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Abstract—Reducing radiation dose is a crucial problem in
computed tomography. One approach is to undersample the pro-
jections and compensate for the missing ones using an estimation
method. In this paper, we introduce a novel method to estimate
missing projections in fan-beam geometry. The estimation is done
by iteratively enforcing consistency conditions of the sinogram’s
Fourier-Transform. The completed sinogram can be used for
reconstruction using filtered backprojection algorithm to obtain
images with less artifact. A comparison of our method to other
state-of-the art compensation techniques shows promising results.

Index Terms—Computed Tomography, Sparse Image Recon-
struction, Projection Estimation, Spectral Analysis

I. INTRODUCTION

In X-ray computed tomography projections are sampled
along a trajectory around the patient. The detector read-out
of each view is written row-wise as a set of 1-D projection
images, also referred to as sinogram.
In order to reduce the radiation exposure of a patient during a
CT scan, the projections can be undersampled by measuring,
only a subset of projections. Using filtered backprojection on
a undersampled sinogram might produce streak artifacts in the
resulting image. To avoid those artifacts a compensation for
the missing projections is needed.
Depending on the different imaging geometry every sino-
gram underlies data consistency conditions, e.g. the well
known Ludwig-Helgason consistency condition of the two-
dimensional Radon transform. These conditions have already
been utilized in the field of image reconstruction from a limited
number of view angles [1].
But there are also consistency conditions in the sinogram’s
Fourier Space, as Edholm et al. showed by their derivation
of the frequency-distance relationship for the parallel-beam
sinogram [2]. This relationship attributes contributions in
sinogram-frequency space to points in the object at fixed
distances along the projections. Mazin et al. performed a
similar derivation to arrive at corresponding properties of a
fan-beam sinogram [3]. In the parallel-beam case as well as the
fan- beam case, the derived property is a zero-energy region
in the Fourier transform of the full scan sinogram.
In this paper, we present a method that estimates missing pro-
jection data of undersampled fan-beam sinograms by utilizing
the frequency condition mentioned above.
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Figure 1. Fan-beam CT geometry with equally-spaced detector used for the
estimation of unknown projections

II. METHOD

A. Background

Our method for the estimation of the missing data is
iterative and based on the consistency-conditions of the two-
dimensional Fourier transform of the fan-beam sinogram.
Iterative methods similar to ours have previously been applied
in a variety of other applications where a complete set of data
is not available in measurement space but prior knowledge
is available in a second space that is related to the first
by a simple transformation, in this case the two-dimensional
Fourier transformation. This type of iterative algorithm has
successfully been implemented in image restoration problems
such as band- limited spectral analysis [4], [5] and spectral
deconvolution [6], [7]. Another estimation method for SPECT
based on the consistency-condition of the two-dimensional
Fourier transform of the parallel-beam sinogram is discussed
in [8].

B. Theory

Using the geometry shown in Fig. 1 we denote the distance
from the origin of a point of interest as rp and its angle
from the x-axis as φp, the source-to-isocenter distance as L
and the isocenter-to-detector distance as D. We can model
the object function f(x, y) as a set of many delta function
points. Forward projecting each of them we get sinograms
each with a single sinusoidal curve. Adding all obtained
sinograms of the single points up to one image will give
us the observed sinogram. The derivations in [2] and [3] use
this decomposition of the sinogram to obtain properties from
its Fourier transform. Applying the two-dimensional Fourier
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Figure 2. (a) Appearance of the Fourier transform of a fan-beam sinogram
and (b) the corresponding double-wedge filter

transform on a sinogram of an arbitrary delta function will
give us

P (ζ, k) ≈ e−jk(φp+
π
2 )Jk

(
(k − (L+D)ζ)

rp
L

)
, (1)

where Jk denotes a Bessel function of the first kind of order
k. Because Bessel functions of order k rapidly tend to zero if
the argument is less than k, Eq. (1) implies that the Fourier
transform is approximately zero for all frequencies (ζ, k) such
that ∣∣∣∣ k

k − ζ(L+D)

∣∣∣∣ > rp
L

. (2)

