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Abstract

Cerebral gliomas represent a common type of cancer of the human brain with
many tumor grades which express a huge diversity in growth characteristics and have
a highly varying malignancy. The optimal treatment for a cerebral glioma is only en-
sured if the underlying tumor grade is known. One very common grading scheme is
the World Health Organization (WHO) Classification of tumors of the central nervous
system, which differentiates four grades. The de facto standard of grading a glioma
is based on bioptic samples which are obtained in invasive interventions. These in-
terventions pose significant risks for the patients and add more time delays between
an initial evidence of the tumor, usually found by X-ray computed tomography (CT)
or magnetic resonance imaging (MRI) and the initiation of a treatment.
On the other side, versatile imaging modalities like CT, MRI and from the field of
nuclear medicine, positron emission tomography (PET) cover various aspects of the
morphology and physiology of a tumor. The information gained from medical imag-
ing thus can indicate the grade of a cerebral glioma without any invasive intervention.
The multimodal imaging often results in a high complexity that makes if difficult to
diagnose the malignancy solely based on the visual interpretation of medical images.

In this thesis, we present approaches for an extensive pattern recognition pipeline
for the grading of cerebral gliomas based on tomographic datasets from MRI, CT,
and PET. More specifically, we use gadolinium contrast-enhanced T1-weighted MRI,
T2-weighted fluid attenuated inversion recovery MRI, diffusion-weighted MRI, non
contrast-enhanced low-dose X-ray CT, and dynamic (multiple acquired time frames)
[18F]-Fluor-Ethyl-Tyrosine (FET) PET. Our setup includes image preprocessing, fea-
ture extraction and calculation, feature normalization, and finally fully automatic
classification.
We propose the imaging modalities and the classifiers which performed best for our
patient population and show that inter-dataset normalization as a preprocessing step
helps to improve the classification rate for cerebral gliomas. As the PET is acquired
over a lengthy time period which can lead to substantial patient motion, we present
a retrospective motion correction technique based on image registration, which im-
proves the image quality of the PET data.
The presented approaches underline that diagnostic statements can be gained from
highly complex, multimodal image data in an automated fashion. We can differenti-
ate not only low- and high-grade tumors, but also aid in distinguishing between the
four WHO grades within some limitations.



Kurzfassung

Gliome repräsentieren eine häufige Krebserkrankung des menschlichen Gehirns.
Es werden mehrere Gliomgrade unterschieden, die wiederum große Variabilität bezüglich
ihres Wachstumsverhalten und ihrer Malignität aufweisen. Die optimale Behandlung
eines Glioms ist nur sichergestellt, wenn der zugrundeliegende Tumorgrad bekannt
ist. Ein verbreitetes Klassifikationsschema auf diesem Gebiet ist die Klassifikation
von Tumoren des zentralen Nervensystems der Weltgesundheitsorganisation (WHO),
welches vier Tumorgrade differenziert. Der Standard bezüglich der Bestimmung des
Tumorgrades ist die histopathologische Aufarbeitung von bioptischen Proben, die in
invasiven Verfahren gewonnen werden. Diese Eingriffe stellen jedoch ein Risiko für
den Patienten dar. Darüber hinaus tragen sie zu einem Zeitverzug zwischen dem ini-
tialen Hinweis auf einen Tumor, häufig gewonnen durch die medizinische Bildgebung,
und der Einleitung einer Behandlung bei.
Im Gegensatz zu invasiven Methoden existieren verschiedene Bildgebungsverfahren
wie die Röntgen-Computertomographie (CT), die Magnetresonanztomographie (MRT)
und, aus dem Bereich der Nuklearmedizin, die Positronenemissionstomographie (PET).
Diese Bildgebungsmodalitäten sind in der Lage, umfassende Aspekte der Tumor-
physiologie und -morphologie darzustellen. Folglich können mithilfe jener Verfahren
Indizien für den zugrundeliegenden Grad des Tumors gewonnen werden. Die multi-
modale Bildgebung generiert jedoch eine hohe Komplexität, die eine auf reiner Bild-
betrachtung basierende Malignitätsdiagnostik erschwert.
In der vorliegenden Arbeit stellen wir Ansätze zur Beurteilung des Tumorgrads unter
Anwendung von Mustererkennungsverfahren auf Bilddaten der MRT, der PET und
der CT vor. Im Detail verwenden wir gadoliniumkontrastiertes, T1-gewichtetes MRT,
T2-FLAIR MRT, diffusionsgewichtetes MRT, natives Niedrigdosis-CT und dynami-
sches PET der mit F-18-Ethyltyrosin (FET) dargestellten zerebralen Aminosäureauf-
nahme. Die vorgestellten Methoden umfassen die Vorverarbeitung der medizinischen
Bilder, die Merkmalsextraktion und -berechnung, die Normierung der Merkmale und
die vollautomatische Klassifizierung.
Wir ermitteln die besten Modalitäten und Klassifikatoren auf Basis unserer Patien-
tenpopulation und zeigen, dass eine Normalisierung der Datensätze im Zuge der
Datenvorverarbeitung die Klassifikationsrate erhöhen kann. Für die PET, die auf-
grund ihrer ausgedehnten Aufnahmedauer potentiell in besonderem Maße von Be-
wegungsartefakten betroffen ist, stellen wir eine Bewegungskorrekturmethode vor,
welche auf starrer und retrospektiver Bildregistrierung basiert. Diese Korrektur
verbessert die Bildqualität der PET signifikant.
Weiterhin zeigen wir, dass mit unserem automatisierten Ansatz mit hoher Genauigkeit
diagnostische Aussagen aus hochkomplexen, multimodalen Bilddaten gewonnen wer-
den können. Nicht nur die Unterscheidung von niedrig- und hochgradigen Tumoren,
sondern darüber hinaus die Abgrenzung der vier WHO-Grade kann in gewissen Gren-
zen realisiert werden.
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Chapter 1

