cardiac chambers must be taken into account in the 3-D tomographic
reconstruction step. The number of the acquired high resolution projection images
is limited to a few hundred. Consequently, retrospective ECG-gated reconstructed
volumes suffer from streak artifacts, noise, and residual motion. The amount of un-
dersampling is dependent on the specific acquisition protocol, the imaging framerate,
and the heart rate of the patient. The generation of initial and useful 3-D images for
motion estimation by deformable registration is quite challenging. Consequently, mo-
tion estimation techniques from other modalities, e.g., CT cannot be directly applied
to the data from C-arm CT. Additionally, algorithms developed for cardiac vascula-
ture reconstruction make different assumptions which do not hold for cardiac chamber
reconstruction. The chambers do not have sparse and high contrast structure such
as the coronaries, hence, some pre-processing steps assuming high contrast objects
are not feasible here. Prior work for motion-compensated reconstruction of cardiac
chambers using a C-arm CT was done by Lauritsch et al. [Laur 06] and Prümmer
et al. [Prmm09b]. They used a multi-sweep protocol of the C-arm and selected for
each viewing angle the projection closest to the reference heart phase. In this the-
sis, cardiac protocols based on one C-arm rotation are used and consequently, new
reconstruction techniques are required for cardiac chambers using C-arm CT data.
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In clinical practice, when patients undergo a coronary examination, the function and
morphology of the left ventricle (LV) is investigated [Krak 04]. The analysis of the
ventriculogram is usually done to visualize and quantify the ventricular function. The
quantification in the catheter lab is based on the temporal sequence of 2-D X-ray im-
ages, but no 3-D+t volumetric information is provided. A C-arm system provides
the possibility to acquire rotational angiographic 2-D projection images from different
views. These projections can be used for 3-D imaging. The image acquisition using
a C-arm CT system requires several seconds. A standard FDK reconstruction using
all acquired projection images results in a motion blurred image. One possibility to
improve temporal resolution, is the retrospective ECG-gating from a single C-arm
rotation as described in Section 2.3.1. However, a retrospective ECG-gated tomo-
graphic reconstruction suffers from severe undersampling artifacts. These artifacts
occur from the fact that a single scan with an acquisition time of 5 s to 8 s covers
only 5 to 10 cardiac cycles. Therefore, novel motion estimation and compensation
techniques are required.

This chapter describes a surface-based motion estimation, reconstruction and
analysis framework for the LV in the catheter laboratory using a C-arm device. First,
the motivation and the clinical application are described in more detail in Section 3.1.
The exact acquisition and contrast protocol of the C-arm CT scan are described in
Section 3.2. In Section 3.3, the generation of the dynamic surface mesh is presented.
As the 3-D motion compensation requires a dense motion vector field, the sparse
motion vector field defined only at the LV surface needs to be mapped to a dense
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Figure 3.1: Schematic overview of the surface-based motion estimation, reconstruction and
analysis.

motion vector field (MVF), cf. Section 2.5.2. Different interpolation schemes were
evaluated with respect to the reconstruction quality and accuracy.

Furthermore, the surface model provides also the possibility to analyze the wall
motion of the LV, presented in Section 3.4. Different parameters to extract motion
defects like dyssynchrony information of the LV ventricle are transferred from different
modalities to use them for wall motion analysis in combination with a C-arm CT. The
results of the interpolation techniques to compute dense MVFs and the wall motion
analysis parameter are presented in Section 3.5. The second to last section, Section
3.6 discusses the challenges of the presented methods and Section 3.7 summarizes this
chapter. A schematic overview of the surface-based motion estimation, reconstruction
and analysis is given in Figure 3.1.

Parts of this work have already been published in Chen et al. [Chen 11, Chen 13c],
and Müller et al. [Mlle 12b, Mlle 13c, Mlle 13b, Mlle 14c].

3.1 Motivation and Clinical Applications
In interventional procedures, there is increasing interest in four-dimensional imaging
of dynamic cardiac shapes, e.g., the left ventricle (LV), for quantitative evaluation
of cardiac functions such as ejection fraction and wall motion analysis. An angio-



3.2 Acquisition and Contrast Protocol 35

graphic C-arm CT system is capable of acquiring multiple 2-D projections while
rotating around the patient. With such data a 3-D reconstruction of the imaged
region is possible. Due to the long acquisition time, a few seconds, of the C-arm,
imaging of dynamic structures presents a challenge. The motion of the heart ventri-
cle needs to be taken into account in the reconstruction process. The standard FDK
algorithm [Feld 84] as presented in Section 2.2.1 would use all acquired projections for
reconstruction. Consequently, different heart phases cannot be distinguished. The
result would be a motion blurred reconstruction of the heart ventricle. A motion-
compensated tomographic reconstruction for the heart ventricle could overcome the
limitations of the FDK approach. In order to compensate for the motion [Schf 06],
the dynamics of the heart need to be estimated.

Up to now, no quantitative 3-D/4-D analysis of the left ventricle (LV) has been
performed during the intervention using angiographic C-arm CT. Functional infor-
mation is provided by other devices, mainly ultrasound (US) [Kape 05, Jenk 04], mag-
netic resonance imaging (MRI) [Matt 12, Ma 12] or cardiac computed tomography an-
giography (CCTA) [Lee 12, Po 11]. The three-dimensional echocardiography, CCTA
and MRI have to be performed before the cardiac intervention. In this chapter, the
goal is a one-step solution of functional cardiac imaging directly inside the catheter
lab with the interventional C-arm system, since C-arm systems are the main modality
used for performing fluoroscopic imaging. A combination of a motion-compensated
reconstruction with a quantitative analysis of the dynamics of the left heart ventricle
(LV) would provide a cardiologist with valuable diagnostic information. The LV mo-
tion information could also improve the outcome of complex cardiac procedures, such
as cardiac resynchronization therapy (CRT) [De B13a]. The LV model can guide a
physician to an optimal position of the LV lead and hence, increase the rate of success
of these interventions [Ma 12].

3.2 Acquisition and Contrast Protocol
The image acquisition protocol for an LV scan with a C-arm system consists of a
few hundred projection images over an angular range of 200◦ in 5 s to 8 s during a
breath hold. Contrast agent is administered directly into the LV via a pigtail catheter
inserted through the femoral artery in the leg or radial/brachial artery in the arm.
Imaging starts with a delay of about 1 s, the time required for the contrast to fill the
LV homogeneously.

The porcine dataset was acquired in a research laboratory at Stanford University
and the clinical datasets were provided by the Universitätsklinikum Erlangen and the
Thoraxcenter, Erasmus MC Rotterdam.

3.3 Motion Estimation and Compensation via Surface
Model

The individual steps in order to compute a dynamic surface model of the LV and to
use it for motion-compensated reconstruction, are the following: (1) fitting an initial
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mesh to the standard FDK reconstruction [Feld 84] using all projection images, (2)
segmentation of the 2-D bloodpool, (3) heart phase identification, (4) adaptation of
the surface mesh, (5) dense MVF motion estimation from generated surface model,
(6) limitation of the motion to a region of interest, and (7) motion-compensated
tomographic reconstruction. The individual steps are explained in more detail in the
following subsections.

3.3.1 Initial Surface Mesh Generation
As initialization, a standard FDK reconstruction is performed using all available 2-D
projections. This reconstruction exhibits artifacts due to cardiac motion, but the
reconstruction quality is sufficient for extraction of a static and preliminary 3-D LV
endocardium mesh using a marginal space learning and steerable feature approach
proposed by Zheng et al. [Zhen 08].

3.3.2 2-D Bloodpool Segmentation
The 2-D bloodpool segmentation is based on a boundary defined by a set of connected
points. For each of these points, the steerable features [Zhen 08] centered at this point
location are extracted to train a probabilistic boosting tree (PBT) classifier [Tu 05].
During the training stage, the manually annotated LV bloodpool boundary is given
as the input to extract positive samples (on the true boundary) and negative samples
(far away from the boundary). During testing, the initial generated surface mesh
is forward projected onto the 2-D projection images and the contour of the forward
projected mesh is detected [Chen 11]. Features along the normal direction of the
contour are extracted as the input to the trained classifier, and the candidate location
with the peak probability score is selected as detected contour location [Chen 11]. The
bloodpool segmentation results in the 2-D bloodpool size signal π(i) ∈ Z+ given in
pixels.

3.3.3 Heart Phase Identification
The heart phase φ(i) ∈ [0, 1] of each projection image needs to be identified. For
patients with an irregular heart rhythm the cardiac phase cannot be assigned from
the electrocardiogram (ECG) signal by linear interpolation between two R-R peaks in
the same manner as with a regular heart beat [Laur 06]. Therefore, the 2-D segmented
bloodpool area is used for identification of the heart phase. The 2-D bloodpool size
π(i) ∈ Z+ at acquisition angle i, given as the segmented area in pixels in the 2-D
projection images is filtered with a 1-D Gaussian kernel in order to obtain a smoothed
bloodpool curve πf (i), cf. Figure 3.2a. The minimum and maximum points are
then identified as candidate points for end-systole (ES) iES and end-diastole (ED)
iED. A pre-defined threshold is used to exclude false local maxima and minima, cf.
Figure 3.2a, frames 102 and 110. The detected ED’s divide the signal πf (i) into
multiple cardiac cycles. In order to generate a reference time-size curve π(ξ), an
intermediate heart phase ξ ∈ [0, 1] is introduced

ξ = i− iED1

iED2 − iED1
, (3.1)
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(a) Smoothed bloodpool size πf (i). (b) Average bloodpool size π(ξ).

(c) Cardiac phase φ(i) for each projection.

Figure 3.2: Examples of (a) a smoothed bloodpool segmentation size πf (i) and (b) the
mean bloodpool signal π(ξ) by averaging multiple cardiac cycles. (c) shows the derived
cardiac phase φ(i) based on Equation (3.4). The candidate end-diastole (ED) time iED and
end-systole (ES) time iES are marked as red and green dots and the red and green ring
mark the additional smaller contraction in (a).

where iED1 and iED2 are the first and last ED point of the current cycle. The bloodpool
curve of each cycle is temporally re-sampled to fit to an average length of a cardiac
cycle. The re-sampled curves are then averaged over all cycles to generate π(ξ). An
example of a reference curve π(ξ) is shown in Figure 3.2b. In order to eliminate the
size variation of the bloodpool due to the rotation of the C-arm system, a normalized
bloodpool size πn(i) is computed as follows:

πn(i) =


πf (i)−πf (iES)

πf (iED1)−πf (iES) · (π(0)− π(ξES)) + π(ξES), i < iES
πf (i)−πf (iES)

πf (iED2)−πf (iES) · (π(1)− π(ξES)) + π(ξES), i ≥ iES
, (3.2)

where ξES is the ES time point of the reference curve π(ξ), with

ξES = arg min
ξ

π(ξ) (3.3)

and iES is the end-systolic point of the cardiac cycle containing the currently consid-
ered frame. Finally, the cardiac phase φ(i) for each projection and time point can
be obtained based on a quasi-inverse mapping of π(ξ) at the systolic and diastolic
period separately,

φ(i) = π−1(πn(i)), (3.4)
where a systolic period is present if i < iES and a diastolic period otherwise. The
continuous heart phase φ(i) is binned into a number of K heart phases by nearest-
neighbor classification and denoted with φk, with k = 1, . . . , K. The number of
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heart phases K can be chosen according to the number of frames per heart cycle.
An example of a derived cardiac phase signal φ(i) is given in Figure 3.2c. If a local
maximum is detected which is not ED, as illustrated in Figure 3.2a at frame 102, the
phase labeling process based on Equation (3.4) is reset to the systolic period. At the
beginning and end of the scan, if no full cardiac cycle is detected, the local maximum
and minimum are used for fitting the half cycle to the average bloodpool signal and
the cardiac phase can be assigned as previously described. In the example shown
in Figure 3.2a no local minimum is detected at the beginning and hence the heart
phases at the beginning of the scan are set to zero, as depicted in Figure 3.2c.

3.3.4 Dynamic Surface Model Generation
The proposed motion-compensated reconstruction uses a motion vector field (MVF)
estimate given by a dynamic 3-D surface model of the ventricle generated from the
2-D projection data [Chen 11]. The projections are assigned to certain heart phases
corresponding to the bloodpool size signal generated from the 2-D projection images
described in Section 3.3.3. The static mesh is then projected onto the 2-D projections
belonging to a certain heart phase. The projected mesh silhouette is adjusted in the
direction of the normal to each control point in order to match the 2-D ventricle
bloodpool border, cf. Section 3.3.2. The 2-D deformation vector is then transformed
into the 3-D space and the 3-D mesh is updated accordingly. As a result a 3-D
mesh is generated for every heart phase φk with its control points pc(φk) ∈ R3, with
c = 1, . . . , Pc, where Pc is the number of control points [Chen 11].

For reconstruction, a reference heart phase φr is selected. The displacement or mo-
tion vectors point in the direction of the motion of the sparse control points between
different heart phases. They are denoted as dc(φk) ∈ R3 describing the distance of
every control point between the reference heart phase φr and the current heart phase
φk. They can then be computed by

dc(φk) = pc(φk)− pc(φr). (3.5)

An example of the left ventricle surface model for two different heart phases at end-
diastole and end-systole is illustrated in Figure 3.3a. In Figure 3.3b, the sparse
motion vectors dc(φk) are shown between the reference heart phase and the current
heart phase.

3.3.5 Different Motion Interpolation Techniques
In order to perform a motion-compensated tomographic reconstruction as described
in Section 2.5.2, a dense motion vector field (MVF) needs to be generated from the
sparse MVF. For every projection image i the assignment to a heart phase φk is
known, cf. Section 3.3.3. The motion model function M : N × R3 × RKmm 7→ R3

describes the mapping from a reference phase φr to the current heart phase φk and
is described by

M(φk,x, s̃mm) = x + d(x, s̃mm), (3.6)
where d(x, s̃mm) ∈ R3 denotes the displacement vector at voxel position x and s̃mm ∈
RK̃mm the motion vector parameters between reference and current heart phase. In
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(a) (b)

Figure 3.3: Illustration of the extracted surface model of the left ventricle. (a) Surface model
for two different heart phases at end-diastole (transparent) and end-systole (solid). (b)
Sparse motion vectors dc(φk) between reference heart phase at end-diastole (transparent)
and current phase at end-systole (solid).

order to result in a complete definition of the cardiac motion over the whole scan, the
motion needs to be estimated between the reference heart phase φr and all remaining
K − 1 heart phases. Different interpolation methods to provide the displacement
vectors were evaluated and are explained below.

3.3.5.1 Thin-Plate Splines (TPS)

The deformation of the LV between two time points can be represented by a thin-
plate spline (TPS) transformation. The TPS approach assumes that the bending
and stretching behavior of the left ventricle is similar to the bending of a thin plate.
Thin-plate splines have already been applied to estimate cardiac vascular motion for
CT data [Isol 10b] and ventricular motion for MRI data [Sute 00]. Furthermore, they
are widely used for elastic image registration of medical images [Spre 96, Rohr 01].

For describing a transformation by a thin-plate spline between two heart phases,
K̃mm = (3 · (3Pc) + 9 + 3) = 3 · (3Pc) + 12 parameters are required, i.e. s̃mm =
(p(φr),p(φk), c(φk),a(φk), b(φk))T , where p(φr) ∈ R3Pc , p(φk) ∈ R3Pc are a linearized
version of the surface control points at the current and the reference heart phase. The
vector c(φk) ∈ R3Pc is also a linearized version of the spline coefficients of cc(φk) ∈
R3 for each control point, with c = 1, . . . , Pc. The vector a(φk) ∈ R9 contains
the linearized rotation, shearing, and scaling parameters of an affine transformation
matrix A(φk) ∈ R3×3. The parameter b(φk) ∈ R3 is a translation vector. The TPS
coordinate transformation with its displacements for an arbitrary point x ∈ R3 is
then given as

d(x, s̃mm) =
Pc∑
c=1

G(x− pc(φk))cc(φk) + A(φk)x + b(φk), (3.7)
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where d(x, s̃mm) is the displacement vector at point x and pc(φk) ∈ R3 is one control
point. The transformation’s kernel matrix G(x) ∈ R3×3 of a point x ∈ R3 for a 3-D
TPS is given according to [Davi 97]

G(x) = r(x) · I, (3.8)
r(x) = ||x||2, (3.9)

where I ∈ R3×3 is the identity matrix. In order to solve Equation (3.7) for each
φk, set d(x, s̃mm) = dc(φk) for x = pc(φk). Farther away from the control points,
the distance from the point to all control points is quite large. Hence the first part
of Equation (3.7) becomes a multiple of the average of cc(φk) and is reduced to an
affine transformation. As Equation (3.7) is linear in cc(φk),A(φk), and b(φk), it can
be solved in a straightforward manner [Davi 97].

The resulting spline coefficients and affine parameters are inserted in Equation
(3.7) in order to evaluate the spline at any arbitrary 3-D point. A motion vector can
therefore be computed for every voxel in the reconstructed volume. In order to find
a complete cardiac motion over the whole scan, the motion needs to be estimated
between the reference heart phase φr and the remainingK−1 heart phases. Therefore,
the dimension of the motion vector parameter for all heart phases is smm ∈ RKmm

with Kmm = (K − 1) · (3 · 3Pc + 12).

3.3.5.2 Linear Interpolation

For linear interpolation, surface control points around the point x are determined and
the resulting displacement vector d(x, s̃mm) is a weighted sum of the corresponding
displacement vectors

d(x, s̃mm) =
Pc∑
c=1

G∗(x− pc(φk))dc(φk), (3.10)

G∗(x) = u(x) · I, (3.11)
where u is a weighting function. Function u weights the displacement vectors ac-
cording to the distance between the control point pc(φk) and the point x. Three
weighting functions were investigated. For describing a transformation by a linear
interpolation between two heart phases, K̃mm= 2·3Pc+1 parameters are required, i.e.
s̃mm = (p(φr),p(φk), l)T , where l ∈ N can be a number of points nc used for interpo-
lation or l ∈ R can be a radius R defining a region in which points contribute to the
linear interpolation. The motion vectors d(φk) are a linearized version of dc(φk) and
are defined by Equation (3.5). In order to result in a complete cardiac motion over the
whole scan, the motion needs to be estimated between the reference heart phase φr
and the remaining K−1 heart phases. Therefore, the dimension of the motion vector
parameter for all heart phases is smm ∈ RKmm with Kmm = (K − 1) · (2 · 3Pc + 1)).

Shepard’s Method. An inverse distance weighting is applied according to the
distance from the considered point to the nc closest control points [Shep 68]. The
function u is therefore defined as

u(x) = ||x||−1
2∑nc

j=1 || (x− pj(φk)) ||−1
2
. (3.12)
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Smoothed Weighting Function. In this case, the function u is a cosine-based
smoothing function

u(x) =


1
W (1 + cos( ||x||2·π

R
)) , if ||x||2 ≤ R

0 otherwise,
(3.13)

where W denotes a normalization constant so that ∑Wc
j=1 u(xj) = 1, and xj = x −

pj(φk). The number of points inside the radius R is given by Wc.

Simple Averaging. Here the resulting displacement vector d(x, s̃mm) is a simple
average of the displacement vectors at the surrounding control points. Thus, the
function u, with Wc denoting the number of control points located within a sphere
of radius R around x is defined as

u(x) =


1
Wc

, if ||x||2 ≤ R

0 otherwise.
(3.14)

3.3.6 Cutting
In order to reduce the computational complexity, it is assumed that the left ventricle
is the central moving organ inside the scan field of view. This assumption is justified
due to the acquisition protocol where - for the most part - only the left heart ventricle
is filled with contrast during the procedure. Therefore, a dense MVF is estimated in
the neighborhood of the ventricle. The considered set of points P , for which a motion
vector is estimated, is given as

P = {x | ||x− px(φk)||2 ≤ rc} , (3.15)

where px(φk) is the closest surface control point to the current point x. In Figure 3.4a,
an MVF of a human dataset between the reference heart phase at end-diastole and the
current heart phase at end-systole is illustrated for the TPS. The MVF between the
reference heart phase close to end-diastole and the current heart phase at end-diastole
is illustrated for the TPS in Figure 3.4b.

3.3.7 Motion-Compensated Reconstruction
The motion-compensated reconstruction algorithm used here is based on the FDK
formulation as described in Section 2.5.2.2. For every projection image i the as-
signment to a heart phase φk is known, cf. Section 3.3.3. Therefore, the estimated
motion vector fields M(i,x, smm) can be incorporated into a voxel-driven filtered
backprojection reconstruction algorithm. The motion correction is applied during
the backprojection step by shifting the voxel x to be reconstructed according to the
motion vector function M . A more detailed explanation of the algorithm is provided
in Section 2.5.2 of this thesis.
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(a) (b)

Figure 3.4: Illustration of a dense MVF of the human dataset computed with TPS around
r = 2 cm of the LV surface. (a) Dense MVF between reference heart phase at end-diastole
and current phase at end-systole. (b) Dense MVF between reference heart phase close to
end-diastole and current phase at end-diastole. The number of vectors displayed has been
reduced in order to permit visualization of MVF characteristics.

3.3.8 Complexity Analysis
In order to analyze the complexity of the different motion interpolation schemes,
the O-calculus is given for each method. For the thin-plate spline approach, the
most complex part is to solve the linear equation system, e.g., with a singular value
decomposition (SVD). The complexity of the SVD is dependent on the dimension of
the matrix to be decomposed. Here, the matrix L has a dimension of (3Pc + 12) ×
(3Pc + 12) and increases with the number of the surface control points [Davi 97].
Therefore, the complexity results in O((3Pc + 12)3), since all matrices U, Σ, V T of
the decomposition of L are required [Golu 96]. For the linear methods, the complexity
scales linearly with the number of surface control points Pc, which results in O(Pc).
All interpolation techniques scale with the number of heart phases φk. A number of
K − 1 need to be computed in order to estimate all deformations.

Additionally, all techniques are used for a motion-compensated filtered-
backprojection reconstruction. Given the side length of the 3-D volume n and the
number of projections N , the complexity of a backprojection-based reconstruction is
expressed as O(N n3).

3.3.9 Implementation Details and Parameter Setting
In order to estimate a dense motion vector field, the various approaches have different
parameters to be set. The thin-plate spline approach has only one parameter to
adjust, the stiffness. This parameter defines whether the splines need to pass through
the control points exactly or whether a given relaxation is allowed. The stiffness was
set to 0 in all experiments carried out, i.e. no relaxation was allowed. For computation
of the spline coefficients and the affine transformation parameters, a singular value
decomposition (SVD) was used to solve the linear equation system in Equation (3.7).
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This part was implemented in a straightforward manner on the CPU and is a critical
point with respect to computational complexity, see Section 3.3.8. In order to speed
up the runtime, the TPS transformation of each voxel was computed on the graphics
card using CUDA [Sand 10] in order to take advantage of the parallelism of modern
hardware.