The Bessel function in Eq. (1) is an approximation which
was determined intuitively but validated empirically in [3].
Eq. (2) parametrizes a double-wedge region in the frequency
domain of the sinogram, containing negligible coefficients.
The boundary of this region is described by the equation
ζ = (k/(L+D))(1± L/rp). The single points of the object
within a smaller radius have a larger double-wedge region than
single points located at the maximum radius of our object.
Since we are interested in restoring the complete sinogram
and not only a region of interest, we interpret rp as the
maximum radius of the object. We can now design a fan-beam
double-wedge filter for the estimation of the missing lines
in our algorithm. Fig. 2 (a) shows the Fourier transform of
a sinogram of an object with rp = 200 mm, the double-
wedge region can already be identified and (b) shows the
corresponding double-wedge filter.
Modeling the observed sinogram p(u, β) as a point-wise multi-
plication of the non-undersampled sinogram pideal(u, β) with
a missing projection mask w(u, β), which contains zero-rows
if the projection is not measured and ones otherwise, will
initially violate the condition of the zero-energy double-wedge
region. We can use the designed double-wedge filter to enforce
the condition iteratively in the estimation algorithm by cutting
of the high frequencies corresponding to the missing projec-
tions.
Eq. (1) describes the double wedge region in a continu-
ous manner without respecting discretization problems. For
this reason we applied a morphological erosion operation
in the direction of ζ on the double-wedge filter. After this
pre-processing we can be sure that we will not affect any
frequencies that do not correspond to the frequency condition.

Figure 3. Flow diagram of the iterative double-wedge filtering

C. Algorithm

The main idea of the estimation algorithm is to alternate
between the frequency domain to apply the double-wedge filter
and the spatial domain to insert the current estimation of the
missing projections.
In an initialization step, the observed sinogram has to be
extended by the missing projections. Filling the missing rows
with the mean value of the observed sinogram turned out to
be the best choice. In that way the energy loss caused by
the filtering is compensated. It is important to choose the
initial values in a way that the Fourier coefficients outside the
double-wedge region are not affected, because the algorithm
does not perform on these coefficients.
In one iteration step p(i)(u, β), the current estimate of the
complete sinogram data is zero-padded to the image size of
the next power of two and Fourier transformed in order to get
the Fourier coefficients P (i)(ζ, k) with an increased resolution
of the frequencies. At this point the eroded double-wedge
filter is applied to enforce the condition of zero-energy and
eliminate high frequencies referring to the missing projections.
The double-wedge filtered Fourier coefficients P̂ (i)(ζ, k) are
inverse Fourier transformed to receive a updated version of
the complete sinogram p̂(i)(u, β) which holds new estimates
of the missing projections.
Since the double-wedge filter affects the complete sinogram,
we insert only the estimation of the missing projections from
p̂(i)(u, β) into the sinogram of the next iteration step instead
of using the complete data set of the inverse Fourier transform.
The iteration procedure, where i represents the current itera-
tion step is repeated until a specific convergence criterion is
reached or a fixed number of iterations are performed. The
iterative procedure of the algorithm is illustrated in the flow
digram shown in Fig. 3.

Source-to-isocenter distance, L 598.5 mm
Detector-to-isocenter distance, D 598.5 mm
# of views over 2π 67, 134
# of detector channels 500
Detector channel spacing 1.0 mm
Maximum radius of object, rp 200 mm
Kernel width for erosion 7
Resampling factor 2

Table I
SIMULATION PARAMETERS
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III. RESULTS

We evaluated the algorithm on simulated data, with a
phantom size of 512×512 px, which is shown in Fig. 4 (a). The
maximum radius of the overall object extend is rp = 200 mm.
In a first experiment, 67 projections, over a full-scan trajectory
of 2π, are measured and resampled by the factor of two
in order to achieve 134 views for the reconstruction. The
results related to this parametrization are shown in Fig. 4. In a
second experiment, 134 projections, over the same trajectory,
are measured and resampled up to 268 views. The results
are shown in Fig. 5. The wedge filter was pre-processed by
an morphological erosion operation with a kernel width of 7
px, in the direction of ζ, before applying it on the Fourier
coefficients. Additional simulation parameters related to the
geometry are listed in Tab. I.
In both experiments, we applied our method on the sparse
data with a fixed number of 50 iterations. The result of the
iterative double-wedge filter performing on an input number
of 67 views is shown in Fig. 4 (c) and performing on an input
number of 134 views in Fig. 5 (c). We compared the results to
the reconstructions without any compensation and three other
estimation techniques: Linear interpolation in the direction of
β, Iterative Reconstruction-Reprojection (IRR) [9], where we
achieved the best image quality with 3 iterations in the case of
67 projections and 4 iterations in the case of 134 projections,
and Spectral Deconvolution [6] with a maximum number of
100 iterations. In all reconstruction results negative values
resulting from the FBP have been set to zero, furthermore
all pixel values outside of a region of interest corresponding
to the detector length have been set to zero as well. We used a
Shepp-Logan kernel within the algorithm of IRR and a Ram-
Lak kernel for FBP of all final reconstructions. The intensity
window for displaying the reconstruction results was chosen
to be in the range of 0 to 1 for all images.
In addition to the images of the reconstructions, we calculated
the error of the reconstruction with respect to the phantom
using normalized root mean square error (NMSRE):