Introduction

1.1 Motivation and Goal

The classification of pathological changes in the structure and function of the hu-
man body are daily tasks in medicine. In many cases, the decision for a class is
based on the physician’s knowledge and experience and is therefore rather subjec-
tive. Motivated by this fact, nowadays more and more guidelines and regulations
for a classification based on hard metrics and quantitative measures are starting to
prevail. This methodology ensures more objective and reproducible choices with less
intra-, and inter-rater variability. Very lately, the fully automatic processing of med-
ical data by methods of pattern recognition started to emerge. The examples of
fully automated classification are versatile, starting from the well-established pro-
cessing of blood samples and identification of blood cell types with neural networks
[Ceel 07, Swol 03], automated analysis of electrocardiograms (ECG) (e. g. QT-time in-
terval [Hnat 06]), automated seizure detection based on electroencephalograms (EEG)
[Sack 11, Osor 11], automatic glaucoma detection on retinal fundus images of the hu-
man eye [Bock 10, Bern 11], classification of diseases of the human speech system
(e. g. automatic evaluation of dysarthric speech [Noth 11] or the classification of the
emotional state in children’s speech [Stei 09]), and many more.
(Semi-)Automatic classification on the basis of three-dimensional medical image datasets
seems to be very challenging and only few established applications exist, e. g. the
computer aided diagnostic (CAD) systems for the detection of lesions in breast-MRI
[Dorr 11] or in mammographic images [Oliv 10]. Marten et al. [Mart 04] describe an-
other commercial available CAD system for the detection of nodules in thoracic CT,
which is based on a variety of pattern recognition methods (e. g. thresholding, his-
tograms, principal component analysis, and many more). Feulner et al. developed an
automatic lymph node detection and segmentation in chest CT [Feul 12].
Additionally, it is a well-knownfact that data stemming from multiple modalities can
improve the diagnostic performance of manual as well as of machine classification
schemes, e. g. multimodal (ultrasound and mammography) classification of breast le-
sions [Druk 05, Sahi 09].
Cerebral gliomas are a common type of cancer with an incidence of 6 per 100 000
individuals per year in Germany [Well 04]. The most common subtypes of gliomas
are glioblastoma (54%) and other astrocytomas (22%). Another subtype are oligo-
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2 Chapter 1. Introduction

dendrogliomas. The different subtypes are subject to different treatments in clinical
routine which is reflected in the guidelines for the diagnosis and treatment of this tu-
mor entity [Well 04]. The differentiation of these subtypes, namely the classification
of the tumor on basis of medical images and bioptic samples, is an important and
challenging task. The gold standard in terms of diagnostic confidence is the grading
of the tumor based on histologic analysis of invasively gained bioptic samples. The
bioptic grading allows an accurate classification in over 90% of all cases [Well 04].
However, the process of taking the bioptic samples, whether being stereotactic, inci-
sional, or excisional biopsies, in general results in an increased risk for complications
during the surgery. This is reflected by a reported morbidity ranging from 5-9%
[Sawi 98, McGi 05] for stereotactic biopsies, which evolves in the desire for accurate
non-invasive grading.
It is of general consent that MRI of the human brain is the standard for an initial
diagnosis of glial tumors. A variety of different MRI sequences are acquired to cover
different aspects of the tumor. Nevertheless, other imaging modalities such as e. g.
X-ray CT and emission computed tomography (ECT) using radiopharmaceuticals
can add beneficial information for the task of tumor grading/classification. In the
end, it is common that for each patient five to ten 3-D medical datasets from dif-
ferent modalities and different time points exist, each covering the same anatomical
structures. This results in an increased complexity for the physician to diagnose and
classify the multitude of images.
Machine classification approaches promise the ability to overcome the limitations of
human beings, by providing classification on high-dimensional data based on objec-
tive measures/features.