For the linear extrapolation methods, different parameters need to be defined.
For the Shepard’s method, a certain number of considered neighboring points needs
to be given. In this thesis, this number nc was empirically set to 30. Due to the
density of the grid points, the number nc = 30 (total number of surface points 545)
corresponds to a range of approximately 2 cm around each voxel x. Forthmann et
al. [Fort 08] evaluated nc = 1 and nc = 128 neighbors and stated that the number of
points can be selected to be quite small, but one neighbor point may not be sufficient.
Regarding the smoothed weighting function and the simple averaging, a radius R is
configured, here R is heuristically set to 2 cm. The region of interest distance rc was
heuristically set to 2 cm around the LV surface model in the heart phase φr.

The motion-compensated FDK reconstruction is also implemented on the GPU
based on the work of [Sche 11, Wein 08].

3.4 Ventricle Motion Analysis
In the previous sections, the surface model was used to compute a tomographic
motion-compensated reconstruction of different heart phases. In this section, the
LV surface is used to analyze the contraction behavior of the LV with respect to
pathological regions. First, the local coordinate system of the LV is introduced.
The motion analysis part is divided into the volumetric computation of the LV, wall
motion analysis in 3-D and a mapping of the 3-D motion information to an overview
map in 2-D. The individual steps are explained in more detail in the following sections.

The wall motion analysis software was implemented on the CPU and is operated
via a graphical user interface implemented with the Qt Project1 and the visualization
of the surface meshes is based on the Visualization Toolkit2 (vtk) [Schr 06].

3.4.1 Left Ventricle Representation
In order to analyze the contraction behavior of the LV, an orthogonal local coordinate
system is introduced. The three orthogonal main axes of the end-diastolic LV surface
are computed by a modified principal component analysis (PCA) with a rotation and
an adjustment of the centroid. The coordinate system is kept fixed for the whole
analysis. The first principal axis n1 ∈ R3 points towards the long axis of the LV
between the apex point and the middle point of the mitral valve. The second axis
n2 ∈ R3, points into the anterior direction and the third axis n3 ∈ R3 in the septal
direction. Initially, n1 does not necessarily pass through the apex, since the LV is not
necessarily symmetric. Therefore, the coordinate system (n1, n2, n3) is rotated to
align n1 with the long axis. The origin of the coordinate system is defined as the mid

1http://qt-project.org/
2http://www.vtk.org/

http://qt-project.org/
http://www.vtk.org/
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(a) (b) (c)

Figure 3.5: (a) Septal view of one left ventricle surface model at end-diastole with the local
coordinate system (n1, n2, n3). n3 is pointing towards the reader. (b) Circumferential
polar plot of the 16 myocardial segments with the used coordinate system (n1, n2, n3). n1
is pointing towards the reader. Image according to [Cerq 02]. (c) Hammer projection used
to preserve the areas while mapping varying measures of function from 3-D to 2-D. Image
according to [Herz 05].

point between base and apex. A schematic of the three coordinate axes is provided
in Figure 3.5a.

The LV surface is divided into 16 segments according to the recommendation
of the American Heart Association (AHA) for the myocardium and each point pc
is assigned to one of these segments [Cerq 02]. The 16 myocardial segments are
illustrated in Figure 3.5b.

3.4.2 Motion Analysis
In order to provide a broad portfolio of functional parameters to the cardiologist, a
wall motion analysis is performed in 3-D as well as a mapping of the 3-D motion
information to a overview map in 2-D called Hammer projection.

3.4.2.1 Volume Computation

For every heart phase the three-dimensional LV volume Π(i) ∈ R+ is computed. The
mapping between the heart phase and each acquisition time point i is known, cf.
Section 3.3.3. The end-diastolic volume (EDV) and end-systolic volume (ESV) are
determined as maximum and minimum volume. The ejection fraction (EF) is the
difference between the end-diastolic volume and the end-systolic volume compared to
the end-diastolic volume. The EF is computed as

EF[%] = EDV-ESV
EDV . (3.16)

A normal EF has a lower limit of about 50%, below that value the contraction ability
of the LV is impaired [Pfis 85].
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3.4.2.2 Wall Motion in 3-D

The ventricular wall motion can be analyzed in 3-D using different features adapted
from other modalities (CCTA, US, MR):

Heart Phase to Maximal Contraction (φc,max). The minimal Euclidean dis-
tance λc(φk) from every point pc(φk) to the long axis n1 can be computed. In order to
eliminate small outliers, the distance signals are temporally filtered by a mean filter
with a kernel size of 5. Finally, for every surface point, the phase until it reaches its
maximum of contraction φc,max can be determined. For synchronous LV motion, a
uniform distribution over the entire LV surface can be observed. A higher variability
in the contraction times occurs for dyssynchronous dynamics [Po 11].

Systolic Dyssynchrony Index (SDI). The systolic dyssynchrony index (SDI)
known from echocardiography [Gime 08, Kape 05, Sach 11] can be estimated with the
LV volumetric information for every heart phase. For each surface point pc(φk) the
associated myocardial segment is known and fixed for all heart phases. Therefore,
the subvolume of each segment can be determined by dividing the LV surface into
small triangle pyramids given by the surface mesh and the mid point of the LV mesh
points. In order to eliminate small outliers, the subvolume signals are temporally
filtered by a mean filter with a kernel size of 5. For each segment, the phase φs,max of
maximal contraction and the overall mean phase of maximal contraction φmax for all
segments are computed. The standard deviation of the maximal contraction phases
between the segments is an indicator for LV synchrony

SDI =

√√√√ 1
16

16∑
s=1

(φs,max − φmax)2. (3.17)

Since the SDI represents the standard deviation between contraction phases, a higher
SDI denotes increased ventricular dyssynchrony. For echocardiography, Kapetanakis
et al. stated an SDI ≤ 3.5±1.8% as normal and mild disease for an SDI of 5.4±0.8%,
moderate disease for an SDI of 10.0±2% and a severe disease for an SDI of 15.6±1%
[Kape 05]. It should be mentioned that the SDI is a relatively new parameter
of dyssynchrony and there is still variation between the methods of measurement
[Sach 11], but irrespective of the analysis software, there is an agreement that healthy
individuals rarely have SDI values over 6%.

Three-dimensional Fractional Shortening (3DFSc). In 2-D echocardiography,
the fractional shortening of the LV is used as an indicator to identify pathological
dynamics. Ischemic regions can be distinguished from normal areas of the LV. It
specifies the relationship between the LV radius in diastole and its decrease during
systole. Here, a three-dimensional fractional shortening (3DFSc) can be computed
similar to [Herz 05]. The 3DFSc value for every point is defined as

3DFSc = λc,ED − λc,ES

λc,ED
, (3.18)
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where λc,ED and λc,ES denote the Euclidean distance of the mesh point pc(φk) to the
long axis n1 in end-diastole and end-systole, respectively. Herz et al. classified the
wall motion as normal (3DFSc > 0.25), hypokinetic (0.05 < 3DFSc ≤ 0.25), akinetic
(-0.05 < 3DFSc ≤ 0.05) or dyskinetic (3DFSc ≤ -0.05). The lower limit of normal
is based on the standards for 2-D fractional shortening of the American Society of
Echocardiography while the values to separate akinesis and dyskinesis are chosen
arbitrarily [Herz 05].

3.4.2.3 Hammer Projection

In order to provide the point-based indicators in an overview map, a Hammer pro-
jection map is created [Hunt 88]. The maximal contraction phase φc,max and the
fractional shortening 3DFSc are mapped from the LV mesh surface to 2-D as a func-
tion of location from apex to base (0◦ ≤ µ ≤ 120◦) and circumferential position
(0◦ < θ ≤ 360◦). The Hammer projection maps the surface motion information to
2-D while preserving relative surface areas, cf. Figure 3.5c [Hunt 88]. The LV surface
is represented by a small number of control points, therefore, the surface with its
point-based motion information is re-sampled. The surface is re-sampled with an
angular increment of 0.25◦ degrees in the µ and θ directions. The scalar value at
the sample point is computed by simple averaging of the information given at the
neighboring triangle vertices (φc,max or 3DFSc).

3.5 Evaluation and Results
In the following sections, the evaluation of the motion estimation and compensation
algorithm and ventricular wall motion analysis is presented. The motion estimation
and compensation part was evaluated on a generated phantom dataset as well as on
a porcine model and on three real clinical patient datasets. The wall motion anal-
ysis was performed on specifically designed phantoms with pathological contraction
behavior and eight clinical datasets in total. Among them were two patient datasets,
which were also evaluated for the motion estimation and compensation algorithm.

3.5.1 Motion Estimation and Reconstruction
In order to evaluate the interpolation scheme of the motion estimation and reconstruc-
tion algorithm, the reconstruction quality of the phantom data was evaluated with
respect to the 3-D reconstruction quality of the image compared to a gold standard
reconstruction. Furthermore, the phantom data as well as the clinical datasets were
analyzed regarding the accuracy of the forward projection of the motion-compensated
reconstructions compared to the 2-D LV bloodpool boundary.

3.5.1.1 Datasets

Three different kinds of datasets were used for motion estimation and compensation
evaluation, one phantom, one porcine and three clinical patient datasets.
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Ventricular Phantom. The algorithm presented here has been applied to a ven-
tricle dataset comparable to the XCAT phantom [Sega 08, Maie 12, Maie 13]. The
bloodpool density of the left ventricle was set to 2.5 g/cm3, the density of the my-
ocardium wall to 1.5 g/cm3 and the blood in the aorta to 2.0 g/cm3. It is assumed
that all materials have the same absorption as water. Data was simulated using
a clinical protocol with the following parameters: 395 projection images simulated
equi-angularly over an angular range of about 200◦ degrees with an angular incre-
ment of 0.5°/f at a frame rate of 60 fps with a size of 620× 480 pixels at an isotropic
resolution of 0.62mm/pixel and a scan time of about 8 s. The distance from source
to detector was 120 cm and from source to isocenter 78 cm, leading to a resolution of
about 0.4mm in the isocenter. The surface model consisted of K = 40 heart phases
between subsequent R-peaks and Pc = 957 control points uniformly distributed over
the left ventricle. The image reconstruction was performed on an image volume of
(25.6 cm)3 distributed on a 2563 voxel grid. Physiological parameters extracted from
the surface model p0 are given in Table 3.1.

Porcine Model. The porcine dataset was acquired on an Axiom Artis dTA C-arm
system (Siemens AG, Healthcare Sector, Forchheim, Germany) at a research labora-
tory in Stanford. Data was acquired using the same clinical protocol as described in
the paragraph above: 395 projection images sampled equi-angularly over an angu-
lar range of about 200◦ degrees with an angular increment of 0.5°/f at a frame rate
of 60 fps with a size of 620× 480 pixels at an isotropic resolution of 0.62mm/pixel
and a scan time of about 8 s. The distance from source to detector was 120 cm and
from source to isocenter 78 cm, leading to a resolution of about 0.4mm in the isocen-
ter. The undiluted contrast agent Omnipaque 350 (350 mg/ml) was administered
at 15ml/s via a pigtail catheter directly into the left heart ventricle, 1.5 s before the
imaging started. The total injection time was 9.5 s and the pig had a weight of 62 kg.
The surface model consisted of K = 30 heart phases between subsequent R-peaks
and Pc = 961 control points equally distributed over the left ventricle. Image re-
construction was performed on an image volume of (21.8 cm)3 distributed on a 2563

voxel grid. Physiological parameters extracted from the surface model ppor are given
in Table 3.1.

Clinical Data. The first dataset h1 was acquired on an Artis zee C-arm system
(Siemens AG, Healthcare Sector, Forchheim, Germany) at the Thoraxcenter, Erasmus
MC Rotterdam, Netherlands. It consists of 133 projection images acquired over an
angular range of about 200◦ degrees with an angular increment of 1.5°/f in about
5 s with a size of 960× 960 pixels at an isotropic resolution of 0.18mm/pixel (about
0.12mm in isocenter) at a frame rate of 30 fps. The distance from source to detector
was 120 cm and from source to isocenter 75 cm. The contrast agent was administered
undiluted at 10ml/s by a pigtail catheter directly into the left heart ventricle, with 1 s
X-ray delay. The surface model consisted of K = 26 heart phases between subsequent
R-peaks and Pc= 961 control points equally distributed over the first section of the
aorta, outflow tract and left ventricle. Image reconstruction was performed on an
image volume of (14.1 cm)3 distributed on a 2563 voxel grid.
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Heart rate [bpm] EF [%] SV [ml] EDV [ml] ESV [ml]

Phantom p0 75 30.95 42.03 135.82 93.79

Porcine ppor 103.0 ± 24.2 45.80 40.05 87.44 47.40

Human h1 61.6 ± 1.7 74.71 50.43 67.50 17.07

Human h2 62.9 ± 2.9 58.73 65.14 110.91 45.77

Human h3 55.3 ± 9.3 62.33 89.07 142.91 53.84

Table 3.1: Physiological data measurements of the motion estimation and compensation
datasets extracted from the surface models: ejection fraction (EF), stroke volume (SV),
end-diastolic volume (EDV), end-systolic volume (ESV).

The datasets h2 and h3 were acquired on an Artis zeego C-arm system (Siemens
AG, Healthcare Sector, Forchheim, Germany) at the Thoraxcenter, Erasmus MC
Rotterdam, Netherlands. They consist of 133 projection images acquired over an
angular range of 200◦with an angular increment of 1.5°/f in about 5 s with a size of
960× 960 pixels at an isotropic resolution of 0.31mm/pixel (about 0.2mm in isocen-
ter). The frame rate was 30 fps, the distance from source to detector was 120 cm
and the distance from source to isocenter was 78 cm. The left heart ventricle was
again filled with undiluted contrast directly by a pigtail catheter with 15ml/s and
1 s X-ray delay. The surface model consisted of K = 25 and 30 heart phases between
subsequent R-peaks for h2 and h3 respectively and 609 points equally distributed
over the left ventricle and the outflow tract, and Pc = 545 control points define the
left ventricle. Image reconstruction was performed on an image volume of (19.2 cm)3

distributed on a 2563 voxel grid. Physiological parameters for h1, h2 and h3 extracted
from the surface models are given in Table 3.1.

3.5.1.2 Quantitative Evaluation Methods of 3-D Reconstruction Quality

For the phantom dataset, the accuracy of the motion-compensated reconstruction
is also evaluated in the 3-D image space using the normalized root mean square
error (nRMSE) and the universal image quality index (UQI). The deviation of the
forward projection of the motion-compensated reconstructions and the left ventricular
boundary in 2-D is analyzed for the phantom, the porcine and the three clinical
datasets.

Phantom Image Quality in 3-D Image Space. For the dynamic phantom
dataset the 3-D error and a quantitative 3-D image metric can be evaluated. In
order to measure only the artifacts introduced by the heart motion, the FDK re-
construction of the static heart phantom of the same heart phase is used as gold
standard. The ground truth of the phantom is not used due to the fact that only the
artifacts coming from the heart motion should be measured and evaluated by using
FDK as a gold standard. Other cone-beam or truncation artifacts are identical in the
images and can be neglected. Heart phases from 10% to 100% with 10% increment
were evaluated. The reconstruction of the static phantom is done with the same
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(a) (b)

Figure 3.6: Transverse slice of a reconstructed image of the dynamic FDK reconstruction
result in (a) and the gold standard reconstruction of the phantom left ventricle at a relative
heart phase of about 40% and ROI (contour) used for evaluation in (b) (W 1900HU, C
466HU, slice thickness 1mm). The ROI used for image quality metric measurements is
shown as the red contour.

geometric reconstruction parameters as the motion-compensated reconstructions and
the standard FDK reconstruction of the dynamic phantom, see Figure 3.6a. Let
fGS,φk(x) be the function, which returns the intensity value of the gold standard im-
age for a certain heart phase, and fT (x, s) the motion-compensated or standard FDK
reconstructed image. The error as well as image quality metric were evaluated in a
manually defined region of interest (ROI) around the ventricle. An example of the
ROI is illustrated in Figure 3.6b.

• Normalized Root Mean Square Error (nRMSE). The nRMSE was used
to quantify the 3-D reconstruction error of the motion-compensated reconstruc-
tions or standard FDK reconstructions compared to the gold standard FDK of
the static phantom. The nRMSE can be computed as follows

nRMSEφk = ζ ·
√√√√ 1
|Ω|

∑
x∈Ω

(fGS,φk(x)− fT (x, s)) 2, with (3.19)

ζ = 1
max x∈Ω (fGS,φk(x))−minx∈Ω (fGS,φk(x)) , (3.20)

where |Ω| denotes the number of voxels inside the region of interest (ROI). All
results were averaged over the heart phases, resulting in the overall nRMSE.

• Universal Quality Index (UQI). The 3-D image quality was evaluated with
the universal image quality index (UQI) [Wang 02]. The UQI ranges from −1
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to 1, where 1 is the best value achieved when fGS,φk(x, s) = fT (x, s) for all x .
The UQI is defined as

UQIφk =
4 · σffGS · fT · fGS,φk(

σ2
f + σ2

fGS

) [
(fT )2 + (fGS,φk)2

] , (3.21)

where fT , fGS,φk represent the mean values, σ2
f , σ

2
fGS

the variances, and σffGS

the cross correlation inside the ROI Ω. For the overall UQI, all results were
averaged over the heart phases φk.

Dice Similarity (DSC) Coefficient in 2-D Projection Space. In order to com-
pare the reconstruction quality of the motion-compensated reconstruction algorithm,
maximum intensity forward projections (MIPs) of the compensated LVs were gener-
ated. Binary mask images BFW(i, φk) were created from the MIPs by thresholding,
such that only the left ventricle is visible. A value equal to zero defines background
and a non-zero value defines the ventricle shape. These binary images were compared
to the segmented and binarized 2-D projections from which the original surface model
and the MVF were built, denoted as BGS(i, φk). The overlap of the binarized images
and the segmented 2-D projections was analyzed with the Dice similarity coefficient
(DSC) [Zou 04]. The DSC is defined in the range of [0, 1], where 0 means no overlap
and 1 defines a perfect match between the two compared images. All results were
averaged over the according projection images and the heart phases φk, resulting in
the overall Dice coefficient. The DSC is defined as

DSC = 1
KN

K∑
k=1

N∑
i=1

∑
i∈φk

2 · |BFW(i, φk) · BGS(i, φk)|
|BFW(i, φk)|+ |BGS(i, φk)|

, (3.22)

with K denoting the number of heart phases and N the number of projection images.

Mean Contour Deviation ε in 2-D Projection Space. Since the motion-
compensated reconstruction mainly improves the accuracy of the ventricle contour,
the similarity of the contours was additionally evaluated. The binary contour images
CFW(i, φk) and CGS(i, φk) of the binary masks of the forward projection BFW(i, φk)
and the gold standard projection BGS(i, φk) were extracted. The contour CFW(i, φk)
is extracted by morphological operations from BFW(i, φk). The contour CGS(i, φk)
is given by the 2-D bloodpool segmentation, see Section 3.3.2. In Figure 3.7a the
boundary CGS(i, φk) of the left ventricle is illustrated, which is used as gold standard.
Figure 3.7b shows a binary contour image CFW(i, φk).

A distance transform Φ(CFW(i, φk)) of the binary contour images CFW(i, φk) is
defined by computing the Euclidean distance of every pixel to the contour CFW(i, φk).
An example of a distance transformed image Φ(CFW(i, φk)) is shown in Figure 3.7c.
An overlay of CGS(i, φk) and Φ(CFW(i, φk)) is shown in Figure 3.7d.

The distance transformed image is sampled only at the indices where CGS(i, φk)
is non-zero

εC(φk) = 1
Nc

∑
i∈φk

Nc∑
n=1

Φ(CFW(i, φk))n, (3.23)
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(a) (b)

(c) (d)

Figure 3.7: Different contour projection images for quantitative evaluation of the mean
contour deviation in 2-D projection space. (a) Gold standard segmentation of the ventricle
bloodpool in 2-D. (b) Extracted contour CFW(i, φk) of the MIP projection image. (c)
Euclidean distance transformed image Φ(CFW(i, φk)). Dark color represents smaller distance
and lighter color a larger contour distance. (d) Euclidean distance transformed image
Φ(CFW(i, φk)) overlaid with the contour CGS(i, φk). For the computation of εC(φk) only the
underlying values of Φ(CFW(i, φk)) are used.
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where Nc denotes the number of pixels where CGS(i, φk) is non-zero. All results were
averaged over the heart phases, resulting in the overall mean contour deviation ε

εC =
K∑
k=1

εC(φk), (3.24)

where a small εC denotes similar contours over all heart phases.

3.5.1.3 Experimental Results

In this section, the quantitative results are presented for the five different datasets of
the motion estimation and compensation approach.

Phantom Data. The quantitative 3-D results of the dynamic phantom model are
presented in Table 3.2. The smallest nRMSE is obtained by the TPS and Shepard’s
method. The smoothed weighting function has a slightly larger error. The UQI for
all motion-compensated reconstructions results in values around 99%. In Table 3.3,
the Dice and the contour deviation εC in 2-D projection space for the phantom’s
left ventricle are reported. The TPS approach shows slightly superior, Shepard’s
method and the smoothed weighting function show equivalently good results. The
contour deviation εC of the TPS improved by about 1.91 pixels which corresponds to
1.18mm compared to the standard FDK. The standard deviation is also much smaller
with the TPS compared to the standard reconstruction. The Dice coefficient is not
very sensitive and shows similar results between all interpolation methods as well as
for the FDK reconstruction. In Figure 3.8, the results of the motion-compensated
reconstructions of the phantom left ventricle using different interpolation methods
are illustrated. There are minor visible differences in the endocardium border. All
interpolation methods show deformation artifacts outside the region of interest, cf.
Section 3.3.6.

Porcine Data. In Table 3.4, the results for the porcine left ventricle are reported.
It can be seen that the best motion-compensated reconstruction can be achieved
with the TPS interpolation method. The mean contour deviation εC improved by
about 0.97 pixels, which corresponds to 0.60mm compared to the standard FDK
reconstructions. The improvement is relatively small due to the fact that the pig
had a poor ejection fraction of about 46% and only small motion. In Figure 3.9,
the results of different reconstructions, including the TPS reconstruction results of
the porcine left ventricle are illustrated. The standard reconstruction in Figure 3.9a
exhibits blurring around the LV. In Figure 3.9b, it can be observed that the ECG-
gated reconstruction lacks LV structure and suffers from artifacts from the pigtail
catheter. In comparison, the motion-compensated reconstruction shows an expansion
in diastole and contraction in systole of the LV, see Figures 3.9c and 3.9d, respectively.