NRMSE =
1

xmax − xmin

√∑N−1
t=0 (x1,t − x2,t)2

n
, (3)

where xmin and xmax denote the minimum and maximum
intensity value of the phantom. The pixels belonging to the
image of the phantom are represented by x1 and the pixels
belonging to the reconstruction are represented by x2. The
NRMSE for the different estimation methods is listed in
Tab. II. We implemented the methods using CONRAD [10], a
software framework for cone-beam imaging in radiology. To
get a picture of the run-time complexity for the methods used
in this evaluation, we added the run-time of the estimation
methods in Tab. II. Note that the computation of the results
for all methods was CPU driven (Intel Xeon X5450, 16 GB
RAM).

Compensation Method NRMSE Runtime
Number of views: 64 134 67 134
Without Compensation 8.02% 4.79% - -
Double-Wedge filter 5.60% 3.29% 4.68 s 8.8 s
Linear Interpolation 6.36% 3.61% - -
Spectral Deconvolution 6.89% 4.14% 16.55 s 34.12 s
Iterative Reprojection 7.08% 3.69% 234.49 s 467.54 s

Table II
NORMALIZED ROOT MEAN SQUARE ERROR (NRMSE) AND RUN-TIME OF

EVALUATED METHODS FOR DATA COMPLETION

(a) (b)

(c) (d)

(e) (f)

Figure 4. FBP Reconstruction results using different estimation methods
for missing projections (a) phantom, (b) reconstruction of the undersampled
sinogram with 67 views, (c) reconstruction of the double-wedge filtered
sinogram (50 iterations), (d) reconstruction of the linear interpolated sino-
gram, (e) reconstruction of the sinogram filtered with spectral deconvolution
(100 iterations), (f) reconstruction of the completed sinogram using IRR (3
iterations)

IV. DISCUSSION

We presented a new method to estimate missing projections
in undersampled sinograms based on the principles of data
consistency. In our simulation, the new method performs well
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(a) (b)

(c) (d)

(e) (f)

Figure 5. FBP Reconstruction results using different estimation methods
for missing projections (a) phantom, (b) reconstruction of the undersampled
sinogram with 134 views, (c) reconstruction of the double-wedge filtered
sinogram (50 iterations), (d) reconstruction of the linear interpolated sino-
gram, (e) reconstruction of the sinogram filtered with spectral deconvolution
(100 iterations), (f) reconstruction of the completed sinogram using IRR (4
iterations)

even on very sparse projection data. We showed that the esti-
mated projections are consistent with the observed projections
and thus result in a reconstruction with a low error. This
becomes noticeable in the images of the reconstructions and
the values of the NRMSE. In both results of the experiments, it
can be seen that the double-wedge filter reduces streak artifacts
while preserving the edges of the objects and the their intensity
values.
The frequency condition requires a projection set sampled
along a full-scan trajectory of 2π in order to satisfy Eq. (1).
Usually a projection set from, e.g. a C-arm system, is sampled
with 133 projections along a trajectory of 200◦. Re-binning
this data set to a full-scan data set using data redundancy will
provide about 240 projections as input before applying our
method. The experiment with an initial number of 134 views,
shown in Fig. 5, corresponds to an undersampling of such a

C-arm scan and shows promising results. The first experiments
with 67 given projections shows that our method also performs
good on extremely sparse data sets and its stability does not
depend on the input number of projections. Our algorithm is
easy to implement and might be embedded as an additional
process step in other methods in order to fulfill the data
consistency and therefore improve the image quality.
The parameter rp corresponding to the object extend can
directly be measured from the observed sinogram, if the
geometry of the scanner is known, using trigonometry.
One limitation of the presented method is that the double-
wedge filter estimates parts of the projections in a nearby
neighborhood of the periphery of the object more precisely
than those referring to the inner part of the object. The
inner part can be seen as an object with a smaller extent
and therefore requires a larger shape of the double-wedge
region. This problem might be solved by iteratively decreasing
the parameter rp that corresponds to a circular region of
interest and insert the resulting estimates at the corresponding
positions in u-direction into the sinogram. This method will
be implemented and evaluated in the future.
In upcoming experiments we are going to investigate the
performance of the designed method on real data in order to
evaluate the influence of complex structures, noise [11] and
scattering [12]. Furthermore, the comparison with regularized
iterative methods and additional non-linear filters seems benef-
ical [13].
The presented method to estimate missing projections in
undersampled works well on simulated data. Assuming that
the future evaluation using real data shows as promising re-
sults as using simulated data, iteratively enforcing consistency
condition might be a good approach to reduce the radiation
exposure.
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