The aim of this work is to develop and evaluate a machine classification approach
based on objective measures for multimodal datasets of patients with gliomas of the
brain with the help of established pattern recognition techniques.

1.2 State of the Art

In order to put the classification performance of our automatic approach based on
multimodal image data into context, we compare our results with the results in the
literature. As studies with comparable pathology, patient population, and image
data are rare, we outline the state of the art for manual and single-modality clas-
sification as well as for automatic approaches. As gliomas are a pathology of the
soft-tissue compartment of the human brain, MRI due to its high contrast on that
field, is considered as the standard imaging modality. This is reflected by a high
number of studies available in the literature: For example, Law et al. [Law 03] report
a sensitivity and specificity for manual discrimination between low and high-grade
gliomas on 160 patients solely on conventional MRI images (namely contrasted T1 and
T2-FLAIR) of 72.5% and 65%. When features based on dynamic contrast-enhanced
perfusion MRI (DCE-MRI) and MR spectroscopy (MRS) are taken into account, the
overall classification performance could be increased to 93.3% sensitivity and 60% and
specificity. More recent studies refine their classification methods based on MRS and
DCE-MRI and achieve sensitivities and specificities of 91.5% and 100% respectively,
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on 74 patients [Serv 11] and 94.7% and 93.7% on 51 patients [Arvi 09], again for the
differentiation between low-grade and high-grade tumors. Machine classification ap-
proaches on MRI images are scarce, Zöllner et al. [Zoll 12, Zoll 10] report a sensitivity
and specificity of 89% and 84% with their automatic approach based on DCE-MRI
features, using a support vector machine (SVM) based classifier and feature reduc-
tion with principal component analysis (PCA). Zacharaki et al. [Zach 09] report a
sensitivity and specificity of 85% and 96% for the differentiation of low- and high-
grade gliomas using an SVM-based classifier as well. They extract shape, intensity,
and texture features from T1-, contrasted T1-, T2-, T2-FLAIR-, and DCE-MRI out of
manually defined regions of interest of 74 patients and perform SVM recursive feature
elimination. In a later report, Zacharaki et al. [Zach 11] reach a classification accuracy
of 94.5% for differentiation of low- and high-grade gliomas with a k-nearest neighbor
classifier and 76.2% classification accuracy for a four-class problem (metastasis of
other tumors, WHO2, WHO3, WHO4 gliomas). Besides DCE-MRI, which can be
used to obtain perfusion parameters as cerebral blood flow and volume (CBF/CBV)
or mean transit time (MTT), dynamic X-ray CT allows the calculation of CBV, CBF
and MTT as well. For example, Ellika et al. [Elli 07] find a sensitivity and specificity
of 92.9% and 100% on 19 patients with a manual classification based on CBF, CBV
and MTT features for the differentiation of high- and low-grade gliomas. In a more
recent study, Beppu et al. [Bepp 11] confirm these results and achieve a sensitivity
and specificity of 90.9% and 83.3% for the same classification task (manual, low- vs.
high-grade).
Although CT and MRI have a high sensitivity when it comes to finding intracranial
suspicious formations [Lang 05, Sant 12], with PET or PET/CT, nuclear medicine
offers a diagnostic device which is able to detect and grade gliomas as well. Various
tracers are successfully applied for this task. Among them, the most commonly used
are radioactive labeled sugars (FDG) and amino acids (FET, MET, FLT). FDG offers
a sensitivity and specificity of 93% and 85% [Padm03]. It is a general consent that
amino-acids offer a better diagnostic performance for the differentiation of the sub-
types of gliomas [Tsuc 08] and the differentiation from other diseases [Paul 06, Lau 10].
Pöpperl et al. [Popp 07, Popp 06] even report 94% sensitivity and 100% specificity for
the manual classification of high- and low-grade gliomas on dynamic PET. However,
in a recent study by Rapp et al. [Rapp 13] lower sensitivity and specificity of 80% and
65% are reported for the same task. Various studies indicate an increased manual
classification accuracy when PET and MRI are combined, compared to the single
modalities [Floe 05, Paul 05].