Clinical Data. In Table 3.5, the results for the human left ventricles are listed.
The best motion-compensated reconstructions are clearly performed with the TPS
for all three cases. The respective contour deviation εC improved by about 8.45 pixels
corresponding to 1.52mm, about 4.32 pixels corresponding to 1.34mm and about
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Phantom p0 nRMSE UQI [%]

TPS 0.047 ± 0.004 98.5 ± 0.3

Shepard 0.047 ± 0.004 98.9 ± 0.2

Smoothed Weighting Fct. 0.048 ± 0.004 98.8 ± 0.2

Simple Averaging 0.050 ± 0.006 98.7 ± 0.2

Standard FDK 0.080 ± 0.019 96.2 ± 1.6

Table 3.2: The nRMSE and the UQI of the dynamic phantom model p0. Expressed as
mean value ± standard deviation. The best values are marked in bold.

Phantom p0 Dice [pixel] εC [pixel] εC [mm]

TPS 0.96 ± 0.02 2.75 ± 0.43 1.71 ± 0.27

Shepard 0.95 ± 0.02 3.33 ± 0.31 2.06 ± 0.20

Smoothed Weighting Fct. 0.95 ± 0.02 3.33 ± 0.27 2.06 ± 0.17

Simple Averaging 0.94 ± 0.02 3.64 ± 0.33 2.26 ± 0.20

Standard FDK 0.94 ± 0.03 4.56 ± 1.91 2.89 ± 1.18

Table 3.3: Dice coefficient and mean contour deviation εC for the left ventricle of the
phantom dataset p0. Expressed as mean value ± standard deviation. The best values are
marked in bold.

5.00 pixels corresponding to 1.55mm compared to the standard FDK. The standard
deviation is also much smaller with the TPS compared to the standard reconstruc-
tions. The widely used Shepard’s method and the smoothed weighting function pro-
vides slightly inferior results compared to the TPS. The Dice coefficient shows similar
results between all interpolation methods as well as for the FDK reconstruction, thus
it is less sensitive compared to the contour deviation.

The standard reconstruction of case h1 in Figure 3.10a exhibits blurring around
the LV. In Figure 3.10b, it can be observed that the ECG-gated reconstruction lacks
LV structure and suffers from artifacts. In comparison, the motion-compensated
reconstruction using the TPS interpolation shows an expansion in diastole and con-
traction in systole of the LV, see Figures 3.10c and 3.10d, respectively. In Figure 3.11
the results of different interpolation schemes of the human left ventricle h1 are illus-
trated. The motion-compensated reconstructions all show an expansion of the left
ventricle, but slightly different shapes. The TPS reconstruction is closest to reality
according to the quality measure εC.
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Porcine ppor Dice [pixel] εC [pixel] εC [mm]

TPS 0.92 ± 0.01 3.67 ± 0.18 2.28 ± 0.11

Shepard 0.92 ± 0.01 3.88 ± 0.19 2.39 ± 0.12

Smoothed Weighting Fct. 0.92 ± 0.01 4.50 ± 0.39 2.77 ± 0.24

Simple Averaging 0.92 ± 0.01 4.05 ± 0.20 2.51 ± 0.12

Standard FDK 0.90 ± 0.02 4.64 ± 0.49 2.88 ± 0.30

Table 3.4: Dice coefficient and mean contour deviation εC for the left ventricle of the porcine
dataset ppor. Expressed as mean value ± standard deviation. The best values are marked
in bold.

Human h1 Dice [pixel] εC[pixel] εC [mm]

TPS 0.93 ± 0.01 9.15 ± 1.22 1.65 ± 0.22

Shepard 0.91 ± 0.02 10.29 ± 2.07 1.85 ± 0.33

Smoothed Weighting Fct. 0.91 ± 0.02 10.92 ± 3.02 1.97 ± 0.54

Simple Averaging 0.91 ± 0.03 11.74 ± 2.81 2.11 ± 0.51

Standard FDK 0.88 ± 0.03 17.60 ± 10.0 3.17 ± 1.80

Human h2 Dice [pixel] ε[pixel] ε [mm]

TPS 0.93 ± 0.01 6.70 ± 0.74 2.08 ± 0.23

Shepard 0.93 ± 0.02 6.99 ± 1.37 2.17 ± 0.42

Smoothed Weighting Fct. 0.93 ± 0.02 7.17 ± 1.43 2.22 ± 0.44

Simple Averaging 0.93 ± 0.02 7.40 ± 1.98 2.29 ± 0.61

Standard FDK 0.89 ± 0.06 11.02 ± 5.80 3.42 ± 1.80

Human h3 Dice [pixel] ε[pixel] ε [mm]

TPS 0.88 ± 0.02 8.64 ± 0.98 2.68 ± 0.30

Shepard 0.85 ± 0.03 12.13 ± 1.93 3.76 ± 0.60

Smoothed Weighting Fct. 0.85 ± 0.03 12.10 ± 1.88 3.75 ± 0.58

Simple Averaging 0.85 ± 0.03 12.38 ± 2.05 3.84 ± 1.19

Standard FDK 0.83 ± 0.06 13.64 ± 5.81 4.23 ± 1.80

Table 3.5: Dice coefficient and mean contour deviation εC for the left ventricle of the human
datasets h1–h3. Expressed as mean value ± standard deviation. The best values are marked
in bold.
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(a) TPS (b) Shepard’s method

(c) Smoothed weighting function (d) Simple averaging

Figure 3.8: Detail of an axial slice of the motion-compensated reconstruction images of
the phantom left ventricle p0 at a heart phase of about 40% using different interpolation
methods (W 1900HU, C 466HU, slice thickness 1mm).
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(a) Standard FDK reconstruction using all
projection images.

(b) ECG-gated reconstruction for end-
systolic heart phase (5 views).

(c) Motion-compensated reconstruction for
end-systolic heart phase (relative heart
phase of about 30 %).

(d) Motion-compensated reconstruction for
end-diastolic heart phase (relative heart
phase of about 95%).

Figure 3.9: Every image shows multi-planar reconstruction images (long axis view top
left and right, short axis view bottom left) and volume rendering (bottom right) of the
reconstruction results of the porcine left ventricle (W 1260 HU, C 1075 HU, slice thickness
0.85mm). The ECG-gated reconstruction was windowed to be visually comparable. The
image data was provided by Assoc. Prof. Rebecca Fahrig, Ph.D., RSL, Department of
Radiology, Stanford University.
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(a) Standard FDK reconstruction using all
projection images.

(b) ECG-gated reconstruction for end-
systolic heart phase (5 views).

(c) Motion-compensated reconstruction for
end-systolic heart phase (relative heart
phase of about 20%).

(d) Motion-compensated reconstruction for
end-diastolic heart phase (relative heart
phase of about 70 %).

Figure 3.10: Every image shows multi-planar reconstruction images (long axis view top
left and right, short axis view bottom left) and volume rendering (bottom right) of the
reconstruction results of the human left ventricle h1 with the TPS interpolation (W 3000
HU, C 1200 HU, slice thickness 3.0mm). The ECG-gated reconstruction was windowed
to be visually comparable. The image data was provided by Dr. med. Schultz from the
Thoraxcenter, Erasmus MC Rotterdam, The Netherlands.
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(a) TPS (b) Shepard’s method

(c) Smoothed weighting function (d) Simple averaging

Figure 3.11: Coronal slice of the reconstruction images (long axis view) of the motion-
compensated reconstruction results of the human left ventricle h1 and an end-diastolic
heart phase of about 70% (W 3000 HU, C 1200 HU, slice thickness 3.0mm). The image
data was provided by Dr. med. Schultz from the Thoraxcenter, Erasmus MC Rotterdam,
The Netherlands.
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3.5.2 Wall Motion Analysis
In this section, the wall motion parameters presented in Section 3.4 are computed and
analyzed on specifically designed phantom and clinical patient data. Furthermore, the
individual steps of the surface model generation and the influence on the wall motion
parameters is evaluated in more detail on the phantom datasets. The analysis is
done with respect to the sensitivity of the size variation of the left ventricle and the
perspective change of the rotating C-arm system.

3.5.2.1 Datasets

In order to evaluate if the parameters presented in Section 3.4 are clinical significant,
different phantoms were created with different pathological defects. The analysis
framework was tested on eight clinical datasets without any clinical indication. Two
of the clinical datasets (h2 and h3) were already used for the evaluation of the motion
estimation and compensation approach in Section 3.5.1.

Ventricular Phantoms. The analysis presented here has been applied to specif-
ically designed LV surface models generated from a cardiac phantom [Maie 12,
Mlle 13b, Maie 13], which is similarly designed to the widely used 4-D XCAT phan-
tom [Sega 08]. The phantom is defined by cubic B-splines and can be tessellated to
generate a triangulated mesh for every time point. The splines can be sampled at
any number of points. In our experiments, we sampled the spline at about about 870
surface points. The simulated acquisition protocol uses a total of 133 projection im-
ages with a size of 1240 × 960 pixels and a pixel resolution of 0.3mm. The dynamic
LV surface models were simulated over 5 s at a heart rate of 60 bpm. Five different
surface phantoms were generated with various contraction dynamics and considered
as ground truth (GT), denoted as p1,GT–p5,GT. For the evaluation of the phantom
data, dynamic phantom meshes were generated as described in Sections 3.3.1 to 3.3.4.
The meshes had Pc= 545 control points uniformly distributed over the left ventricle
and are denoted as p1–p5. The 2-D segmentation of the phantom data cannot be used
to validate the bloodpool segmentation since the segmentation of clinical LV acquisi-
tions and the segmentation of phantom simulations are not comparable. Therefore,
the GT 2-D segmentation of the left ventricles were used to generate the dynamic LV
meshes.

Modeling of Pathological Motion Patterns. As mentioned previously, a
cubic B-spline is used to model the 3-D anatomy as well as the motion path [Maie 12].
The simulation of left ventricular phantom datasets is already described in Müller
et al. [Mlle 13b]. For every normalized time point t ∈ [0, 1] of the whole scan, there
exists a 2-D spline surface s(t) ∈ [0, 1]2. The normalized time points t during the
scan are defined by the mapping from the projection index i to

t = i− 1
N − 1 , (3.25)

where N denotes the number of projection images. Each spline is defined by control
points c ∈ R2 with a one-to-one mapping from 3-D coordinates C ∈ R3 to the 2-D
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control points c given by the 4-D XCAT phantom [Sega 99, Sega 08]. In order to
incorporate a motion defect, a region in which the motion is pathological has to be
defined. Here, a box B is defined located at the lateral wall, within the coordinate
system of the heart, i.e. a local coordinate system where the z-axis is aligned with the
principal axis of the heart. Each spline control point C is clipped against the volume
B, generating a list Cpath of control points inside the pathological volume, where the
complete set of all control points is denoted as C. During the tessellation procedure
T (s) : R2 → R3, the 2-D spline surface points s are assigned to a 3-D coordinate
x(t) = T (s). This is done for each normalized time point t of the whole scan. In
order to allow for a smoother transition between B and the healthy LV surface, a
flexibility parameter σ is introduced. A larger value of σ results in a smooth defect,
while a small value yields sharp transitions between pathological and normal tissue.
The model incorporates two kinds of motion defects: akinetic and dyskinetic wall
motion. The akinetic motion defect prevents contraction or inward motion of the
heart in the affected area. A delayed motion is a contradictory movement of the
heart. The motion defects can be controlled by a phase shift parameter δ ∈ [0, 1].
The deformed 3-D coordinate can then be computed as

xpath(t) = (1− wG(s(t))) · T (s(t)) + wG(s(t)) · T (s(t− δ)), (3.26)

wG(s) =
∑

c∈Cpath w
′
G(s, c)∑

c∈C w
′
G(s, c) , (3.27)

w′G(s, c) = e−
1

2σ2 ||s−c||22 . (3.28)

The Gaussian basis function w′G(s, c) gives a small weight to control points far away
from the current spline surface point s and a higher weight to close control points.
Effectively, xpath(t) is a linear combination between the transformed spline point s
at the current time t and at a time point t − δ. An akinetic motion defect can
be realized by setting δ = t − t0. In our experiments, we set t0 = 0. Hence, the
magnitude of the motion in the pathological volume is minimal compared to the
motion of the remaining LV. A dyskinetic defect models a shift in the motion phase.
This is achieved by setting δ to a fixed value, given as percentage of the heart cycle.
Consequently, xpath(t) is generated from the transformed spline points at the current
time and at an earlier time with a fixed phase shift. As a result, the motion in the
pathological volume is delayed compared to the motion of the remaining LV.

Five different phantom datasets were simulated. The LV surface model p1 exhibits
normal dynamics, three LVs suffered from a temporal contraction shift on the lateral
wall of 10% (p2, δ = 0.1, σ = 0.1), 20% (p3, δ = 0.2, σ = 0.1) and 30% (p4, δ = 0.3,
σ = 0.1) relative to the heart cycle. Another LV (p5, σ = 0.05) had an induced wall
defect on the lateral LV wall, i.e. no movement at the lateral wall. All LV surface
meshes and defined parameters are publicly available for download3. In Figure 3.12,
the phantom meshes for p1,GT , p5,GT and p1 are illustrated for both end-diastolic and
end-systolic phases.

The 3-D volumes of the different GT phantoms are plotted in Figure 3.13. The
different contraction shifts as well as the wall motion defect are clearly visible in the
curves. A more detailed analysis of the volume curves of the affected segments is

3http://conrad.stanford.edu/data/heart

http://conrad.stanford.edu/data/heart
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(a) (b) (c)

Figure 3.12: Wall motion of the LV surface models at end-diastole (transparent) and the
solid surface representing the surface mesh at end-systole. (a) Anterior view of the phantom
surfaces p1,GT with normal contraction behavior and in (b) of the phantom surface p5,GT
with the lateral wall defect. (c) Anterior view of the estimated surfaces p1.

given in Table 3.6. For the affected segments (segments 5, 6, 11, 12 and 16) the mean
phase of maximal contraction φs,max is computed. The phase shift for every phantom
is given as δ̃ and the relation to the parameter δ is denoted as εδ. The motion of the
surface points is influenced by the Gaussian function and the flexibility parameter σ,
thus, the phase shift or akinesis is not constant over the pathological region. Hence,
the maximal phase shift (max δ̃) and its relation to the parameter δ is also given in
Table 3.6.

In Table 3.7, the motion parameters for the different GT phantom datasets are
given (p1,GT–p5,GT). It can be seen that the normal phantom has an SDI of 4.16%
which is in the upper normal range. In Figure 3.14a, the Hammer map of φc,max of

Figure 3.13: 3-D LV volume curves of the different phantoms (p1,GT–p5,GT).
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Dataset φs,max for affected segments δ̃ εδ to param. δ max δ̃ εδ to param. δ

p1,GT 0.52 ± 0.00 - - - -

p2,GT 0.60 ± 0.02 0.08 0.02 0.11 0.01

p3,GT 0.67 ± 0.03 0.15 0.05 0.18 0.02

p4,GT 0.79 ± 0.02 0.27 0.03 0.29 0.01

p5,GT n.a. n.a. n.a. n.a. n.a.

Table 3.6: Contraction times of affected segments φs,max, resulting phase shifts (δ̃), the
relation of δ̃ to the parameter δ denoted as εδ are given. The maximal phase shift (max δ̃)
is also given for the phantom GT datasets.

Dataset phase shift HR [bpm] EF [%] SDI [%]

p1,GT 0% [lateral] 60 62.37 4.16

p2,GT 10% [lateral] 60 62.97 5.22

p3,GT 20% [lateral] 60 60.40 6.47

p4,GT 30% [lateral] 60 53.65 12.74

p5,GT 0% [defect lateral] 60 38.70 5.05

Table 3.7: Heart rate (HR), ejection fraction (EF), and the systolic dyssynchrony index
(SDI) of the GT phantom datasets.
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(a) (b) (c)

(d) (e)

Figure 3.14: Ground truth Hammer map of φc,max of the phantom dataset with (a) normal,
synchronous LV contraction (p1,GT), (b) relative phase shift of 10% on lateral wall (p2,GT),
(c) relative phase shift of 20% on lateral wall (p3,GT), (d) relative phase shift of 30% on
lateral wall (p4,GT) and (e) lateral wall defect (p5,GT).

p1,GT is illustrated. It can be seen that the phase to maximal contraction is uniformly
distributed over the LV. The 3DFSc Hammer map is given in Figure 3.15a. On the
lateral wall of p1,GT, the 3DFSi is about 0.4. In comparison, p3,GT and p4,GT with the
induced lateral phase shift are classified to have a mild or even severe dysfunction
with an SDI ≥ 6.0% [Sach 11]. The phantom p2,GT has a small phase shift and,
hence, only a slightly increased SDI value. In Figures 3.14b through 3.14d, the
Hammer maps of φc,max of (p2,GT–p4,GT) are illustrated. The increase in the phase to
maximal contraction is visible on the lateral wall. The 3DFSc decreases compared
to p1,GT, cf. Figures 3.15b through 3.15d. It can be seen that the phase shifts affect
the whole ventricle since the time point of the end-diastole and end-systole differs
compared to p1,GT. From Figure 3.13, it can be observed that the systolic phase is
shifted towards the end of one cardiac cycle, therefore, the “normal/healthy” wall
part is measured too early and the “impaired” wall motion is measured too late. For
phantom p5,GT, the defect on the lateral wall is visible in the Hammer maps at the
lateral wall, cf. Figure 3.14e and Figure 3.15e. The 3DFSc drops to about 0.0 at
the lateral wall for the wall defect. The small EF of about 39% is additionally an
indicator for a wall dysfunction. The SDI shows no abnormal behavior due to its
dependence on averaged volumetric information inside the individual segments. The
affected segments still contract slightly and show a contraction φs,max. However, the
Hammer map of φc,max identifies the wall motion defect.

Clinical Data. Patient datasets were acquired on an Artis zee and Artis zeego
C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany) at two clinical
sites (Universitätsklinikum Erlangen, Germany and at the Thoraxcenter, Erasmus
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(a) (b) (c)

(d) (e)

Figure 3.15: Ground truth Hammer map of 3DFSc of the phantom dataset with (a) normal,
synchronous LV contraction (p1,GT), (b) relative phase shift of 10% on lateral wall (p2,GT),
(c) relative phase shift of 20% on lateral wall (p3,GT), (d) relative phase shift of 30% on
lateral wall (p4,GT) and (e) lateral wall defect (p5,GT).

MC Rotterdam, the Netherlands). The acquisition protocol is based on the descrip-
tion in Section 3.2. Two different protocols were used: the first protocol with a
number of 133 projection images at a frame rate of 30 fps with a size of 960 × 960
pixels and a pixel resolution of 0.31mm over 200° and an angular increment of 1.5°/f.
The source-to-detector distance was 120 cm and the source-to-isocenter was 78 cm,
resulting in a resolution of 0.2mm in the isocenter. The contrast agent was adminis-
tered with 15ml/s over 5 s scan time and 1 s X-ray delay. The second protocol with
a number of 248 projection images with a frame rate of 60 fps with a size of 480 ×
480 pixels with a pixel resolution of 0.6mm over 200° and an angular increment of
0.8°/f. The source-to-detector distance was 120 cm and the source-to-isocenter was
78 cm, resulting in a resolution of 0.4mm in the isocenter. Here, the contrast agent
was also administered directly into the left ventricle at 10ml/s over 5 s scan time
also with an X-ray delay of 1 s. The generated surface models consisted of a different
number of heart phases K = 26.5 ± 6.70 dependent on the frames per cardiac cycle
and hence the patient’s heart rate. In general, the number of heart phases needs to
be smaller than the number of images per heart cycle. In the experiments, not less
than 5 projection images were used for the reconstruction of each heart phase. The
surface meshes consist of 609 points equally distributed over the left ventricle and the
outflow tract, and Pc = 545 control points define the left ventricle. The examining
cardiologists diagnosed no pathological LV dynamics on all eight patient datasets.
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Dataset εp [mm]

p1 1.11 ± 0.18

p2 2.12 ± 1.18

p3 1.25 ± 0.30

p4 1.31 ± 0.29

p5 1.21 ± 0.25

Mean 1.40 ± 0.41

Table 3.8: Mean point-to-mesh error εp with ± standard deviation for the five different
phantom datasets averaged over all mesh points and all time steps .

3.5.2.2 Experimental Results

In this section, the results for the generated phantom datasets and the clinical
datasets are presented.

Phantom Data. For the phantom data, the accuracy of the individual steps to
generate the surface meshes are evaluated. Furthermore, the computed wall motion
parameters are compared to the ground truth parameters.

Mesh Error Analysis. In Table 3.8, an average point-to-mesh error εp is used
for measuring the difference between the estimated meshes (p1–p5) and the ground
truth meshes (p1,GT–p5,GT) over all time points. A final point-to-mesh error of 1.40
± 0.41mm over all phantom datasets is achieved. It can be seen that the phase shift
of 10% of p2 results in the highest deviation. A reason for this may be that the small
deviation in the lateral wall is not visible in a large number of 2-D projection images
which are used to built the dynamic model. Overall, when setting the point-to-mesh
error in relation to the ventricle size, defined as twice the distance to the long axis,
the percentage error is about 3%. A small mismatch between the estimated meshes
p1–p5 and the ground truth p1,GT–p5,GT is due to the smoother appearance and the
different mesh topology of the generated meshes, cf. Figure 3.12.

Heart Phase Identification Analysis. In order to evaluate the accuracy of
the heart phase identification using the 2-D bloodpool segmentation, the five phantom
datasets are used. In Table 3.9, the error between the ground truth heart phase of p1–
p5 and the estimated heart phases is given. For the phantom experiments a number
of K = 27 bins was chosen. The mean error is denoted with εφ given in relative
heart phases between [0, 1]. The overall mean error εφ of all phantom datasets is
0.06 ± 0.02. Furthermore, the mean error εφk of the binned heart phase is also given.
The overall mean εφk is less than one heart phase bin and results in 0.78 ± 0.28. A
scatter plot of the ground truth heart phase number and the estimated heart phase
is illustrated in Figure 3.16a. A small number of outliers can be seen of maximum 2
bins at diastolic heart phases. The small mismatch may be due to the longer lasting
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Dataset K εφ εφk %π %πn

p1 27 0.06 ± 0.16 0.60 ± 0.59 0.82 0.99

p2 27 0.05 ± 0.14 0.51 ± 0.60 0.80 0.99

p3 27 0.04 ± 0.14 0.74 ± 0.79 0.74 0.98

p4 27 0.07 ± 0.16 1.24 ± 1.26 0.67 0.94

p5 27 0.08 ± 0.18 0.80 ± 0.78 0.69 0.99

Mean 27 0.06 ± 0.02 0.78 ± 0.28 0.74 ± 0.07 0.98 ± 0.02

Table 3.9: Accuracy and correlation of the heart phase identification for the phantom
datasets. The mean relative heart phase error εφ and the mean error of the binned heart
phase εφk are shown. The correlation coefficients between the original segmented 2-D
bloodpool signal π(i) and the 3-D volume Π(i) are given as %π. The correlation coefficients
between the normalized 2-D bloodpool signal πn(i) and Π(i) are given as %πn .

(a) (b)

Figure 3.16: (a) Correlation between heart phases identified by 2-D bloodpool size and the
ground truth heart phase of phantom p1. (b) 3-D volume signal Π(i), the 2-D segmented
bloodpool signal π(i) and the normalized bloodpool signal πn(i) of phantom dataset p1.

diastole where the 3-D volume is almost constant and hence the detection of the ED
phase can vary slightly.

In order to evaluate if the bloodpool size variation due to cardiac phase variation
can be distinguished from perspective size variations due to the rotation of the C-arm,
a correlation coefficient %π between the original segmented 2-D bloodpool signal π(i)
and the 3-D volume signal Π(i) is computed. The mean correlation %π for all five
phantom datasets is 0.74 ± 0.07. However, in order to identify the respective heart
phase, the bloodpool signal is normalized as described in Section 3.3.3. Therefore,
the correlation coefficient %πn is also given for the normalized bloodpool signal πn(i)
and the 3-D volume signal Π(i). Here, the mean correlation coefficient results in 0.98
± 0.02 for p1–p5. Thus, the change in the bloodpool size due to the cardiac phase
can be distinguished from the perspective size variations due to the normalization
step. The bloodpool signal π(i), the normalized bloodpool πn(i) and the 3-D volume
signal Π(i) of phantom p1 are illustrated in Figure 3.16b.
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Dataset φs,max for affected segments φs,max error to GT max δ̃ error to GT

p1 0.45 ± 0.03 0.07 0.02

p2 0.48 ± 0.03 0.12 0.13

p3 0.58 ± 0.03 0.09 0.08

p4 0.70 ± 0.05 0.09 0.04

p5 n.a. n.a. n.a.

Mean 0.09 ± 0.02 0.07 ± 0.05

Table 3.10: Contraction times of affected segments φs,max, the error compared to the GT
φs,max given in Table 3.6 and the error between the maximal phase shifts (max δ̃).

Motion Analysis. In Table 3.10, the quantitative results for the estimated
phase shifts of (p1–p5) are given. The deviation between (p1–p5) and (p1,GT–p5,GT) is
stated in column three. The overall deviation of the mean phase shift is about 9%
of a cardiac cycle and for the maximal phase shift about 7% of a cardiac cycle.

The results for the motion analysis parameter for the phantom meshes compared
to the GT meshes are given in Table 3.11. In general it can be seen that the estimated
meshes underestimate the EF and the SDI values in most datasets. However, the
tendency between the estimated and the ground truth values are similar and show
the same noticeable pathologies as the GT values. In Figure 3.17, the Hammer maps
with φc,max for p1–p5 are shown. For dataset p1, the Hammer map (Figure 3.17a)
shows a homogeneous distribution as in the GT map of p1,GT in Figure 3.14a. For
p2–p4, the increase of the motion deficit is visible on the lateral wall. For p2 and p3
a smaller band on the lateral wall is delayed compared to the GT LV meshes. The
phantom p3 with 30% phase shift in Figure 3.17d shows a high correlation with the
GT Hammer map in Figure 3.14d. For the phantom with the lateral wall defect,
a reduction of the motionless band can be identified. A small overshoot is visible
close to the lateral wall, see Figure 3.14e and Figure 3.17e. The small deviation of
the GT meshes and the estimated meshes are given in the difference φc,max Hammer
maps in Figure 3.18. For p5 the slight overshoots at the lateral wall are visible. The
3DFSc Hammer maps are illustrated in Figure 3.19. In Figure 3.20, the corresponding
difference maps are given. They show that the highest deviation between the meshes
occurs around the apex region.

Clinical Data The clinical data was evaluated with respect to motion analysis
parameter.

Motion Analysis. The results for the eight patient datasets are given in Ta-
ble 3.12 (h2–h9). It can be observed that all patients are classified as healthy using the
SDI according to [Kape 05, Sach 11]. An example of the surface meshes of dataset h8 is
shown in Figure 3.21a and the dynamic contraction curves for each segment’s subvol-
ume for dataset h8 are shown in Figure 3.21b. All segments contract synchronously,
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Dataset EF [%] σ to GT SDI [%] σ to GT

p1 62.39 0.02 3.68 -0.61

p2 59.63 -3.34 3.50 -1.72

p3 54.11 -6.29 5.08 -1.39

p4 49.16 -4.49 9.42 -3.32

p5 41.49 2.79 6.16 1.11

Mean 3.39 ± 2.31 1.60 ± 1.03

Table 3.11: Ejection fraction (EF) and systolic dyssynchrony index (SDI) of the phantom
datasets and the deviation σ to the ground truth phantom datasets.

(a) (b) (c)

(d) (e)

Figure 3.17: Estimated Hammer map of φc,max of the phantom dataset with (a) normal,
synchronous LV contraction (p1), (b) relative phase shift of 10% on lateral wall (p2), (c)
relative phase shift of 20% on lateral wall (p3), (d) relative phase shift of 30% on lateral
wall (p4) and (e) lateral wall defect (p5).
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(a) (b) (c)

(d) (e)

Figure 3.18: Difference Hammer map of φc,max of the ground truth and the estimated
phantom dataset with (a) normal, synchronous LV contraction (|p1-p1,GT|), (b) relative
phase shift of 10% on lateral wall (|p2-p2,GT|), (c) relative phase shift of 20% on lateral
wall (|p3-p3,GT|), (d) relative phase shift of 30% on lateral wall (|p4-p4,GT|) and (e) lateral
wall defect (|p5-p5,GT|).

(a) (b) (c)

(d) (e)

Figure 3.19: Estimated Hammer map of 3DFSc of the phantom dataset with (a) normal,
synchronous LV contraction (p1), (b) relative phase shift of 10% on lateral wall (p2), (c)
relative phase shift of 20% on lateral wall (p3), (d) relative phase shift of 30% on lateral
wall (p4) and (e) lateral wall defect (p5).
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(a) (b) (c)

(d) (e)

Figure 3.20: Difference Hammer map of 3DFSc of the ground truth and the estimated
phantom dataset with (a) normal, synchronous LV contraction (|p1-p1,GT|), (b) relative
phase shift of 10% on lateral wall (|p2-p2,GT|), (c) relative phase shift of 20% on lateral
wall (|p3-p3,GT|), (d) relative phase shift of 30% on lateral wall (|p4-p4,GT|) and (e) lateral
wall defect (|p5-p5,GT|).

hence, the curves have almost the same φs,max and a small SDI. In Figure 3.22a, φc,max
of dataset h8 is shown. The maximal contraction phase is homogeneously distributed
over the whole LV. Small hypokinetic regions are indicated by mesh points close to
the apex point, as visible in the 3DFSc Hammer map of dataset h8 in Figure 3.22b,
as well as on the 3-D overlay in Figure 3.22c. The motion close to the apex is small
compared to the remaining mesh, hence this area is sensitive to errors introduced
by the 2-D segmentation, position of the points to the principal axis n1 and the
consistency of data from different heart cycles.

Principle Axis Alignment. The PCA does not necessarily yield an axis n1
which passes through the apex, as the LV is not necessarily symmetric. For that
reason the local coordinate system is rotated in order to align n1 with the long axis
given by the mid point of the mitral valve and the apex. These points are detected
by the initial model-based surface mesh fitting on the non-gated C-arm CT volume
[Zhen 08]. During deformation of the initial mesh to fit the 2-D angiographic data,
the topology of the 3-D mesh is preserved, and the apex and mitral valve points
(mitral valve annulus) are consistent over the whole cardiac cycle. The rotation of
the axis n1 to the long axis with the rotation angle ∠rot can be performed accurately.
In Table 3.13, the rotation angles for the clinical datasets are given.
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(a) (b)

Figure 3.21: (a) Anterior view of the estimated LV surface meshes of h8 at end-diastole
(transparent) and the solid surface representing the surface mesh at end-systole. (b) 3-D
LV volume curves for each segment of dataset h8 over the different heart phases.

Heart rate [bpm] EF [%] SV [ml] EDV [ml] ESV [ml] SDI [%]

Human h2 62.9 ± 2.9 58.73 65.14 110.91 45.77 2.88

Human h3 55.3 ± 9.3 62.33 89.07 142.91 53.84 3.42

Human h4 59.9 ± 0.4 72.26 80.49 111.39 30.90 2.08

Human h5 58.3 ± 0.3 50.98 91.57 179.62 88.06 2.85

Human h6 88.6 ± 25.6 70.58 30.12 42.68 12.56 2.48

Human h7 73.4 ± 8.4 63.08 82.36 130.55 48.20 1.22

Human h8 63.9 ± 0.8 50.32 96.42 191.61 95.20 1.79

Human h9 52.7 ± 0.5 56.69 95.89 169.13 73.24 1.79

Table 3.12: Physiological data parameters extracted from the surface models: ejection
fraction (EF), stroke volume (SV), end-diastolic volume (EDV), end-systolic volume (ESV),
systolic dyssynchrony index (SDI) of the clinical patient datasets.

Dataset h2 h3 h4 h5 h6 h7 h8 h9 ∠rot

∠rot [°] 9.14 7.46 6.33 8.37 14.86 17.92 16.54 16.36 12.12 ± 4.73

Table 3.13: Rotation angle variation of the clinical datasets.
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(a) (b) (c)

Figure 3.22: Hammer map of (a) φc,max of dataset h8, (b) 3DFSc of dataset h8 with visible
abnormalities of the LV surface around the apex region. (c) Color overlay of the 3DFSc
onto the endocardial LV surface of dataset h8.

3.6 Challenges
Both, the motion interpolation result and the motion-compensated reconstruction as
well as the wall motion analysis is dependent on the robustness and stability of the
extracted surface model. The surface model extraction method is robust with respect
to higher heart rates up to 100 bpm or even more. The porcine model had a heart
rate of about 100 bpm. However, if the heart beat is quite arrhythmic, the assignment
of the projection images to a certain heart phase becomes ambiguous and thus the
generation of the dynamic surface model is not unique. This problem was minored
by using the 2-D bloodpool as identification of the relative heart phase instead of the
ECG-signal. However, it is still a challenging task, since the 2-D bloodpool can be
similar but the motion state of the heart can be different.

For the wall motion analysis, spatial resolution is limited by the number of pro-
jection images used for the dynamic mesh fitting process. Here, the scan time for
the clinical patient datasets was 5 s, resulting in 5 projections per heart phase with
a heart rate of 60 bpm. By increasing the scan time to 8 s, a total of 8 projection
images might be used to regularize the dynamic LV mesh generation and hence to
increase the spatial resolution, but a longer scan time implies a higher radiation dose
and a higher contrast burden for the patient.

As previously mentioned, the motion close to the apex is small compared to
the remaining mesh, hence this area is sensitive to errors introduced by the 2-D
segmentation. In general, the original LV surface is quite structured due to the
papillary muscles. However, a smooth boundary is extracted from the 2-D projections
for the surface mesh generation, thus, 2-D segmentation errors occur. It is known that
during the surface generation, the assumption of motion along the surface-normal is
reasonable for the middle and basal LV segments, but not good for the LV apex, since
many intersections in the trajectories of mesh points around the apex can occur.
In a first clinical prototype, the motion in the apex could be grayed out for the
visualization in order to avoid misleading the cardiologist. In the future, the issue
can be mitigated by using a learned prior mean motion trajectory from dynamic
cardiac CT sequences [Chen 13c]. Up to now, the evaluation of the presented wall
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motion analysis framework is a feasibility study. The next step in the evaluation of
the framework is a validation of the extracted parameters compared to parameters
estimated from MRI or 3-D echocardiography.

3.7 Summary and Conclusions
In this chapter, a whole framework for left ventricular tomographic reconstruction
and wall motion analysis was presented. Dynamic surface models were generated
from the 2-D X-ray images acquired during a short scan of a C-arm scanner using
the 2-D bloodpool information. The acquisition time was 5 s and the patient had a
normal sinus rhythm. Due to the slow rotation speed of the C-arm, no valuable ret-
rospective ECG-gated reconstructions were possible. The dynamic surface LV model
comprises a sparse motion vector field on the surface, but in order to perform a tomo-
graphic motion-compensated reconstruction, a dense motion vector field is required.
Therefore, the influence of different motion interpolation methods was investigated, a
thin-plate spline, Shepard’s method, a smoothed weighting based approach and sim-
ple averaging were used. The best quantitative results (Dice coefficient, mean contour
deviation) for a phantom, a porcine and three human datasets were achieved using the
TPS interpolation approach. Shepard’s method and the smoothed weighting func-
tion might be a good compromise between computational efficiency and accuracy.
The framework also enables the analysis of the contraction behavior of the LV via
the surface model. Functional parameters known from other modalities were trans-
ferred to the C-arm CT data. The feasibility study on simulated phantom LVs with
pathological defects as well as on eight clinical datasets indicate the capability of the
presented framework. The dynamic surface model together with the color overlay of
the contraction activity in 3-D can provide additional use. The combination of the
wall motion analysis with the motion-compensated reconstruction might be of great
value to the diagnostic of pathological regions in cardiac interventions. In conclu-
sion, this is the first framework which enables LV wall motion analysis directly in the
catheter lab during a cardiac intervention using intra-procedural C-arm CT data.
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In the previous chapter, the focus was on motion-compensated reconstruction of the
left heart ventricle and its wall motion analysis using a surface-based technique. In
this chapter, a different problem is addressed, where two or four chambers shall be
reconstructed. A three-dimensional cardiac motion-compensated reconstruction of
the cardiac chambers is well suited to support the cardiologist during cardiac inter-
ventions, for example to guide radio-frequency ablation procedures to cure patients
suffering from cardiac arrythmias [De B 13b, Wiel 14]. The goal is to develop a mo-
tion estimation and compensation algorithm based on a single sweep scan protocol
without surface models to visualize the cardiac chambers. A longer scan and different
contrast protocols are necessary to visualize a non-sparse object like the heart cham-
bers, cf. Section 2.7. With the new imaging protocol, the quality of the retrospective
ECG-gated reconstructions is increased and these volumes provide the possibility to
use them as basis for cardiac motion estimation. Here, three different volume-based
cardiac motion estimation approaches are presented utilizing multi-dimensional image
registration techniques.

At the beginning of this chapter, the clinical motivation and background is pre-
sented in Section 4.1. In Section 4.2, the used single rotation acquisition of the C-arm
system and the used contrast protocol are explained in more detail. The three mo-
tion estimation approaches using 3-D/(3+N)-D image registration are presented in

75
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Section 4.3. The estimated cardiac motion is then used for a motion-compensated
reconstruction using all acquired projection images. In order to compare the different
motion estimation techniques, their computational complexity is analysed in Section
4.4. The implementation details and the parameter settings of the experiments for
the methods are given in Section 4.5. In Section 4.6, the evaluation strategy for the
different datasets is explained and the reconstruction results are presented. In Sec-
tion 4.7, the preliminary results on a first clinical patient dataset are shown. Section
4.8 explains the challenges and limitations of the presented approaches in clinical
practice. The whole chapter ends with a short summary and conclusions in Section
4.9.

Parts of this work have already been published in Müller et al. [Mlle 12a, Mlle 13d,
Mlle 14a, Mlle 14b].

4.1 Motivation and Clinical Applications
Most catheter-based cardiac interventions are monitored using fluoroscopic images
provided by a flexible angiographic C-arm system. In order to guide the cardiologist in
some procedures, pre-interventional acquired US or MRI data are overlayed onto the
2-D acquired X-ray images [Ma 12]. Additionally, C-arm systems provide the ability
to perform 3-D imaging. The three-dimensional reconstruction can be overlayed
on the interventional 2-D projection images to provide additional support to the
cardiologist [Hett 10, Bros 12] directly in the catheter lab without the need for another
CT or MRI scan.

In John et al. [John 10], the 3-D reconstruction of the aortic root is used for
guidance of a transcatheter aortic valve implantation (TAVI) by overlaying the 3-D
reconstruction onto the fluoroscopic images during the deployment of the prosthesis
and to measure critical anatomical parameters in 3-D image space. However, this
approach is limited to reconstruct the aortic root and cannot visualize the ventricular
outflow tract (non-circular aortic annulus), which is also of clinical interest for TAVI
procedures [Schu 13].

Up to now, pre-operative four-dimensional echocardiographic volumes are used
for wall motion analysis for cardiac resynchronization therapy (CRT) procedures in
order to find the optimal lead position [Drin 13]. The incorporation of dynamics
allows to visualize new characteristics of a patient’s heart. The 3-D C-arm CT recon-
struction of the coronary sinus is overlayed onto the 2-D fluoroscopic images and on
the 4-D echocardiographic volumes. The multi-modal image fusion is used to identify
coronary sinus branches close to the area of the latest mechanical activation in order
to place the pacemaker electrode. Three-dimensional C-arm reconstructions of the
whole cardiac chambers in various heart states directly in the catheter lab would
provide valuable information for the cardiologist, e.g., during CRT procedures. The
application of 3-D dynamic echocardiography is not widely spread during all car-
diac procedures and C-arm CT imaging allows for an easier use under sterile clinical
conditions.

In some clinical procedures, e.g., pulmonary vein isolation and pulmonary artery
interventions, standard 3-D reconstructions have proven to be useful, despite the
slight motion blur, since these are relatively static structures [Nlke 10, Schw11]. How-
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ever, 3-D imaging of valvular structures [John 10] or the ventricles using C-arm CT,
is either done by administration of adenosine to slow the heart rate of a patient to
a minimum or even stop it for a short time. Alternatively, rapid pacing is applied
to increase the heart frequency to prevent the heart from a full contraction [Ecto 09]
and to turn the heart beat into a slight jitter. Usually, pacing frequencies of about
220 bpm are used [Daeh 04]. However, this bears a risk of tachycardias and circulatory
collapse during the procedure [Ecto 09].

4.2 Acquisition and Contrast Protocol

The imaging protocol used for imaging two or four heart chambers with one sweep of
the C-arm system uses slow external pacing either in the right atrium or right ventricle
which leads to a controlled but moderate heart beat of the patient. The heart beat
is paced to approximately 130 bpm or less to reduce the risk of tachycardias. The
overall acquisition time is about 14 s capturing 381 projection images with 30 f/s,
and an angular increment of 0.52° degree during one C-arm sweep [De B13b]. The
contrast agent is administered via the pulmonary artery for the two chamber protocol
(left atrium and left ventricle) or in the right atrium or vena cava for four chamber
imaging. The contrast administration starts before the imaging. This patient specific
X-ray delay is determined by a test bolus injection. The time is given by the time
that is required for a full saturation of the heart chambers with contrast agent.
The animal datasets were acquired in a research laboratory at the University of
Leuven, Belgium. The first clinical datasets were provided by the Herz- und Kreislauf
Zentrum, Rotenburg an der Fulda, Germany.

4.3 Cardiac Motion Estimation & Compensation via
Multi-Dimensional Registration

The cardiac imaging protocol described in Section 4.2, provides the possibility to
reconstruct initial volumes for several heart phases from the acquired projection data.
An adequate initial image quality is demanded, which allows for the application of
a deformable image registration technique for cardiac motion estimation. Thus, in
Section 4.3.1, different reconstruction and subsequent enhancement techniques for the
initial images are presented. The different initial reconstructed volumes are used for
multi-dimensional deformable image registration to estimate the cardiac motion. The
different objective functions and optimization techniques for registration are described
in Section 4.3.2. In Section 4.3.3, the final image reconstruction is explained. A
schematic overview of the individual steps is given in Figure 4.1.

4.3.1 Initial 3-D Volume Generation
All initial image reconstructions are based on the retrospective single sweep ECG-
gating as described in Section 2.3.1.
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Initial 3-D Volume Generation

· ECG-gated Filtered Backprojection (FDK)

· Filtered ECG-gated Filtered Backprojection (FFDK)

· ECG-gated Filtered Backprojection with Removed Catheter (cathFDK)

· Filtered ECG-gated Filtered Backprojection with Removed Catheter (cathFFDK)

· Few-view (FV) Reconstruction

Section 

4.3.1

3-D/(3+N)-D Motion Estimation

· 3-D/3-D Deformable Cardiac Registration with Cyclic Motion Constraints (CR-CMC)

· 3-D/4-D Combined Multiple Heart Phase Registration (CMHPR)

· 3-D/3-D Deformable Registration (D-CR)

Section 

4.3.2

Final Image Reconstruction

· Combination of Registered Volumes

· Motion Compensated Reconstruction

Section 

4.3.3

Figure 4.1: Schematic overview of the motion estimation and compensation via
3-D/(3+N)-D registration.
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(a) (b)

Figure 4.2: Example of ECG-gated FDK reconstructions of a porcine model from about
32 projection images at a relative heart phase of (a) 20% and (b) 80%. The image data
was provided by Prof. Dr. Heidbüchel and Dr. De Buck from the University of Leuven,
Belgium.

4.3.1.1 ECG-gated Filtered Backprojection Volume Reconstruction (FDK)

For this approach, the projections are ECG-gated and the volumes are reconstructed
with the standard FDK reconstruction algorithm [Feld 84]. The algorithm is ex-
plained in Section 2.3.1 and shortly repeated here.

The function fφk(x, s) returns the reconstructed object at the 3-D position x and
the heart phase φk ∈ {1, . . . , K}, with K denotes a certain number of heart phases
to be reconstructed and the vector s ∈ RKS contains all the parameters for the basis
functions and the motion model parameters. The heart phase φk corresponds to a
relative heart phase of φ ∈ [0, 1]. Hence, due to the long acquisition time of the
C-arm system, different heart phases can be reconstructed with data from one C-arm
rotation by

fφk(x, s) =
N∑
i=1

λ(i, sga) · hFDK (i,x), (4.1)

where N is the number of projection images, λ(i, sga) is the view dependent ECG-
gated weighting function, hFDK(i,x) denotes the i-th redundancy and filtered pro-
jection image, and sga = (φr, w, ϑ)>, cf. Section 2.2.1. For example, if the rotation
duration is 14 s and the patient has a heart rate of 120 bpm-130 bpm, and w → 0
(nearest-neighbor gating and only 1 image per heart cycle), 28 projections per heart
phase are available. Extending the window width w leads to only slightly increased
image quality, since adjacent projections are highly correlated and contain redundant
information [Abba 13]. The resulting ECG-gated FDK images are highly corrupted
by noise and suffer from severe streak artifacts, as can be seen in Figure 4.2.
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4.3.1.2 Filtered ECG-gated Filtered Backprojection Volume Reconstruction
(FFDK)

The FDK volumes are additionally filtered by a 3-D bilateral filter [Toma 98] to reduce
streak artifacts and eliminate noise. The bilateral filtered volume can be expressed
by

fφk,f (x, s) = 1
wp

∑
xv∈Ω

fφk(xv, s) ·

hr(||fφk(xv, s)− fφk(x, s)||2) · hd(||xv − x||2), (4.2)

where Ω defines the region contributing to the filter, and wp is a normalization factor,
according to

wp =
∑

xv∈Ω
hr(||fφk(xv, s)− fφk(x, s)||2) · hd(||xv − x||2). (4.3)

The function hr describes the similarity in the intensity range of the values, and hd
the spatial closeness using Gaussian filters

hr(||fφk(xv, s)− fφk(x, s)||2) = exp(−(fφk(xv, s)− fφk(x, s))2

2σ2
r

), (4.4)

hd(||xv − x||2) = exp(−||xv − x||22
2σ2

d

). (4.5)

σr and σd are the adjustable bilateral filter parameters. The edge-preserving bilateral
filter can be applied due to the high contrast inside the heart chambers relative to
the streak artifacts. However, after filtering, the volumes still exhibit streak artifacts,
e.g., caused by catheters and electrodes, see Figure 4.3.

4.3.1.3 ECG-gated Filtered Backprojection Volume Reconstruction with Re-
moved Catheter (cathFDK)

Both approaches from the previous sections suffer not only from noise and undersam-
pling artifacts, but also from artifacts induced by high-density objects like a pigtail
catheter or a pacing electrode. Therefore, one way of reducing these artifacts is the
removal of these objects from the 2-D projection images. The overall catheter removal
procedure is illustrated in Figure 4.4 and described below.

The high density objects (catheters and pacing electrodes) are identified in the
preliminary ECG-gated volumes fφk(x, s). The segmentation process of the catheters
is restricted to a user defined region of interest (ROI), denoted as r(x). For segmen-
tation, the 2-D axial slices of the volumes fφk(x, s) are filtered with a 2-D median
filter of size 2 × 2 pixels to reduce noise in the reconstructed volumes. Afterwards, a
thresholding operation is applied with a pre-set threshold entered by the user and the
segmented pixels are dilated by a circular object with a radius of 1 pixel. Finally, the
consistency of the catheter over the slices is automatically checked and completed if
necessary. The resulting binary mask imagesmφk(x, s) are forward projected into the
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(a) (b)

Figure 4.3: Example of filtered ECG-gated FDK reconstructions of a porcine model from
about 32 projection images at a relative heart phase of (a) 20% and (b) 80%. The image
data was provided by Prof. Dr. Heidbüchel and Dr. De Buck from the University of Leuven,
Belgium.

Figure 4.4: Schematic overview of the catheter removal procedure.
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2-D projection images, which belong to the same heart phases used for the generation
of the preliminary ECG-gated images. As a forward projector, due to its simplicity,
a ray casting approach is used as

pm,φk(i,u, s) = max
x∈Li,u

mφk(x, s), (4.6)

where Li,u = {x ∈ R3|B(i,x) = u} defines the ray of the i-th image intersecting the
detector at pixel u. Thus, only the set of voxels along the ray Li,u is used. Here, the
maximum intensity value is computed along the ray. The 2-D mask images combined
with the log-transformed projection images pw(i,u) are used for the catheter removal.
In this thesis, a low-frequency-based object masking called Subtract-and-Shift (SaS)
is used for the removal of the catheter in the 2-D projection images [Schw10]. It
makes use of the fact that many dense objects do not absorb all incident radiation.
Therefore, some remaining anatomical structure is still available within the region
overlaid by the object and should be used by an interpolation algorithm. A dense
object in the field of view introduces an additive bias or contribution to the projection
integral. Therefore, a bias correction similar to bias field correction in MR imaging
[Vovk 07] is used:

1. The whole projection image is low-pass filtered: gw(i,u) = (pw?hσ)(i,u), where
hσ is a Gaussian kernel with a standard deviation of σ.

2. At every pixel belonging to the object to be removed, the filtered intensity value
is subtracted from the measured intensity: s(i,u) = pw(i,u)− gw(i,u).

3. The intensity values inside the processed region are shifted, such that they
match the intensity levels surrounding the region: ŝ(i,u) = s(i,u) +4I(i,u),
where4I(i,u) is a line-wise interpolated value of the intensity offset4I , before
and after the processed region.

Steps (1) and (2) effectively high-pass filter the processed region, removing the low
frequency bias field and retaining only the high-frequency content. Since the intensity
values after step (2) are centered around 0, they need to be shifted back to the
intensity level of their surroundings. This is usually done by adding a mean-preserving
value after step (2). Here, a different strategy for the shift step is proposed: a line-
wise linear interpolation of 4I(i,u). Along an arbitrary line through the processed
region, the intensity offsets 4I before and after the region are determined. Then,
the intensities along that line, which are inside the region are shifted by a linear
interpolation between both offsets to compute pr,φk(i,u, s).

The resulting interpolated images pr,φk(i,u, s) are used for ECG-gated filtered
backprojection reconstruction in order to result in an image cφk(x, s) without
catheters and electrodes. In Figure 4.5, example reconstructions are presented. It
can be seen that the streak artifacts are reduced compared to a standard ECG-gated
FDK reconstruction, cf. Figure 4.2.
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(a) (b)

Figure 4.5: Example of ECG-gated FDK reconstructions of a porcine model with removed
catheter and pacing electrode at a relative heart phase of (a) 20% and (b) 80%. The image
data was provided by Prof. Dr. Heidbüchel and Dr. De Buck from the University of Leuven,
Belgium.

4.3.1.4 Filtered ECG-gated Filtered Backprojection Volume Reconstruction
with Removed Catheter (cathFFDK)

The volumes from the previous section still exhibit strong noise. Hence, an additional
bilateral filter can be applied, cf. Section 4.3.1.2, resulting in cφk,f (x, s). Example
reconstructions are shown in Figure 4.6.

4.3.1.5 Few-view Volume Reconstruction (FV)

Additionally, images denoted as vφk(x, s) are reconstructed with an iterative few-
view reconstruction algorithm that takes the sparse sampling condition into account.
Here, the prior image constrained compressed sensing (PICCS) [Chen 08] combined
with the improved total variation (iTV) [Rits 11] algorithm is used. Both approaches
are described in more detail in Section 2.2.2.2. A brief summary is provided here. An
FDK reconstruction with data from a complete short-scan is used as prior volume
for the PICCS reconstruction. The objective function is minimized in an alternating
manner, i.e. the raw data constraint is minimized in a first step and in the second
step the sparsity cost function, which incorporates knowledge of the prior image, is
optimized. In order to ensure that the raw data cost function converges to the optimal
value and simultaneously ensure that the sparsity constraint converges to a low value,
the improved total variation (iTV) is used [Rits 11]. In order to minimize the data
truncation artifact, the volume for reconstruction was chosen slightly larger than the
field of view. In Figure 4.7, it can be seen that the resulting volumes have minor
streak artifacts, but appear to have visually smoother edges than the ECG-gated
reconstructions.
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(a) (b)

Figure 4.6: Example of filtered ECG-gated FDK reconstructions of a porcine model with
removed catheter and pacing electrode at a relative heart phase of (a) 20% and (b) 80%.
The image data was provided by Prof. Dr. Heidbüchel and Dr. De Buck from the University
of Leuven, Belgium.

(a) (b)

Figure 4.7: Example of the few-view (PICCS combined with iTV) reconstructions of a
porcine model at a relative heart phase of (a) 20% and (b) 80%. The image data was
provided by Prof. Dr. Heidbüchel and Dr. De Buck from the University of Leuven, Belgium.
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(a) (b)

Figure 4.8: Comparison of ECG-gated FDK reconstruction and few-view reconstruction.
(a) Example of ECG-gated FDK reconstructions at a relative heart phase of 20%. (b)
Example of the few-view (PICCS combined with iTV) reconstructions of a porcine model
at a relative heart phase of 20%. The arrow indicates the smoother endocardial edge. The
image data was provided by Prof. Dr. Heidbüchel and Dr. De Buck from the University of
Leuven, Belgium.

4.3.2 3-D/(3+N)-D Objective Function & Optimization Strategy
In this part, the three different objective functions and optimization strategies used
for cardiac motion estimation are explained in more detail. The first registration
technique is an adaption of a motion estimation approach developed for respira-
tory motion estimation and compensation [Breh 12]. It incorporates cyclic motion
constraints into the registration process. Therefore, it is denoted as 3-D/3-D de-
formable cardiac registration with cyclic motion constraints (CR-CMC). The second
approach utilizes a reference image of improved image quality and registers the sum
of the FDK volumes to this reference volume. Hence it is called 3-D/4-D combined
multiple heart phase registration (CMHPR) approach. The third approach uses a
deformable 3-D/3-D registration between a depicted reference volume and all other
initial volumes individually. Here, the cardiac motion is represented by a B-spline
model. This approach is called 3-D/3-D deformable cardiac registration (D-CR).

4.3.2.1 3-D/3-D Deformable Cardiac Registration with Cyclic Motion Con-
straints (CR-CMC)

The 3-D/3-D deformable cardiac registration with cyclic motion constraints (CR-
CMC) is an adaption of an algorithm presented by Brehm et al. [Breh 12] for res-
piratory motion estimation and compensation in radiation therapy. In image-guided
radiation therapy an additional kV system mounted next to the linear particle acceler-
ator is used for patient positioning. The acquisition time of the system is much longer
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Figure 4.9: Overview of the 3-D/3-D deformable cardiac registration with cyclic motion
constraints (CR-CMC).

than the patient’s breathing cycle. In the respiratory gated volumes, streak artifacts
occur similar to the artifacts induced by ECG-gating. The assumption is made that a
motion estimation approach using image registration techniques matches the streaks
inside the volumes instead of the anatomical information. To reduce the influence of
the streak artifacts on the deformation, cyclic constraints were incorporated into the
registration process.

The CR-CMC algorithm comprises mainly a spatial registration and a periodic
correction of the motion vector fields between the reconstructed volumes. In Fig-
ure 4.9, a scheme of the CR-CMC registration process is illustrated. The details are
explained in the following section.

In order to estimate the cardiac motion, a motion model function M needs to be
defined. The functionM describes the mapping from any heart phase φj to the heart
phase φk and can be described by

M(φj→k,x, s̃mm) = x + s̃mm,x, (4.7)

where s̃mm,x ∈ R3 denotes the displacement vector at voxel position x and s̃mm ∈
RK̃mm the motion vector parameters between the reference and the current heart
phase. Here, a voxel based motion model is used, where K̃mm = 3n3, with n denoting
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the side length of the reconstructed volume. The mapping between adjacent volumes
can then be defined as

fφk+1(x, s̃mm) = fφk(M(φk→k+1,x, s̃mm), s̃mm). (4.8)

In order to obtain a complete definition of the cardiac motion over the whole scan,
the motion needs to be estimated between all heart phases, consequently K times.
Hence, the number of parameters smm ∈ RKmm is given by Kmm = K · K̃mm.

The motion model function parameter s̃mm between two adjacent heart phases
are estimated by deformable image registration. In order to evaluate the proposed
algorithm by Brehm et al. [Breh 12] on cardiac C-arm data, the original objective
function has been reimplemented. A deformable registration algorithm originally pro-
posed by Thirion et al. [Thir 98] called demon’s algorithm is used. Several variants
of the demon’s algorithm have been proposed depending on the computation of the
demon’s forces. Here, a diffeomorphic demon’s algorithm [Verc 09] using symmetric
forces [Wang 05] is used with an adaptive step width control [Cach 99] and a viscous
fluid-like and an elastic-like appearance [Penn 99]. Since the demon’s algorithm is
based on optical flow and - because of this - intensity measurements, the gray scale
values between the initial volumes are normalized by histogram matching [Nyul 00].
The reconstructions are afterwards filtered with a bilateral filter as presented in Sec-
tion 4.3.1.2. Using the assumption of a cyclic cardiac motion, a phase index K + j is
synonymous with the index j, i.e. all phase indices are to be understood by a mod-
ulo operation. Accordingly, the non-commutative concatenation ∏ of several motion
vector functions is denoted as

K∏
k=1

M(φk→k+1,x, s̃mm) = M(φ1→2,x, s̃mm) ◦ . . .

. . .M(φ2→3,x, s̃mm) ◦ . . . ◦M(φK→1,x, s̃mm). (4.9)

Now, the assumption of cyclic motion is that the non-commutative concatenation
of the resulting motion vector functions, between all heart phases, results in the
identity function id. The deviation of the concatenation of the MVFs from the identity
function for one heart phase is denoted as

Ek = (
K+k−1∏
j=k

M(φj→j+1,x, s̃mm))− id. (4.10)

The overall motion error E is then defined as

E =
K∑
k=1
||Ek||22. (4.11)

The registration algorithm needs to keep the error E sufficiently small during esti-
mation. In order to correct for the error E, a correction term is defined, such that
the error induced by each motion function contributes equally to the error. For each
heart phase j, its motion model needs to be updated for all K errors Ek according to

M̃(φj→j+1,x, s̃mm) =

M(φj→j+1,x, s̃mm)− Ek
K

j = k

M(φj→j+1,x, s̃mm)− Ek◦
∏j−1
l=k M(φl→l+1,x,s̃mm)

K
j 6= k

(4.12)
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Figure 4.10: Overview of the combined multiple heart phase registration (CMHPR) ap-
proach.

Up to now, only adjacent heart phases are registered to each other, but the motion
compensation also requires mappings between non-adjacent phases. Consequently, a
hierarchical registration is used to register non-adjacent phases with the previously
estimated motion vector fields as initialization. On each level, the spatial registration
and the motion error correction is performed. A more detailed explanation of the
algorithm can be found in Brehm et al. [Breh 12, Breh 13].

4.3.2.2 3-D/4-D Combined Multiple Heart Phase Registration (CMHPR)

For the 3-D/4-D combined multiple heart phase registration (CMHPR) approach, in
order to estimate the cardiac motion, one heart phase needs to be selected as reference
phase. A sum volume f(x, smm) is defined consisting of the deformed ECG-gated
volumes fφk(x, smm) with motion vector parameter s̃mm ∈ RK̃mm at heart phase φk
and location x

f(x, smm) =
K∑
k=1

fφk(x, s̃mm). (4.13)

For this approach, a voxel-based motion vector field is used, consequently K̃mm = 3n3,
with n denoting the side length of the reconstructed volume. The motion vector
parameter smm ∈ RKmm contains the motion parameters for all heart phases, thus,
Kmm = K K̃mm. Here, it is assumed that the reference heart phase is also represented
in the initial ECG-gated reconstructions, but it is not necessarily required. The
motion model function M describes the mapping from a reference phase φr to the
current heart phase φk and is described by

M(φr→k,x, s̃mm) = x + s̃mm,x. (4.14)
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The 4-D motion vector field is then derived by optimizing an objective function
LNCC(smm) so that the negative normalized cross correlation (NCC) between the
sum volume f(x, smm) and a reference volume fr(x) is minimized. In this thesis,
exemplarily the few-view reconstruction is used to generate the reference volume
fr(x) = vφk(x, s). The assumption is that the few-view reconstruction delineates the
borders and edges of the endocardium and that the sum of the ECG-gated reconstruc-
tions features less streak artifacts compared to the single ECG-gated reconstructions.
The negative NCC metric ranges between [−1, 1]. In order to define a dissimilarity
measure, the negative correlation is considered. Therefore, a value of -1 indicates a
perfect positive linear relationship, a value of +1 a perfect negative linear relation-
ship and values close to zero show no linear correlation between the volumes. The
definition of the negative NCC [Russ 03, Penn 98] combined with the computational
formula for the variance [Knut 98] is given by

ŝmm = arg min
smm

LNCC(smm), with (4.15)

LNCC(smm) = − nrf (smm)√
nrr · nff (smm)

, where (4.16)

nr =
∑
x∈Ω

fr(x) (4.17)

nf (smm) =
∑
x∈Ω

f(x, smm) (4.18)

nrr =
∑
x∈Ω

fr(x)2 − 1
|Ω|n

2
r (4.19)

nff (smm) =
∑
x∈Ω

f(x, smm)2 − 1
|Ω|nf (smm)2 (4.20)

nrf (smm) =
∑
x∈Ω

fr(x)f(x, smm)− 1
|Ω|nr · nf (smm). (4.21)

The objective function is minimized by a gradient based quasi-Newton method,
a so called limited-memory Broyden-Fletcher-Goldfarb-Shanno optimizer (L-BFGS)
[Flet 70]. Usually, the quasi-Newton based methods converge in fewer iterations than
gradient descent optimizers, but have a higher cost per iteration evaluation. For
the optimization, the derivative of the objective function with respect to the motion
vector for every heart phase and at every voxel is required. It can be computed as

∂LNCC(smm)
∂smm,x

= −

 1√
nrr · nff (smm)

∂nrf (smm)
∂smm,x

−

nrf (smm) · nrr
2
√

(nrr · nff (smm))3

∂nff (smm)
∂smm,x

 , (4.22)

where the remaining components are given by

∂nrf (smm)
∂smm,x

=
(
fr(x)− nr

|Ω|

)
∂f(x, smm)
∂smm,x

(4.23)
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and

∂nff (smm)
∂smm,x

= 2
(
f(x, smm)− nf (smm)

|Ω|

)
∂f(x, smm)
∂smm,x

. (4.24)

Finally, putting all components together the derivative of the objective function is
given as

∂LNCC(smm)
∂smm,x

= −κ(x, smm) · ∂f(x, smm)
∂smm,x

= −κ(x, smm) · ∂fφk(x, smm)
∂smm,x

, (4.25)

where

κ(x, smm) = 1√
nrr · nff (smm)

((
fr(x)− nr

|Ω|

)
−

nrf (smm)
nff (smm)

(
f(x, smm)− nf (smm)

|Ω|

))
. (4.26)

In order to guarantee a smooth motion vector field, a spatial and temporal approx-
imative recursive Gaussian filter (Deriche filter) is applied to the 4-D motion vector
gradient. Additionally, the same approximative spatial recursive Gaussian filter is
also applied to the gradient weighting term κ(x, smm) [Deri 87, Deri 93, Deri 90].

4.3.2.3 3-D/3-D Deformable Cardiac Registration (D-CR)

For the 3-D/3-D deformable registration approach (D-CR), in order to estimate the
cardiac motion, again one heart phase needs to be selected as reference phase. The
corresponding volume is called reference volume and all other volumes are registered
pairwise to the reference volume. Here, the registration is carried out between all
initial volumes, presented in Section 4.3.1. The reference volume is denoted as fr(x)
and the volumes registered to the reference volume are denoted as template volumes
fT,φk(x, s).

The deformable registration is based on a uniform cubic B-spline representation.
The use of a B-spline motion model for representation of cardiac motion is very
popular in literature [Shec 03, Blon 06, Hans 09, Rohk 10b]. A three-dimensional
B-spline is modeled as 3-D tensor product of 1-D B-splines, hence, a number of
Cs × Cs × Cs control points is placed uniformly in the spatial domain at the 3-D
location l ∈ R3. The order of the used B-splines is denoted with So. Every control
point ows its own displacement vector, defining the number of motion model param-
eters K̃mm = 3(Cs+So)3, and s̃mm ∈ RK̃mm is a linearized version of the control point
displacement vectors. The motion model function M(φr→k,x, s̃mm) between the ref-
erence heart phase and the current heart phase is defined by a linear combination of
the control point displacement vectors

M(φr→k,x, s̃mm) = x +
∑

l

Bl1(x1)Bl2(x2)Bl3(x3)s̃mm,l, (4.27)
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where Bl1 , Bl2 , and Bl3 denote the B-spline basis functions [Unse 99] and s̃mm,l defines
the displacement vector at the 3-D location l belonging to a certain control point.

The motion vector field is derived by optimizing the objective function LNCC(s̃mm)
such that the negative normalized cross correlation (NCC) between the template vol-
ume fT,φk(x, s̃mm) and the reference volume fr(x) is minimized. The objective func-
tion is similar to Section 4.3.2.2, except that the volumes are registered individually
to the reference volume and the motion model parameters s̃mm have a smaller di-
mension. For the objective function, a value of -1 indicates a perfect positive linear
relationship, a value of +1 a perfect negative linear relationship and values close to
zero show no linear correlation between the reconstructions. The definition of the
negative NCC is given as

ŝmm = arg min
s̃mm

LNCC(s̃mm), with (4.28)

LNCC(s̃mm) = − nrT (s̃mm)√
nrr · nTT (s̃mm)

, where (4.29)

nr =
∑
x∈Ω

fr(x) (4.30)

nT (s̃mm) =
∑
x∈Ω

fT,φk(x, s̃mm) (4.31)

nrr =
∑
x∈Ω

fr(x)2 − 1
|Ω|n

2
r (4.32)

nTT (s̃mm) =
∑
x∈Ω

fT,φk(x, s̃mm)2 − 1
|Ω|nT (s̃mm)2 (4.33)

nrT (s̃mm) =
∑
x∈Ω

fr(x)fT,φk(x, s̃mm)− 1
|Ω|nr · nT (s̃mm). (4.34)

The optimization is done using an adaptive stochastic gradient descent optimizer
[Klei 09]. For the optimization, the derivative of the objective function with respect
to the motion vector for every heart phase and at every spline control point l is
required. The derivative is given as

∂LNCC(s̃mm)
∂s̃mm,l

= −

 1√
nrr · nTT (s̃mm)

∂nrT (s̃mm)
∂s̃mm,l

−

nrT (s̃mm) · nrr
2
√

(nrr · nTT (s̃mm))3

∂nTT (s)
∂s̃mm,l

 , (4.35)

where the remaining components are given by
∂nrT (s̃mm)
∂s̃mm,l

=
(
fr(x)− nr

|Ω|

)
∂fT,φk(x, s̃mm)

∂s̃mm,l
(4.36)

and
∂nTT (s̃mm)
∂s̃mm,l

= 2
(
fT,φk(x, s̃mm)− nT (s̃mm)

|Ω|

)
∂fT,φk(x, s̃mm)

∂s̃mm,l
.

(4.37)
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Finally, putting all components together we arrive at the derivative of the objective
function

∂LNCC(s̃mm)
∂s̃mm,l

= −κ(x, s̃mm) · ∂fT,φk(x, s̃mm)
∂s̃mm,l

(4.38)

where

κ(x, s̃mm) = 1√
nrr · nTT (s̃mm)

((
fr(x)− nr

|Ω|

)
−

nrT (s̃mm)
nTT (s̃mm)

(
fT,φk(x, s̃mm)− nT (s̃mm)

|Ω|

))
. (4.39)

In order to obtain a complete cardiac motion field over the whole scan, the motion
needs to be estimated between the reference heart phase φr and the remaining K− 1
heart phases. Therefore, the dimension of the motion vector smm ∈ RKmm results in
Kmm = (K − 1) · K̃mm.

4.3.3 Final Image Reconstruction
The final step to compute the final reconstructed image is either the combination of
the deformed 3-D volumes or a motion-compensated reconstruction integrating the
estimated motion.

4.3.3.1 Combination of Registered Volumes

For the CMHPR approach, presented in Section 4.3.2.2, the 3-D ECG-gated volumes
are already deformed during the registration process in order to fit to the reference
volume. Hence, the final volume is already the sum volume denoted as CMHPR
reconstruction.

4.3.3.2 Motion Compensated Reconstruction

For final motion-compensated image reconstruction, the estimated motion is inte-
grated into the backprojection step of the FDK algorithm [Gran 02, Schf 06]. The
same approach as in Section 2.5.2.2 is used, by integrating the 3-D motion vector
fields into the reconstruction. The motion model function M(φk,x, smm) between all
heart phases and the reference heart phase is estimated by the previously presented
methods, cf. Section 4.3.2. For every projection image i the assignment to a heart
phase φk is known, cf. Section 3.3.3. If no motion vector field was estimated for
the current heart phase, a linear interpolation between neighboring heart phases is
sufficient [Prmm09a]. Therefore, the motion model function M(i,x, smm) providing
a motion vector field is incorporated into a voxel-driven filtered backprojection re-
construction algorithm. The motion correction is applied during the backprojection
step by shifting the voxel x to be reconstructed according to the motion function M .

The motion-compensated reconstruction of the cyclic registration is denoted with
CR-CMC. The resulting motion-compensated volume for the CMHPR is denoted
as CMHPR-MC. The motion-compensated volumes for the D-CR algorithm are
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denoted by the type of the initial ECG-gated volume reconstruction with added
MC for motion-compensation (FDK-MC, FFDK-MC, FV-MC, cathFDK-MC and
cathFFDK-MC).

4.4 Complexity Analysis
The computational complexity of the presented motion estimation techniques is de-
scribed in the following sections.

4.4.1 Initial 3-D Volume Generation
The five approaches for computation of initial images (Section 4.3.1) have different
computational complexity. All of them require a backprojection step and some of
them an additional forward projection step. The backprojection as well as the forward
projection is implemented on a GPU. As a forward projector a ray tracing approach
is utilized due to its simplicity and wide-spread use [Sche 11]. The side length of
the 3-D volume is denoted as n, the side length of a 2-D projection with m and the
number of projections with N . Hence, the complexity of the backprojection-based
reconstruction is given as O(N n3). The generation of the forward projection requires
casting a ray from all pixels of all projection images through the volume, resulting in
a complexity of O(N m2 n).

Therefore, for the FDK reconstruction, the backprojection step is the most time-
consuming part with a complexity of O(N n3). The FFDK utilizes the FDK and
additionally performs a filtering step. The used bilateral filter is implemented in
a straightforward manner on the GPU and has a complexity of O(n3 r3

f ), where rf
denotes the filter size, which was chosen to be rf = 5. Assuming that r3

f � N , the
overall complexity is O(N n3). In order to generate the cathFDK volumes, two full
backprojection steps need to be performed on the GPU each with a complexity of
O(N n3). Afterwards, the most complex part of the segmentation step is the forward
projection step with O(N m2 n). In total, only two backprojection and one forward
projection steps are necessary and the interpolation scheme is of less computational
effort, resulting in O(N n3) under the assumption that n ≈ m. The cathFFDK
approach requires an additional filtering step with O(n3 r3

f ), resulting in the overall
complexity of O(N n3). The FV optimization consists of an iterative optimization
scheme for the data consistency term, therefore, several forward and backprojection
steps are required. Under the assumption that n ≈ m, the overall complexity results
in O(DN n3), with D denoting the number of data consistency iterations. Each
iteration of the FV cost function requires several evaluations of the cost function.
The gradient descent search with G iterations for the optimal candidates from the
exhaustive search exhibits a complexity of O(Gn3). Therefore, the complexity of the
FV objective function results in O(F Gn3), with F denoting the number of objective
function iterations. The data consistency term and the optimization routine are
enclosed by an outer iteration loop and are computed for O iterations. Assuming
that O ≈ F ≈ D, the overall complexity is O(D2N n3) + O(D2Gn3). The overall
resulting complexities of the algorithms are presented in Table 4.1.
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FDK FFDK cathFDK cathFFDK FV

O-calc. O(N n3) O(N n3) O(N n3) O(N n3) O(D2N n3) + O(D2Gn3)

Table 4.1: Complexity analysis of the different initial image reconstruction algorithms.

CR-CMC CMHPR D-CR

O-calc. O(H T SLW K2 n3) O(W K n3) O(SLW (K − 1) (Cs + 3)3)

Table 4.2: Complexity analysis of the different motion estimation algorithms.

4.4.2 3-D/(3+N)-D Registration
An overview of the complexity of the different cardiac motion estimation algorithms
is given in Table 4.2. A more detailed analysis is given in the following sections.

4.4.2.1 CR-CMC

For the 3-D/3-D cardiac registration with cyclic constraints (CR-CMC), the same
number of motion parameters as voxels are necessary. Accordingly, the number of
parameters is given as smm ∈ RKmm=K·3n3 , with n denoting the side length of the vol-
ume and K the number of heart phases. For estimation of the spatial transformation
that means updating the demon’s function, a number of SL multi-resolution scales
are defined, and on each stage a number of W iterations are performed. In every
iteration, an update of the demon’s registration function is required, i.e. an update
of the motion vector parameters with additional exponential filtering [Verc 09]. This
results in a comprehensive complexity of O(SLW K n3). The iterative cyclic motion
correction requires an update of each motion parameter for multiple times T , thus,
it results in a complexity of O(T SLW K n3). The spatial transformation estima-
tion and the cyclic motion correction can be performed H times on each level and
hierarchical with L = K − 1 levels. Therefore, the overall resulting complexity is

O(H T SLW K2 n3).

4.4.2.2 CMHPR

For the 3-D/4-D combined multiple heart phase registration (CMHPR), the same
number of motion parameters as voxels are required. The number of parameters is
therefore given as smm ∈ RKmm=K·3n3 , with n denoting the side length of the volume
and K the number of heart phases. Due to memory limitations when using a quasi-
Newton optimizer and to reduce computation time, the motion vector field was first
computed on downsampled volumes with a side length of 0.5n and upsampled onto
the final reconstructed volume size by cubic spline interpolation.

For minimization of the objective function, a number of W iterations of the L-
BFGS optimizer are performed. In every iteration, the objective function and its
derivative with respect to the motion parameters needs to be evaluated. Resulting
in a complexity of O(W K n3). The filtering for κ and the motion vector parameters
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smm result in a complexity independent of the filter size [Deri 90]. Therefore, the
comprehensive complexity of the CMHPR algorithm is

O(W K n3).

4.4.2.3 D-CR

For the D-CR, the motion model function is defined by deformable B-splines. There-
fore, the number of parameters is given as smm ∈ RKmm , where Kmm = (K − 1) ·
3(Cs + So)3, the number of spline control points is given as Cs, So denotes the order
of the used B-spline, and K denotes the number of heart phases. In this thesis, cubic
B-splines are used and, hence, the So = 3, consequently smm ∈ RKmm=(K−1)·3(Cs+3)3 .
A number of SL multi-resolution scales are defined, and on each stage a number of
W iterations of the adaptive stochastic gradient descent optimizer needs to be per-
formed. In every iteration, the objective function and its derivative with respect to
the motion parameters needs to be computed. This results in a overall complexity of

O(SLW (K − 1) (Cs + 3)3).

4.4.3 Motion-compensated Reconstruction
The final step of all presented motion estimation approaches is the motion-
compensated reconstruction step. This step results in a complexity of

O(N n3).

4.5 Implementation Details and Parameter Setting
This section covers the necessary algorithmic details for implementation and all re-
quired parameter settings.

4.5.1 Initial 3-D Volume Generation
For the different initial volume reconstructions, different parameters need to be set.

4.5.1.1 ECG-gating Parameter Setting

The ECG-gating parameters sga = (φr, w, ϑ)T need to be set for the initial volume
reconstruction. In this thesis, due to the acquisition protocol explained in Section 4.2,
a rectangular gating function, with ϑ = 0 and of minimal width w → 0, i.e. only one
view per heart cycle is considered. In total, K volumes, with k = 1, . . . , K at specific
heart phases are reconstructed. Every heart phase φk corresponds to a relative heart
phase φ between [0, 1] defined between two successive R-peaks. The number of heart
phases K is dependent on the acquisition duration and heart frequency of the patient.
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4.5.1.2 Bilateral Filter Setting

The parameters of the bilateral filter were set to σr = 100 HU, σd = 1 voxel and the
filter kernel size was set to 5. It should be mentioned that if the acquisition scenario
changes, these values also need to be adapted.

4.5.1.3 Few-view Parameter Setting

The weighting parameter α for the PICCS algorithm was set to 0.5, which is the upper
bound of the optimal range from 0.4 to 0.5, as evaluated in [Thri 12b]. The relaxation
parameter β for the data fidelity optimization was set to 0.8 and the iTV parameter
ω to 0.8 as in the original paper [Rits 10]. A number of D = 4 data consistency,
F = 10 few-view objective function iterations were set. The whole optimization
scheme was stopped when the data error improvement in the subsequent iterations
fell below 10%. A gradient descent optimizer with an adaptive line search was used
for minimization of the objective function.

4.5.2 3-D/(3+N)-D Registration
In this section, the different parameter settings for the objective function optimiza-
tions to estimate the cardiac motion are presented.

4.5.2.1 CR-CMC

For the CR-CMC approach, first parameters need to be set for the spatial transforma-
tion estimation with the diffeomorphic demon’s algorithm. Therefore, a multi-scale
approach was used with SL = 3 scales. In this thesis, an available implementation of
the diffeomorphic demon’s inside the Insight Segmentation and RegistrationToolkit1

was used. On each pyramid level, a number of W = 20 iterations were set. The
standard deviations of the viscous fluid-like Gaussian convolution kernel Gpre and of
the elastic like appearance Gaussian kernel Gpost of the diffeomorphic demon’s regis-
tration [Penn 99] were set to 1.0 according to Wang et al. [Wang 05]. The maximum
step length of the demon’s force was set to 2, as described Vercauteren et al. [Verc 07].
The maximal intensity difference or error for numerical stability was set to 0.01. The
overall cyclic motion correction was performed once on each level (T = 1). The spa-
tial registration and cyclic motion correction on each level were repeated heuristically
H = 3 times. The number of levels L is determined by the number of heart phases
L = K − 1. The initial motion vectors between the adjacent heart phase volumes
were set to zero.

4.5.2.2 CMHPR Parameter Setting

As previously mentioned, due to memory limitations when using a quasi-Newton
optimizer and to reduce computation time, the motion vector field was first computed
on downsampled volumes at a resolution of 1283 voxels and upsampled onto the final
reconstructed volume size by cubic spline interpolation. The initial motion vector

1http://www.itk.org/

http://www.itk.org/
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field was set to zero in all dimensions. The Deriche filter parameter αD for spatial
filtering was heuristically set to 0.94 and for temporal filtering to 2.12, i.e. a stronger
smoothing in spatial than in temporal direction. The L-BFGS optimizer of the VNL2

numerics library delivered with the Insight Segmentation and Registration Toolkit
(ITK)1 was used for the optimization. The optimization parameters and termination
criteria of the L-BFGS algorithm are set as follows: the cost function convergence
factor is set to 1 ·105, the projected gradient tolerance is set to 1 ·10−30, the maximum
number of function evaluations is set to 200, the maximum number of variable metric
corrections is set to a value of 5. The optimization procedure was performed until the
termination criterion was reached. The number of iterations is implicitly given by the
number of function evaluations. During the line search of the gradient update, the
objective function is evaluated more than once if we are close to a minimum, hence,
less iterations are performed. In order to restrict the motion vector field to a local
area where the heart motion is expected, a local motion mask enforces zero motion
outside the defined local area. In this first approach the mask volume defining Ω is
generated manually by the user.

Algorithm 4.1: Combined Multiple Heart Phase Registration (CMHPR).
Input: reference volume fr(x), ECG-gating parameter vector

sga = (φr, w, ϑ)T , mask region Ω, multi-resolution levels SL
Output: smm (contains all s̃mm)
// Step 1: Compute initial ECG-gated volumes according to

Equation 2.20
1 s̃mm = 0
2 fφk(x, s̃mm) = ∑N

i=1 λ(i, sga) · hFDK(i,x)
// Step 2: Multi-resolution optimization

3 smm = 0
4 for s← 1 to SL do
5 Compute downsampled volumes fr(x), fφk(x, s̃mm)

// Step 3: start optimization using L-BFGS algorithm
6 L-BFGS = new L-BFGSAlgorithm(fr(x),fφk(x, s̃mm), s̃mm, Ω) repeat

// Perform one iteration of L-BFGS algorithm.
// It calls Algorithm 4.2 for computation
// of the objective function and the derivative

7 L-BFGS.performIteration()
8 until Termination criterion;
9 smm = L-BFGS.getBestSolution()

10 end

2http://vxl.sourceforge.net/

http://vxl.sourceforge.net/
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Algorithm 4.2: Objective function and derivative computation.
Input: fr(x),fφk(x, s̃mm), s̃mm, Ω
Output: LNCC(smm),∂LNCC(smm)

∂smm

// Step 1: Computation of sum volume
1 f(x, smm) = ∑K

k=1 fφk(x, s̃mm)
// Step 2: Computation of objective function value

2 foreach x ∈ Ω do
3 nff (smm) = nff (smm) + f(x, smm)2

4 nrr = nrr + fr(x)2

5 nrf (smm) = nrf (smm) + f(x, smm) · fr(x)
6 nf (smm) = nf (smm) + f(x, smm)
7 nr = nr + fr(x)
8 end
9 nff (smm) = nff (smm) + nf (smm)2

|Ω|

10 nrr = nrr + n2
r

|Ω|

11 nrf (smm) = nrf (smm) + nr·nf (smm)
|Ω|

// Computation of objective function according to Equation 4.16
12 LNCC(smm) = − nrf (smm)√

nrr·nff (smm)

// Step 3: Computation of derivative contribution
13 foreach x ∈ Ω do
14 Compute κ(x, smm) // according to Equation 4.26
15 Compute derivative ∂LNCC(smm)

∂smm,x
// according to Equation 4.25

16 end
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Figure 4.11: Registration pyramid for B-spline registration.

4.5.2.3 D-CR Parameter Setting

For the deformable B-Spline registration, a multi-resolution scheme of 4 levels is used
with a sampling factor of 2 on each pyramid level. At the highest image resolution a
number of Cs = 16 control points are used in each spatial dimension. The choice of
Cs highly influences the relation of smoothness (small Cs) to flexibility (large Cs) of
the motion. The imaging pyramid and the resulting number of parameters as well as
the resulting spatial resolution is shown in Figure 4.11.

Here, a toolbox called elastix3 for non-rigid registration of medical images is
used for the 3-D/3-D motion estimation [Klei 10]. The adaptive stochastic gradient
descent optimizer is set to a certain number of iterations, empirical experiments
showed that W = 500 iterations on each pyramid level are sufficient to result in a
minimal objective function value. For the remaining parameters, the default settings
were used.

The motion vector field was only estimated inside a region of interest (ROI) where
the heart motion is expected, therefore, a regional mask Ω is defined. In this first
implementation the mask volume is generated manually by the user.

4.6 Evaluation and Results
In the following sections, the evaluation of the different motion estimation algorithms
with respect to the reconstruction quality is presented.

4.6.1 Datasets
Two different kinds of datasets were used for motion estimation and compensation
evaluation, simulated phantom datasets, and clinical porcine models. A first clinical
patient dataset is discussed non-competitively in Section 4.7.

4.6.1.1 Ventricular Phantoms

Several different phantom datasets were created, and a short overview is given in
Table 4.3. In general, ventricle datasets [Mlle 13b, Maie 12, Maie 13] of a similar
design to the XCAT phantom [Sega 08] are simulated. The phantom is defined by
cubic B-splines, as well as the cardiac motion. The cardiac motion is extracted from

3http://elastix.isi.uu.nl/about.php

http://elastix.isi.uu.nl/about.php
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Dataset Description of the phantom dataset

d1 Dynamic monochromatic without catheter (with noise)

d1,GT Static monochromatic without catheter for each heart phase (no noise)

d2 Dynamic polychromatic with catheter (with noise)

d2,GT Static polychromatic phantom catheter for each heart phase (no noise)

Table 4.3: Overview of the different generated phantom datasets.

the XCAT phantom. For the first phantom dataset d1, it is assumed that all materials
have the same spectral absorption behavior as water. The density of the contrasted
left ventricle bloodpool was set to 2.5 g/cm3, the density of the myocardial wall to
1.5 g/cm3 and the contrasted blood in the aorta to 2.0 g/cm3 . Data was simulated
using a clinical protocol with the following parameters: the acquisition time was
14.5 s capturing 381 projection images with an angular increment of 0.52◦ during
one C-arm rotation [De B 13b]. The isotropic pixel resolution was 0.31mm/pixel
(0.19mm in isocenter) and the detector size 1240 × 960 pixel. The heart rate was
simulated with 131 bpm. A total of 32 heart cycles were acquired resulting in a
number of reconstructed heart phases K = 12. Image reconstruction was performed
on an image volume of (25.6 cm)3 distributed on a 2563 voxel grid.

Additionally, a phantom dataset is simulated with a polychromatic X-ray spec-
trum. A source spectrum E(b) with b ∈ [1, 36] from 10 keV to 90 keV, and a time
current product of 2.5mAs per X-ray pulse are used. The material of the anode disk
is assumed to be tungsten and the half value layer thickness was measured to fit to
a clinical C-arm system (Axiom Artis dTA C-arm system, Siemens AG, Healthcare
Sector, Forchheim, Germany). A catheter is simulated coming from the aorta into the
left ventricle. The same deformation field as for the heart was applied to the catheter.
The material of the catheter is similar to copper in order to induce severe streak ar-
tifacts in the reconstructions. The catheter, bones and the bone marrow, have the
material properties according to the mass attenuation coefficients of the NIST X-Ray
Table4. For all other structures it is assumed that they have the same absorption
behavior as water with different densities similar to the FORBILD phantom5. The
density of the ventricular bloodpool, myocardium and aorta is the same as in the
monochromatic simulations. The same imaging protocol as for the monochromatic
phantom data was used for simulation.

Poisson distributed noise was added to the simulated projection stacks such that
the noise characteristics of the reconstructed images fit those of the clinical data. As
gold standard, static projection images were generated without noise. The phantom
projection data and geometry are publicly available6.

An example of the generated phantom in 3-D image space is shown in Figures 4.12a
and 4.12b. Two example projection images of the simulated phantom without the
catheter and with the catheter are shown in Figures 4.12c and 4.12d.

4http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
5http://www.imp.uni-erlangen.de/phantoms/thorax/thorax.htm
6http://conrad.stanford.edu/data/heart

http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
http://www.imp.uni-erlangen.de/phantoms/thorax/thorax.htm
http://conrad.stanford.edu/data/heart
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(a) (b)

(c) (d)

Figure 4.12: Example images of the simulated phantom datasets. (a) Anterior view of
the generated monochromatic phantom dataset. (b) Left sagittal view of the generated
phantom dataset with the catheter. (c) Simulated 2-D projection image, with contrasted
LV, myocardium and aorta and (d) simulated 2-D projection image of catheter phantom.
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4.6.1.2 Porcine Models

The methods were also applied to two experimental datasets of porcine models (p1,
p2). Image acquisition was performed using an Artis zee system (Siemens AG, Health-
care Sector, Forchheim, Germany) at a research laboratory at the University of Leu-
ven, Belgium. The acquisition time was 14.5 s capturing 381 projection images with
30 f/s, and an angular increment of 0.52◦ during one C-arm sweep [De B 13b]. The
isotropic pixel resolution was 0.31mm/pixel (0.19mm in isocenter) and the detector
size 1240 × 960 pixel. The heart rate was stimulated through external heart pacing
to 131 bpm. A total of 32 heart cycles were acquired resulting in a number of recon-
structed heart phases of K = 12. A total volume of about 150ml contrast agent fluid
was administered intravenously at a speed of 10ml/s (p1) and 7ml/s (p2), respec-
tively, 5 s (p1) and 10 s (p2) before the X-ray rotation was started. The total contrast
injection time was 15 s (p1) and 21 s (p2). Image reconstruction was performed on an
image volume of (25.6 cm)3 distributed on a 2563 voxel grid.

4.6.2 Quantitative Evaluation Methods of 3-D Reconstruction
Quality

For the dynamic phantom data, the 3-D normalized (nRMSE) and the relative root
mean square error (rRMSE) and the 3-D universal image quality index (UQI) were
evaluated. In order to measure only the artifacts introduced by the heart motion,
the non-gated and noise-free FDK reconstruction using all projections of the static
heart phantom of the same heart phase is used as gold standard. The nRMSE, the
rRMSE as well as the UQI were evaluated inside a manually selected region of interest
(ROI) denoted as Ω around the ventricle. For the phantom with the catheter, a static
phantom of the different heart phases was created without the catheter and used as
gold standard. The region of the catheter is also excluded from the evaluation, in
order to focus on motion artifacts at the heart walls. The quality of the removal of
the catheter if performed is not the focus of this study. Let fGS,φk(x) be the function
which returns the intensity value of the gold standard image for a certain heart phase
and fT (x, s) the function to be evaluated.

4.6.2.1 Normalized Root Mean Square Error (nRMSE)

The normalized root mean square error (nRMSE) was used to quantify the 3-D
reconstruction error of the motion-compensated reconstructions or standard FDK
reconstructions compared to the gold standard FDK of the static phantom. The
nRMSE can be computed as follows

nRMSEφk = ζ ·
√√√√ 1
|Ω|

∑
x∈Ω

(fGS,φk(x)− fT (x, s)) 2, with (4.40)

ζ = 1
max x∈Ω (fGS,φk(x))−minx∈Ω (fGS,φk(x)) , (4.41)

where |Ω| denotes the number of voxels inside the region of interest (ROI). All results
were averaged over the heart phases, resulting in the overall nRMSE.
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4.6.2.2 Relative Root Mean Square Error (rRMSE)

The relative root mean square error (rRMSE) was used to quantify the 3-D recon-
struction error as

rRMSEφk =

√√√√ 1
|Ω|

∑
x∈Ω

(
fGS,φk(x)− fT (x, s)

fGS,φk(x)

)2

, (4.42)

where |Ω| denotes the number of voxels inside the ROI. For an overall rRMSE, all
results were averaged over the heart phases φk.

4.6.2.3 Universal Quality Index (UQI)

As a 3-D image quality metric the universal image quality index (UQI) was computed
[Wang 02]. The UQI ranges from −1 to 1, where 1 is the best value achieved when
fGS,φk(x) = fT (x, s) for all x inside the defined ROI. The UQI is defined as

UQIφk = 4 · σffGS · fT · fGS(
σ2
f + σ2

fGS

) [
(fT )2 + (fGS)2

] , (4.43)

where fT , fGS represent the mean values, σ2
f , σ

2
fGS

the variances, and σffGS the cross
correlation inside the ROI. For an overall UQI, all results were averaged over the
heart phases φk.

4.6.3 Edge Response Function
For the datasets, the edge response functions are evaluated, since the motion-
compensated reconstructions improve the sharpness of the edges.

4.6.3.1 Definition for Phantom Data

Mean Edge Sharpness ∆. For analysis of edge profiles the start and end points
xi,1 and xi,2 at the lateral wall of the ventricle are determined in the gold standard
reconstruction and used for all other images. Here, a number of lines were taken
orthogonal to the lateral wall. The slope mi,GS is computed between these two points

mi,GS = ∆yi
∆xi

= yi,2 − yi,1
xi,2 − xi,1

. (4.44)

For the motion-compensated reconstructions, also the slope mi between the two
points xi,1, xi,2 is determined. Consequently, the deviation ∆i between the slopes
mi and the mi,GS can be computed by

∆i = |mi,GS −mi|
|mi,GS|

, (4.45)

∆ = 1
L

L∑
i=1

∆i, (4.46)
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where L denotes the number of lines. In order to stabilize the result, and to eliminate
small outliers, several lines are taken and the deviation ∆i is measured individually
for each line. Afterwards, the edge sharpness deviation ∆i for each line is averaged
to determine the mean edge sharpness deviation ∆. Furthermore, in order to exclude
outliers, the median of ∆i is also quoted as Q∆.
Mean edge error τ . For the phantom data it is also possible to measure the
accuracy and trend of the edge between each motion-compensated reconstruction
and the gold standard. This is done by appropriately modifying Equation (4.42),
here the gold standard edge value is denoted as yGT,j and the edge profile to be
tested yj

τi =

√√√√√ 1
∆xi

xi,2∑
j=xi,1

(
yGT,j − yj
yGT,j

)2

(4.47)

τ = 1
L

L∑
i=1

τi. (4.48)

The mean error τ of the trend of the edge profile and the median (Qτ ) are computed.

4.6.3.2 Definition for Porcine Data

Mean Edge Sharpness Λ. For the analysis of the edge response profile of the
porcine models a similar sharpness measure as for the phantom is used. However,
no gold standard edge is known. Therefore, again a line profile is computed along a
reference line i for each motion-compensated reconstruction. Each line is filtered with
a Gaussian kernel in order to remove small outliers. In the filtered line profile the
beginning xi,1 and the end xi,2 of the edge are determined, as minimum and maximum
points. The resulting slope mi between these two points xi,1, xi,2 is computed, but
the values from the non-filtered line are used. In order to stabilize the result, and to
eliminate small outliers, several lines are taken and the mi is measured individually
for each line. Afterwards, the edge sharpnessmi for each line is averaged to determine
the mean edge sharpness, denoted with Λ

mi = ∆yi
∆xi

= yi,2 − yi,1
xi,2 − xi,1

, (4.49)

Λ = 1
L

L∑
i=1

mi. (4.50)

Furthermore, in order to exclude outliers, the median QΛ is also provided.

4.6.4 Experimental Results

In this section, the quantitative and qualitative results for the two phantom datasets
and the two porcine models are presented.
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(a) (b) (c) (d)

Figure 4.13: Central slice of (a) the non-gated FDK result of static phantom 30% without
noise (b) the non-gated FDK result of static phantom 80% without noise, (c) the non-
gated FDK result of the dynamic phantom reconstruction of the phantom model without a
catheter and with noise and (d) an example of the used ROI (W 3100HU, C 780HU, slice
thickness 1mm).

4.6.4.1 Phantom Data without Catheter

Visual Inspection. The gold standard reconstruction of the phantom data with-
out the catheter at a heart phase of 30% and of 80% are illustrated in Figure 4.13a
and 4.13b. The non-gated FDK reconstruction has motion blur around the left ven-
tricle and the myocardial wall is hardly visible in Figure 4.13c. An example of the
defined regin of interest for the quantitative evaluation is given in Figure 4.13d. The
initial images and the motion-compensated results are presented in Figure 4.14. In
Figure 4.14c, the gated FDK depicts the myocardial wall, but is severely degraded by
noise and streak artifacts. The FFDK and FV have less streak artifact and a lower
noise level, but have a smoother image impression compared to the non-gated FDK
reconstruction, cf. Figures 4.14e and 4.14g. Motion compensation almost eliminates
streak artifacts and further reduces the noise level, see Figures 4.14d, 4.14f and 4.14h.
The CR-CMC reconstruction result at heart phase 30% is given in Figure 4.14a.
The reconstruction shows a good delineation of the left ventricle. In Figure 4.14b,
the results for the CMHPR-MC are presented. The reconstruction shows a sharper
outline of the ventricular border and has a smoother appearance compared to the
non-gated FDK. This can be due to the used reference image, the FV reconstruction
in Figure 4.14g also has a smoother appearance compared to the non-gated FDK
reconstruction. The CR-CMC and the D-CR reconstructions with different initial
images (FDK-MC, FFDK-MC and FV-MC) show comparable and good delineation
of the left ventricle, cf. Figures 4.14a, 4.14d, 4.14f, and 4.14h. Almost no difference
can be seen for the D-CR when using different initial images.

The same observations can be made for the phantom data at a relative heart
phase of 80% in Figures 4.14i to 4.14p.

Quantitative Results. The results of the monochromatic phantom without a
catheter are given in Table 4.4. The CMHPR and CMHPR-MC reconstruction show
minor improvement compared to the non-gated FDK volumes. The FDK reconstruc-
tion highly suffers from noise and streak artifacts, visible in a high rRMSE and lower
UQI value. The CR-CMC, the FFDK-MC and the FV-MC reconstructions achieve
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Method nRMSE rRMSE UQI

CR-CMC 0.042 ± 0.01 0.08 ± 0.01 0.98 ± 0.01

CMHPR 0.056 ± 0.01 0.10 ± 0.01 0.97 ± 0.01

CMHPR-MC 0.055 ± 0.01 0.10 ± 0.01 0.97 ± 0.01

FDK-MC 0.046 ± 0.01 0.09 ± 0.02 0.98 ± 0.01

FFDK-MC 0.046 ± 0.01 0.08 ± 0.02 0.98 ± 0.01

FV-MC 0.046 ± 0.01 0.08 ± 0.02 0.98 ± 0.01

FDK 0.075 ± 0.01 0.14 ± 0.01 0.95 ± 0.01

FFDK 0.059 ± 0.01 0.10 ± 0.02 0.97 ± 0.01

FV 0.057 ±0.01 0.10 ± 0.01 0.97 ± 0.01

non-gated FDK 0.063 ± 0.01 0.12 ± 0.04 0.96 ± 0.01

Table 4.4: The rRMSE and UQI of the dynamic phantom model without a catheter for all
K = 12 heart phases as mean and standard deviation. The best values are marked in bold.

comparable good results, and the image quality improved with respect to the initial
images. The FDK-MC has a slightly inferior rRMSE value, but the same nRMSE
and UQI result as the FFDK-MC and FV-MC.

In Table 4.5, the mean edge sharpness deviation ∆ is given for the phantom data
without a catheter. For the systolic heart phase, the FDK-MC, the FFDK-MC, and
the FV-MC achieve the best result. The result of the mean edge sharpness of the
FDK and the FFDK highly depend on the distribution of the streaks, if a streak
crosses exactly at the edge of the profile, the sharpness measure is deteriorated. The
FV initial volume results vary between both heart phases and hence provides no
stable results. The CR-CMC result also varies slightly between both heart phases,
and shows a slightly increased deviation compared to the FDK-MC. The CMHPR
and the motion-compensated reconstruction (CMHPR-MC) improve the sharpness of
the endocardium compared to the non-gated FDK reconstruction, however, results in
higher sharpness deviations, especially in the systolic heart phase. The mean error τ
of the edge profiles is given in Table 4.6. The best results are achieved with the FDK-
MC, FFDK-MC and FV-MC reconstructions. The FDK and FFDK edge profiles are
highly corrupted by noise and show a higher deviation compared to the gold standard
edge profile. It can be seen that the CMHPR and CMHPR-MC reconstructions have
the same or even a smaller deviation compared to the gold standard than the initial
volumes. The FDK-MC, FFDK-MC and the FV-MC achieve slightly inferior results
than the CR-CMC reconstructions.

4.6.4.2 Phantom Data with Catheter

Visual Inspection. For the phantom dataset with the simulated catheter the re-
sults are shown in Figure 4.15 for a relative heart phase of 30%. The gold standard
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30% relative heart phase

(a) CR-CMC (b) CMHPR-MC

(c) FDK (32 views) (d) FDK-MC

(e) FFDK (f) FFDK-MC

(g) FV (h) FV-MC

80% relative heart phase

(i) CR-CMC (j) CMHPR-MC

(k) FDK (32 views) (l) FDK-MC

(m) FFDK (n) FFDK-MC

(o) FV (p) FV-MC

Figure 4.14: Central slice of initial volumes and motion-compensated reconstructions of the
phantom model without any catheter at a relative heart phase of about 30% and 80% (W
3100HU, C 780HU, slice thickness 1mm).
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Method ∆φ3 Q∆φ3
∆φ9 Q∆φ9

CR-CMC 0.16 ± 0.13 0.10 0.06 ± 0.06 0.04

CMHPR 0.25 ± 0.05 0.23 0.11 ± 0.03 0.10

CMHPR-MC 0.20 ± 0.06 0.18 0.10 ± 0.03 0.10

FDK-MC 0.09 ± 0.10 0.06 0.05 ± 0.05 0.03

FFDK-MC 0.10 ± 0.07 0.09 0.05 ± 0.05 0.04

FV-MC 0.15 ± 0.13 0.10 0.05 ± 0.04 0.04

FDK 0.18 ± 0.12 0.17 0.18 ± 0.05 0.17

FFDK 0.30 ± 0.07 0.30 0.08 ± 0.08 0.05

FV 0.16 ± 0.09 0.14 0.02 ± 0.02 0.02

non-gated FDK 0.65 ± 0.05 0.65 0.32 ± 0.10 0.32

Table 4.5: The mean (∆) and the median (Q∆) edge sharpness deviation of the dynamic
phantom model without a catheter compared to the gold standard at heart phases φ3 ≈ 30 %
and φ9 ≈ 80 %. The best values are marked in bold.

Method τφ3 Qτφ3
τφ9 Qτφ9

CR-CMC 0.13 ± 0.03 0.12 0.07 ± 0.02 0.07

CMHPR 0.14 ± 0.05 0.14 0.08 ± 0.01 0.08

CMHPR-MC 0.14 ± 0.05 0.13 0.07 ± 0.01 0.08

FDK-MC 0.09 ± 0.02 0.08 0.07 ± 0.02 0.07

FFDK-MC 0.09 ± 0.03 0.08 0.07 ± 0.02 0.07

FV-MC 0.12 ± 0.04 0.10 0.06 ± 0.02 0.06

FDK 0.19 ± 0.06 0.20 0.34 ± 0.08 0.34

FFDK 0.18 ± 0.03 0.18 0.30 ± 0.09 0.33

FV 0.14 ± 0.04 0.13 0.19 ± 0.04 0.18

non-gated FDK 0.54 ± 0.11 0.56 0.19 ± 0.03 0.19

Table 4.6: The mean error (τ) and the median (Qτ ) of the accuracy of the dynamic phantom
model without a catheter of the edge profile compared to the gold standard at heart phases
φ3 ≈ 30 % and φ9 ≈ 80 %. The best values are marked in bold.
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reconstruction is given in Figure 4.15a. The non-gated FDK volume suffers from
the motion artifacts around the left ventricle, cf. Figure 4.15b. The catheter causes
severe streak artifacts in the non-filtered and filtered ECG-gated reconstructions, see
Figures 4.15e and 4.15i. Some initial images are less sensitive to the catheter. The
FV, cathFDK and cathFFDK in Figures 4.15g, 4.15k and 4.15m show less streak
artifact. Consequently, the corresponding motion compensated images show a much
better image quality than the results of the FDK-MC and FFDK-MC reconstruc-
tion, see Figures 4.15h, 4.15l and 4.15n. In Figures 4.15f and 4.15j can be seen that
the FDK-MC and FFDK-MC reconstructions suffer from streak artifacts induced by
the catheter and motion compensation does not eliminate these streak artifacts since
the motion estimation is disturbed by them, cf. Figures 4.15f and 4.15j. Overall,
the cathFDK-MC, cathFFDK-MC and FV-MC show comparably good results. In
Figure 4.15c, the CR-CMC results shows a sharp ventricular boundary, but still has
minor streak artifacts. The result of the CMHPR-MC in Figure 4.15d has a smoother
visual appearance compared to the non-gated FDK of the dynamic phantom and is
more similar to the FV volume in Figure 4.15g, which is used as reference volume.

Quantitative Results. For the phantom dataset with the simulated catheter, the
results of the nRMSE, rRMSE and the UQI are given in Table 4.7. For brevity, in
the table only the quality values between the different motion-compensated recon-
structions are illustrated. The FDK-MC and the FFDK-MC have a higher rRMSE
value compared to the other motion-compensated reconstructions, due to the fact
that some streak artifacts are registered onto each other and result in streak arti-
facts in the final motion-compensated reconstruction. The same can be seen for the
UQI values. The smallest nRMSE, but highest rRMSE value was achieved by the
CMHPR-MC. A slightly inferior nRMSE and the smallest rRMSE was achieved by
the cathFDK-MC. Only slightly inferior results are given by the cathFFDK-MC and
the FV-MC. The CR-CMC reconstructions achieve a small rRMSE value and a high
UQI value, however, the rRMSE value is higher than the FV-MC, cathFDK-MC,
and cathFFDK-MC reconstructions. The CMHPR-MC has less streak artifacts com-
pared to the FDK-MC and the FFDK-MC, but results in a higher error compared to
the cathFDK-MC, cathFFDK-MC and FV-MC. The UQI values vary only slightly
among the motion-compensated reconstructions except for the FDK-MC and the
FFDK-MC.

Table 4.8 shows the results for the mean edge sharpness deviation ∆ measure-
ments of the phantom with the catheter. The reference lines and the mean edge
profile are given in Figure 4.16. The best result is given by the FV-MC approach
and the cathFDK-MC. The CR-CMC still shows minor streak artifacts at the lat-
eral wall and achieves minor sharpness values. It is again visible that the FDK-MC
and the FFDK-MC approach have slightly divergent sharpness compared to the gold
standard due to the streak artifacts inside the reconstructions. These artifacts cause
outliers in the line profiles and a higher standard deviation in the sharpness mea-
surements. The cathFFDK-MC shows no improvement compared to the non-filtered
version of cathFDK-MC, which may be due to smoothing out of small structure
of the myocardium in the initial images which cannot be recovered in the motion-
compensated reconstruction. The CMHPR-MC has slightly inferior edge sharpness
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Method nRMSE rRMSE UQI

CR-CMC 0.103 ± 0.01 0.67 ± 0.55 0.94 ± 0.01

CMHPR-MC 0.096 ± 0.01 0.74 ± 0.60 0.94 ± 0.01

FDK-MC 0.174 ± 0.01 0.85 ± 0.34 0.84 ± 0.01

FFDK-MC 0.157 ± 0.01 0.84 ± 0.33 0.87 ± 0.01

FV-MC 0.112 ± 0.01 0.63 ± 0.28 0.93 ± 0.01

cathFDK-MC 0.107 ± 0.01 0.62 ± 0.43 0.94 ± 0.01

cathFFDK-MC 0.108 ± 0.01 0.63 ± 0.37 0.93 ± 0.01

Table 4.7: The rRMSE and UQI of the dynamic phantom model with a catheter for all
K = 12 heart phases as mean and standard deviation. The best values are marked in bold.

results compared to the cathFDK-MC result and varies in sharpness between the two
heart phases.

In Table 4.9, the mean error τ of the edge profiles between the phantom reconstruc-
tions and the gold standard reconstructions is given. The CMHPR-MC has the same
mean error τ as the cathFDK-MC result, however, it varies between the two heart
phases. The best result was again performed with the cathFDK-MC. The remaining
streak artifacts slightly hamper the CR-CMC reconstruction. The FV-MC and the
cathFFDK-MC result in slightly inferior results as compared to the cathFDK-MC.

Overall, the cathFDK-MC, cathFFDK-MC and the FV-MC differ only slightly
when considering all quantitative results. The CR-CMC achieves slightly inferior
results compared to the cathFDK-MC, cathFFDK-MC and the FV-MC. Given the
results for the CMHPR-MC, the error is inferior compared to the cathFDK-MC,
the cathFFDK-MC, the FV-MC, and the CR-CMC. The FDK-MC and FFDK-MC
are slightly degraded by streak artifacts which are still present after the motion-
compensated reconstruction.

4.6.4.3 Porcine Data

Visual Inspection. The non-gated FDK reconstruction of the porcine data p1 il-
lustrates a doubled catheter and blurred endocardium edges, since the non-gated
FDK reconstruction averages over all heart phases, cf. Figure 4.17a. The motion-
compensated reconstruction of the CR-CMC algorithm is shown in Figure 4.17b. In
Figure 4.17c, the result of the CMHPR-MC is given. The visual appearance of the
endocardial boundary is smoother than in the other motion-compensated reconstruc-
tions. An improvement is achieved compared to the initial gated FDK reconstruc-
tions. The gated FDK displays the sharp contours of the endocardium, however,
prominent streak artifacts are apparent, cf. Figure 4.17d. A better result is provided
by the FFDK and FV reconstruction in Figure 4.17h and 4.17f. However, both ex-
hibit blurred streak artifacts and are severely smoothed. Looking at the cathFDK
reconstruction in Figure 4.17j, the artifacts from the catheter are removed, but the
noise is still present in the volume. The noise is reduced in the cathFFDK volume
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(a) Non-gated FDK
result of static
phantom.

(b) Non-gated FDK
result of dy-
namic phantom
with catheter.

(c) CR-CMC (d) CMHPR-MC (e) FDK (32 views) (f) FDK-MC

(g) FV (h) FV-MC (i) FFDK (j) FFDK-MC

(k) cathFDK (l) cathFDK-MC (m) cathFFDK (n) cathFFDK-MC

Figure 4.15: Central slice of initial volumes and motion-compensated reconstructions of the
phantom model with a catheter at a relative heart phase of about 30% (W 3100HU, C
780HU, slice thickness 1mm).
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Method ∆φ3 Q∆φ3
∆φ9 Q∆φ9

CR-CMC 0.21 ± 0.12 0.18 0.21 ± 0.18 0.21

CMHPR-MC 0.12 ± 0.06 0.13 0.22 ± 0.15 0.19

FDK-MC 0.20 ± 0.12 0.19 0.34 ± 0.16 0.32

FFDK-MC 0.14 ± 0.10 0.15 0.18 ± 0.14 0.21

FV-MC 0.11 ± 0.07 0.07 0.11 ± 0.07 0.10

cathFDK-MC 0.14 ± 0.05 0.16 0.07 ± 0.05 0.07

cathFFDK-MC 0.15 ± 0.13 0.11 0.09 ± 0.06 0.09

Table 4.8: The mean (∆) and the median (Q∆) edge sharpness deviation of the dynamic
phantom model with a catheter compared to the gold standard at heart phases φ3 ≈ 30 %
and φ9 ≈ 80 %. The best values are marked in bold.

Method τφ3 Qτφ3
τφ9 Qτφ9

CR-CMC 0.42 ± 0.25 0.36 0.29 ± 0.04 0.30

CMHPR-MC 0.26 ± 0.10 0.26 0.33 ± 0.07 0.31

FDK-MC 0.47 ± 0.20 0.44 0.59 ± 0.18 0.63

FFDK-MC 0.39 ± 0.13 0.38 0.48 ± 0.14 0.52

FV-MC 0.28 ± 0.15 0.21 0.28 ± 0.06 0.28

cathFDK-MC 0.26 ± 0.15 0.25 0.25 ± 0.04 0.24

cathFFDK-MC 0.27 ± 0.17 0.26 0.28 ± 0.10 0.28

Table 4.9: The mean error (τ) and the median (Qτ ) of the accuracy of the dynamic phantom
model with a catheter of the edge profile compared to the gold standard at heart phases
φ3 ≈ 30 % and φ9 ≈ 80 %. The best values are marked in bold.
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(a) (b)

Figure 4.16: Measurements of the edge response profile for the catheter phantom. (a) Vi-
sualized lines for edge response function and sharpness for the catheter phantom. (b) Mean
edge response profile for phantom dataset with catheter of the different motion compensa-
tion algorithms at 30% heart phase.

in Figure 4.17l. The motion-compensated reconstructions yield improved results, cf.
Figures 4.17e, 4.17g, 4.17i, 4.17k and 4.17m. Overall, there is not much difference in
image quality for the CR-CMC, the FV-MC, the cathFDK-MC and the cathFFDK-
MC, only the intensities of the remaining streak artifacts vary slightly. The same can
be seen for the reconstruction of p1 at a heart phase of 80% in Figure 4.18 and the
second porcine model p2 at a heart phase of 20% in Figure 4.19 and at a heart phase
of 80% in Figure 4.20.

Since it is now possible to reconstruct a varying number of heart phases with
improved image quality, the dynamics of the heart can be visualized and analyzed.
Different heart phase reconstructions of the porcine model p1 with the cathFDK-MC
are given in Figure 4.21.

Quantitative Results. In Table 4.10, the results for the sharpness measures are
given for the clinical data. An example of the reference lines and the resulting mean
edge profile is illustrated in Figure 4.22. The cathFFDK-MC and the CR-CMC have
the steepest edge, however the cathFDK-MC also has a well delineated edge profile
and differs only slightly. The CR-CMC edge sharpness for p1 is inferior compared
to the cathFDK-MC approach, however, CR-CMC shows a high standard deviation
compared to the cathFDK-MC approach for p2. The FDK-MC and the FFDK-
MC images result in slightly inferior results for both datasets due to the different
magnitude of streaking artifacts, e.g., a catheter or a pacing electrode. The FV-MC
exhibits a high variation between the two porcine models and hence produces no stable
results. The CMHPR-MC provides no reliable edge information, cf. Figure 4.22b.
This might be due to the fact that the reference image (FV) already misses this
information and, thus, the CMHPR-MC cannot recover it.
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(a) Non-gated FDK

(b) CR-CMC (c) CMHPR-MC (d) FDK (e) FDK-MC

(f) FV (g) FV-MC (h) FFDK (i) FFDK-MC

(j) cathFDK (k) cathFDK-MC (l) cathFFDK (m) cathFFDK-MC

Figure 4.17: Axial central slice of initial volumes and motion-compensated reconstructions
of porcine model p1 at a relative heart phase of about 30% (W 2400 HU, C 226 HU, slice
thickness 1 mm). The image data was provided by Prof. Dr. Heidbüchel and Dr. De Buck
from the University of Leuven, Belgium.
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(a) Non-gated FDK

(b) CR-CMC (c) CMHPR-MC (d) FDK (e) FDK-MC

(f) FV (g) FV-MC (h) FFDK (i) FFDK-MC

(j) cathFDK (k) cathFDK-MC (l) cathFFDK (m) cathFFDK-MC

Figure 4.18: Axial central slice of initial volumes and motion-compensated reconstructions
of porcine model p1 at a relative heart phase of about 80% (W 2400 HU, C 226 HU, slice
thickness 1 mm). The image data was provided by Prof. Dr. Heidbüchel and Dr. De Buck
from the University of Leuven, Belgium.
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(a) Non-gated FDK

(b) CR-CMC (c) CMHPR-MC (d) FDK (e) FDK-MC

(f) FV (g) FV-MC (h) FFDK (i) FFDK-MC

(j) cathFDK (k) cathFDK-MC (l) cathFFDK (m) cathFFDK-MC

Figure 4.19: Axial slice 28mm from the central slice of initial volumes and motion-
compensated reconstructions of porcine model p2 at a relative heart phase of about 20%
(W 2400HU, C 226HU, slice thickness 1 mm). The image data was provided by Prof. Dr.
Heidbüchel and Dr. De Buck from the University of Leuven, Belgium.
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(a) Non-gated FDK

(b) CR-CMC (c) CMHPR-MC (d) FDK (e) FDK-MC

(f) FV (g) FV-MC (h) FFDK (i) FFDK-MC

(j) cathFDK (k) cathFDK-MC (l) cathFFDK (m) cathFFDK-MC

Figure 4.20: Axial slice 28mm from the central slice of initial volumes and motion-
compensated reconstructions of porcine model p2 at a relative heart phase of about 80%
(W 2400HU, C 226HU, slice thickness 1 mm). The image data was provided by Prof. Dr.
Heidbüchel and Dr. De Buck from the University of Leuven, Belgium.
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Figure 4.21: Illustration of different heart phases of porcine model p1 reconstructed using
the cathFDK-MC method (W 2400 HU, C 226 HU, slice thickness 1 mm). A number of
K = 12 heart phases representing one heart cycle. Starting at a relative heart phase of
about 10% (left upper corner) and continuing from left to right and top to bottom with a
relative heart phase increment of about 1

12 · 100 %. The image data was provided by Prof.
Dr. Heidbüchel and Dr. De Buck from the University of Leuven, Belgium.

p1 p2

Method Λφ3 QΛφ3
Λφ3 QΛφ9

CR-CMC 24.81 ± 6.40 26.85 52.22 ± 10.42 52.32

CMHPR-MC 15.15 ± 4.96 14.54 12.06 ± 6.93 12.16

FDK-MC 24.18 ± 7.02 23.85 42.20 ± 9.42 42.64

FFDK-MC 24.33 ± 2.15 24.12 45.46 ± 11.9 39.52

FV-MC 22.44 ± 4.76 21.20 48.44 ± 4.58 47.73

cathFDK-MC 25.04 ± 8.21 27.57 47.82 ± 3.95 48.52

cathFFDK-MC 26.60 ± 7.26 28.55 49.45 ± 5.26 47.69

Table 4.10: The mean (Λ) and median (QΛ) edge sharpness of the porcine models p1 and
p2 at the heart phase φ3 ≈ 30 % . The best values are marked in bold.
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(a) (b)

Figure 4.22: Measurements of the edge response profile for the porcine model p1. (a)
Visualized lines for edge response function and sharpness for the porcine model p1. (b)
Mean edge response profile for porcine dataset p1 of the different motion compensation
algorithms at 30% heart phase.

4.7 First Clinical Patient Data

For a first clinical patient dataset, image acquisition was performed using an Artis
zeego system (Siemens AG, Healthcare Sector, Forchheim, Germany). The imaging
and contrast protocol of the previously presented porcine models [De B 13b, Mlle 13d]
needed to be adapted due to the clinical applicability. The acquisition time was 14 s
capturing 381 projection images with 26 f/s, and an angular increment of 0.52° during
one C-arm rotation. The isotropic pixel resolution was 0.31mm/pixel (0.19mm in
isocenter) and the detector size was 1240 × 960 pixel. The heart rate was stimulated
through external heart pacing to 115 bpm, which is lower as the frequency used for
the porcine models (131 bpm). Furthermore, the pacing was performed in the right
ventricle instead of the right atrium due to the facilitation of the clinical workflow.
Due to the lower pacing frequency, no strict gating was performed, since this would
have limited the number of projection images per heart phase to 27. Therefore, the
width of the gating window was set to w = 10 %, resulting in 34 projections available
for reconstruction of each heart phase. For this dataset, a number of K = 10 volumes
were reconstructed, each at a relative heart phase between 0 % and 100 % with an
increment of 10 %. A volume of 91ml undiluted contrast agent fluid was administered
in the pulmonary artery at a speed of 7ml/s beginning 13 s before the X-ray rotation
was started. The X-ray delay was determined by a test bolus injection. Image re-
construction was performed on an image volume of (25.6 cm)3 distributed on a 2563

voxel grid. The cathFDK-MC reconstruction results are presented in Figure 4.23 for
a systolic and diastolic heart phase. It can be seen that the catheter and pacing
electrode still degrade the final image quality, hence, a motion-compensated recon-
struction can be performed with the catheter removed projection images, denoted as
cathFDK-MCCAR. The initial cathFDK reconstructions and the resulting cathFDK-
MCCAR reconstructions are presented in Figure 4.24 for a systolic and diastolic heart
phase, respectively.
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(a) ECG-gated initial reconstruction (FDK)
of a systolic heart phase (34 views).

(b) ECG-gated initial reconstruction (FDK)
of a diastolic heart phase (34 views).

(c) cathFDK-MC reconstruction of a systolic
heart phase.

(d) cathFDK-MC reconstruction of a dias-
tolic heart phase.

Figure 4.23: First results of a clinical patient dataset with the cathFDK-MC reconstruction
of a systolic (≈60±3%) and end-diastolic (≈3±1%) heart phase (W 2080HU, C 110HU,
slice thickness 1mm). The image data was provided by Dr. med. Abt and Dr. med. Köhler
from the Herz- und Kreislaufzentrum Rotenburg a. d. Fulda, Germany.
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(a) ECG-gated initial reconstruction
(cathFDK) with removed catheter of a
systolic heart phase (34 views).

(b) ECG-gated initial reconstruction
(cathFDK) with removed catheter of a
diastolic heart phase (34 views).

(c) cathFDK-MCCAR reconstruction of a sys-
tolic heart phase.

(d) cathFDK-MCCAR reconstruction of a di-
astolic heart phase.

Figure 4.24: First results of a clinical patient dataset with the cathFDK-MC reconstruction
and interpolated projection images of a systolic (≈60±3%) and end-diastolic (≈3±1%)
heart phase (W 2080HU, C 110HU, slice thickness 1mm). The image data was provided
by Dr. med. Abt and Dr. med. Köhler from the Herz- und Kreislaufzentrum Rotenburg
a. d. Fulda, Germany.
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4.8 Challenges
The presented results show that the motion estimation improves the image quality
compared to the initial images. The extent to which the motion vector fields can
represent not only the cardiac wall motion but also the motion of other structures,
e.g., like the valves must be evaluated. The motion of the heart valves follows a
different motion pattern compared to the endocardial wall motion.

Furthermore, the recently developed acquisition and contrast protocol [De B 13b],
which was used in all studies, shows very promising results on the porcine models. In
the clinical application, it provides some challenges. If multiple 3-D cardiac images
are used for identification and localization of wall motion pathologies, no artificial
contraction behavior of the heart is desirable. Hence, the placement of the pacing
electrode is critical. Therefore, right atrial pacing would be the place of choice.
However, placing the electrode inside the right atrium and getting in contact with
the atrial wall is more complicated than placing it inside the right ventricular apex.
The influence of the pacing either inside the right atrium or in the right ventricle on
the heart physiology needs to be evaluated.

Furthermore, in clinical routine, it is not practical to raise the patient’s arms
above the head for the whole procedure [Ecto 09]. Consequently, a higher absorption
occurs in the lateral projections, caused by the superposition of the arms and the
thorax. This leads to a degradation of the image quality in the lateral images and
consequently, inconsistent projection data.

The contrast protocol is also challenging, in order to get a sufficient contrast inside
the heart chambers and to keep the amount of contrast agent to a minimum. The
contrast administration starts before the imaging. Therefore, a test bolus injection
is performed before the 3-D image acquisition to determine the X-ray delay required
to ensure that the heart chambers are filled with contrast. The timing needs to be
identified precisely during the test bolus injection. If the timing is off target, no
contrast is present inside the chambers for the first couple of projections. This yields
again inconsistent projection data.

4.9 Summary and Conclusions
In this chapter, different volume-based motion estimation algorithms were presented
and evaluated for a recently presented one sweep C-arm acquisition protocol. The ini-
tial volumes are all based on retrospective ECG-gating to reconstruct multiple heart
phases. For this approach, in order to estimate cardiac motion, a longer imaging
time is used and, hence, the number of projection images increases compared to the
acquisition protocol used in Chapter 3. The ECG-gated reconstructions (FDK) de-
lineate the endocardial boundaries, but the image quality is still degraded by streak
artifacts and noise. As an image enhancement step, a bilateral filter was applied
to the initial ECG-gated volumes (FFDK) to eliminate noise while preserving the
sharp endocardial boundaries. For this application, a pacing electrode and a catheter
are always present in the scanning field of view, and cause severe streak artifacts
in the ECG-gated reconstructions. Thus, dense objects, i.e. the catheter and the
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pacing electrode need to be segmented (cathFDK) before the reconstruction step.
An additional bilateral filter can be applied on the catheter removed ECG-gated
reconstructions (cathFFDK). Initial images were also reconstructed with a few-view
iterative reconstruction technique (FV), here the prior image constrained compressed
sensing (PICCS) algorithm with the improved total variation (iTV) was used. How-
ever, the resulting volumes have a smoother appearance than a standard non-gated
FDK reconstruction.

Since the initial image quality is not sufficient, three different motion estimation
techniques were compared to each other. The first approach, cardiac registration
with cyclic constraints (CR-CMC) represents the cardiac motion by a dense mo-
tion vector field and introduces cyclic constraints into the registration framework.
The original algorithm was adapted from respiratory motion estimation presented in
Brehm et al. [Breh 12]. Here, the CR-CMC was directly applied to the ECG-gated
reconstructions. The second algorithm, the 3-D/4-D combined multiple heart phase
registration (CMHPR) deforms the sum of the ECG-gated volumes to fit to a reference
volume. The reference volume was reconstructed with the prior image constrained
compressed sensing (PICCS) algorithm with the improved total variation (iTV). The
last motion estimation technique called D-CR performs the motion estimation in-
dividually between two heart phases. The 3-D/3-D deformable cardiac registration
(D-CR) method uses a deformable B-Spline model to represent the cardiac motion.
For this approach, all previously mentioned initial images were evaluated with respect
to the final motion-compensated reconstruction quality.

All three motion estimation algorithms were tested on two simulated phantom
datasets, with and without a catheter, and two porcine models. For the phantom data
the 3-D normalized (nRMSE) and relative root mean square error (rRMSE) and the
universal image quality index (UQI) were computed. In addition, for the phantoms,
the endocardial sharpness and accuracy of the motion-compensated algorithms were
evaluated compared to the gold standard reconstruction without motion. For the
two porcine models, the sharpness of the endocardium was measured in a systolic
heart phase. In general, all motion-compensated reconstructions improved the image
quality compared to the initial volume data. The overall quantitative results show
that if no dense object is present in the field of view, the D-CR algorithm independent
of the initial images and the CR-CMC outperform the CMHPR approach. The
CMHPRmotion-compensated reconstruction improves the image quality compared to
the ECG-gated reconstructions. However, if the endocardial borders of the reference
reconstruction are already blurred during the iterative reconstruction, the CMHPR
cannot recover the sharp edges. For the phantom data with a catheter and the two
porcine models, the D-CR approach on initial images where the catheter and pacing
electrode were removed before the motion estimation step and and the CR-CMC
achieve the best results. For future investigations, different initial images for the
CR-CMC and CMHPR registrations should be considered.

The first patient dataset results are quite promising and indicate that the motion
estimation and compensation approaches can be applied to a broader database in
clinical practice.
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5.1 Summary
In this thesis, algorithmic concepts for dynamic three-dimensional tomographic imag-
ing of the heart chambers using an interventional C-arm CT system have been pre-
sented. C-arm systems are the main imaging modality in interventional cardiac imag-
ing. In general, 2-D fluoroscopic images are acquired during the procedure for anal-
ysis, diagnosis and guidance. Additionally, these systems provide the possibility to
acquire 2-D X-ray images while rotating around the patient. These images can be
used for a 3-D tomographic reconstruction. For 3-D cardiac imaging with an angio-
graphic C-arm system, the acquisition time of a rotational scan lasts several seconds
and thus, covers several heart cycles. The acquired data contains the complete dy-
namic of the heart and thus, requires new reconstruction techniques that consider
these dynamics. The cardiac motion has to be estimated and compensated. There-
fore, the main focus of this thesis lies in the development of new advanced motion
estimation and compensation techniques for 3-D cardiac imaging using interventional
C-arm systems. Two approaches have been investigated in this thesis. They are based
on the surface or on the volume of the heart chambers. The approaches require dif-
ferent image acquisition protocols which must be included in the assessment.

A short introduction into the cardiac anatomy and the cardiac cycle has been given
in Chapter 1. Furthermore, the clinical relevance of interventional three-dimensional
cardiac imaging has been explained in comparison to other modalities used for cardiac
imaging. In particular, the differences between C-arm CT and conventional CT
have been highlighted. The chapter concludes with the summary of the scientific
contribution of the presented work to the progress of research.

Chapter 2 comprises state-of-the-art techniques focusing on the cardiac chamber
and cardiovascular image reconstruction techniques. Most techniques map the re-
construction problem of dynamic objects to the reconstruction formulation of static
objects. The most popular approach utilizes an electrocardiogram (ECG) signal ac-
quired synchronously with the acquisition in order to use only the projection data
belonging to a certain motion state. This results in a sparse angular sampling of the
available projection data, which then leads to a low signal to noise ratio, severe streak
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artifacts and low-contrast structures that cannot be reliably resolved. The amount
of undersampling is dependent on the specific acquisition protocol, the heart rate of
the patient and the imaging framerate. In recent years, many constrained iterative
image reconstruction approaches (often denoted as compressed sensing) using differ-
ent imaging cost functions in order to increase image quality have been proposed.
However, the image quality and visual impression varies tremendously with the pa-
rameter selection and regularization weighting and often results in an over-smoothed
and piecewise constant image impression. Another technique is the estimation of the
motion and the utilization of all the acquired projection data in terms of a motion
compensated reconstruction algorithm. The use of all projection images significantly
increases the signal-to-noise ratio compared to the retrospective ECG-gated images.
However, the motion estimation step is the crucial and challenging part. Volume-
based approaches require a reference image and initial images of sufficiently good
image quality. The generation of initial 3-D images from one rotation of a C-arm
that are useful for motion estimation by deformable registration is quite challenging.
Consequently, motion estimation techniques from other modalities, e.g., CT cannot
be directly applied to the C-arm CT data.

Algorithms specifically developed for cardiac vasculature reconstruction deploy
different assumptions which do not hold for cardiac chambers. The chambers differ
from the sparse and high contrast structure of the coronary arteries, hence, some
pre-processing steps assuming sparse and high contrast objects are not feasible. Fur-
thermore, a larger number of projection images are required for a retrospective ECG-
gated reconstruction of a non-sparse object, like the cardiac chambers.

Two individual approaches have been developed with respect to the respective
clinical application and available image data. The first approach utilizes extracted
surface models and can be used for a one chamber visualization and reconstruction,
e.g., of the left ventricle. The second approach works on initially reconstructed vol-
umes and provides the possibility to reconstruct two or four cardiac chambers. How-
ever, the volume-based approach requires a longer scan time, more contrast agent
and a higher dose.

In Chapter 3, a complete framework for left ventricular tomographic reconstruc-
tion and wall motion analysis has been presented. Dynamic surface models were gen-
erated from the 2-D X-ray images acquired during a short scan of a C-arm scanner
using the 2-D bloodpool information. The acquisition time was 5 s and the patient
showed a normal sinus rhythm. Due to the slow rotation speed of the C-arm, no
valuable retrospective ECG-gated reconstructions were possible. The dynamic sur-
face LV model comprises a sparse motion vector field on the surface, but in order to
perform a tomographic motion-compensated reconstruction, a dense motion vector
field is required. Therefore, the influence of different motion interpolation methods
was investigated. A thin-plate spline, Shepard’s method, a smoothed weighting based
approach and simple averaging were used. The best quantitative results, based on
the Dice coefficient and the mean contour deviation, for a phantom, a porcine, and
three human datasets were achieved using the TPS interpolation approach. Shepard’s
method and the smoothed weighting function might be a good compromise between
computational efficiency and accuracy. The framework also enables the analysis of
the contraction behavior of the LV via the surface model. Functional parameters,
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e.g., ejection fraction and systolic dyssynchrony index known from other modalities
were transferred to C-arm CT data. A feasibility study on simulated phantom LVs
with pathological defects as well as on eight clinical datasets indicate the capability of
the presented framework. The dynamic surface model together with a colored overlay
of the contraction activity in 3-D might provide additional clinically useful informa-
tion. The combination of the wall motion analysis with the motion-compensated
reconstruction is of great value to the diagnosis of pathological regions in cardiac
interventions. In conclusion, the first framework which enables LV wall motion anal-
ysis directly in the catheter lab during a cardiac intervention using intra-procedural
C-arm CT data was presented.

In Chapter 4, a different problem has been addressed, where two or four chambers
shall be reconstructed. Due to the overlap of the chambers, surface-based methods
fail in the 2D segmentation step of the projection images. Therefore, different volume-
based motion estimation algorithms have been presented and evaluated for a recently
presented one sweep C-arm acquisition protocol. A longer acquisition time is required
to allow for retrospective ECG-gating of non-sparse objects to reconstruct multiple
heart phases. The ECG-gated reconstructions delineate the endocardial boundaries,
but the image quality is degraded by streak artifacts and noise. Since the initial
image quality achieved with the previously mentioned techniques is not sufficient,
motion estimation and compensation methods are required. Additionally, the image
quality of the initial images needs to be improved in order to estimate the cardiac
motion reliably. As an image enhancement step, a bilateral filter has been applied
to the initial ECG-gated volumes to eliminate noise while preserving the sharp endo-
cardial boundaries. Due to the clinical acquisition protocol, a pacing electrode and
a catheter filled with contrast agent are always present in the scanning field of view.
Hence, they cause severe streak artifacts in the ECG-gated reconstructions. Thus,
these dense objects need to be segmented and removed before the reconstruction.
An additional bilateral filter has been applied on the catheter removed ECG-gated
reconstructions. Furthermore, initial images have been reconstructed with a few-
view iterative reconstruction technique, here the prior image constrained compressed
sensing (PICCS) algorithm with the improved total variation (iTV) has been used.
However, the resulting volumes have a smoother appearance than a standard non-
gated FDK reconstruction. Three different motion estimation techniques have been
compared to each other. The first approach, the cardiac registration with cyclic mo-
tion constraints (CR-CMC) represents the cardiac motion by a dense motion vector
field and introduces cyclic constraints into the registration framework. The original
algorithm has been adapted from respiratory motion estimation presented in Brehm
et al. [Breh 12]. Here, the CR-CMC was directly applied to the ECG-gated re-
constructions. The second algorithm, the 3-D/4-D combined multiple heart phase
registration (CMHPR) approach deforms the sum of the ECG-gated volumes to fit
to a reference volume. The reference volume was reconstructed with the prior image
constrained compressed sensing (PICCS) algorithm with the improved total varia-
tion (iTV). The last motion estimation technique called 3-D/3-D deformable cardiac
registration (D-CR) performs the motion estimation individually between two heart
phases. The D-CR method uses a deformable B-Spline model to represent the cardiac
motion.
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All three volume-based motion estimation algorithms were tested on two sim-
ulated phantom datasets, with and without a catheter, and two porcine models.
The overall quantitative results show that if no dense object is present in the field
of view, the D-CR algorithm and the CR-CMC outperform the CMHPR approach.
The CMHPR motion-compensated reconstruction improves the image quality com-
pared to the ECG-gated reconstructions. However, if the endocardial borders of the
reference reconstruction are already blurred during the iterative reconstruction, the
CMHPR cannot recover sharp edges. For the phantom data with a catheter and the
two porcine models, the D-CR approach on initial images where the catheter and
pacing electrode have been removed before the motion estimation step achieves the
best results. For future investigations, different initial images for the CR-CMC and
CMHPR registrations should also be considered.

The first patient dataset results are quite promising and indicate that the motion
estimation and compensation approaches can be applied to a broader database in
clinical practice.

5.2 Outlook
This thesis provides approaches and solutions for interventional cardiac chamber re-
constructions using C-arm CT data. The results bring interventional cardiac chamber
imaging closer to the daily clinical routine to support complex cardiac procedures and
interventional diagnosis. For the left ventricular surface-based motion estimation and
compensation method, not only can the motion, extracted from the generated surface
models, be used for analysis of ventricular wall motion, but also the computed dense
motion vector fields can be used to physiologically analyze the cardiac motion. Ad-
ditionally, wall motion analysis can also be performed with the motion vector fields,
estimated from the volume-based approach. Up to now, cardiac functional analysis
in the catheterization lab is not well developed. During the intervention, quantitative
measurements are limited to 2-D fluoroscopic images. The results of this thesis cre-
ated a basis to provide additional functional parameters — such as wall thickening,
fractional shortening, phase of contraction or dyssynchrony index — directly to an
interventional setting.

As discussed before, the volume-based 3-D reconstructions are challenging due to
the heart motion which necessitates high temporal resolution. Multi-segment retro-
spective ECG-gating can be applied to reconstruct 3-D images of different cardiac
phases and different image enhancement techniques can be applied to improve the
initial image quality. In a second step, the motion between these phases can be es-
timated using deformable image registration. The deformation fields found in this
manner are a crucial step for an accurate and precise motion-compensated reconstruc-
tion. Various representations of motion, e.g., B-splines, thin-plate splines or dense
motion vector fields can be used. Therefore, the influence of the different models can
be studied in more detail with respect to the resulting motion vector fields. Addi-
tionally, there exist many different objective functions and regularization techniques
in the field of deformable medical image registration. These can be exploited with
respect to cardiac motion, since the results of this thesis show that it is possible to
estimate cardiac motion from preprocessed images.
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