1.3 Contribution to the Progress of Research

The aim of this work was to implement a software setup, which covers all important
steps for an automated classification for the application on multimodal image data
of brain tumor patients and to evaluate the possibilities and limitations of this setup.
The key parts of our solution are data registration, data normalization, feature ex-
traction, feature preprocessing and classification. We achieved the following goals,
which, to the best of our knowledge, have never been reported on that field:
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• We were the first group that successfully classified gliomas from heterogeneous
and multimodal datasets from clinical routine [Ritt 12, Ritt 13a], opposed to
existing experiments that were carried out on data gained from single devices
and single modalities. With our automated methods, we consistently achieved
10-15 % higher absolute classification rates for the patient population when
compared to those extracted from the written medical reports of the patients.
Additionally, we could show that deriving features from multimodal data greatly
improves classification accuracy.

• For the derivation of features from multiple modalities, we developed a software
framework which extracts data from three-dimensional, multimodal, static and
dynamic image data (e. g. PET, SPECT, MRI, CT) and which, besides other
pre-processing algorithms, incorporates a powerful rigid registration method.
The accuracy of this registration of FET-PET images and MRI images has
never been evaluated so far. From literature, only results for other PET tracers
or artificial datasets were reported. To our best knowledge, we conducted the
first clinical study for the accuracy of an automatic registration in this field.
We found the accuracy to be excellent [Ritt 10, Kief 11] and sufficient for the
multimodal feature extraction.

• Especially MRI and PET images show large intensity variations when acquired
on differing machines, using differing imaging protocols. To overcome these
limitations, we applied MRI normalization and quantitative accurate emis-
sion tomography in the field of the machine classification of gliomas [Ritt 11b,
Ritt 13b], which has not been reported from literature yet. Additionally, we
developed a motion correction technique in order to compensate for the poten-
tially confounding influences of patient movement in dynamic PET.

• Besides the two-class problem of differentiating low and high tumor grades, more
refined classification tasks are of huge interest. Ultimately, the differentiation of
all of the four individual WHO grades for gliomas are the goal. However, this is a
challenging task and thus has never been reported so far. With aforementioned
techniques, we were able to differentiate the four WHO glioma grades to a large
extent.

1.4 Structure of this Work
In the next chapter (Chapter 2) we provide the medical background for our classi-
fication methods (Chapter 5), namely, details and functions of the medical imaging
devices (covering SPECT/PET, MRI, and X-ray CT) and the underlying pathophys-
iology of cancer and especially gliomas.
Chapter 3 provides the inclusion criteria for patients in our study and a description
of the patient population. Additionally, the medical imaging devices and the imaging
parameters that were used are given.
The necessary preprocessing that we apply, such as the definition of the volume of
interest (VOI), inter-dataset normalization, image registration, and feature extrac-
tion/normalization and selection are explained in Chapter 4. Our dynamic PET
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motion correction method is presented in the same chapter.
The different machine classifiers that we use on the preprocessed and extracted fea-
tures are characterized in Chapter 5. We also provide the mathematical background
of the classifiers and show examples for their decision boundaries in the same chapter.
Additionally the procedure for a conventional receiver operating characteristic (ROC)
of the gliomas is explained and measures for inter-rater concordance are introduced.
Chapter 6 presents the achieved classification results.
These results and the limitations of our study are discussed and compared to the
state of the art in Chapter 7.
Chapter 8 provides a short summary of our work, followed by an outlook, motiva-
tion, and suggestions for future enhancement on the topic of machine classification
in gliomas of the brain.
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Chapter 2

Medical Imaging and Cerebral
Gliomas

This chapter aims at providing some background on the medical imaging technology
which is used for our study on classification of glioma grades. Herein, ECT and
MRI are discussed more comprehensively compared to CT, as the majority of the
experiments was carried out on those modalities. At the end of this chapter, a
section about cerebral gliomas explains the foundations of this tumor class.

2.1 Quantitative Emission Tomography

Excerpts of the text in the current section were published in the European Journal
of Nuclear Medicine and Molecular Imaging [Ritt 11b] and as a chapter in the book
Molecular Imaging in Oncology [Ritt 13b]. Although these excerpts mainly cover as-
pects of SPECT, many methods are applicable for PET as well.

2.1.1 Introduction

Single-photon emission computed tomography (SPECT) and PET allow the visual-
ization of the distribution of radioactivity within the human body. Both modalities
are widely used for clinical purposes (for reviews, see e. g. Bockisch et al. [Bock 09],
Schulthess et al. [Schu 06]). SPECT and PET also promise to exactly quantify the
concentration of radioactivity within a given volume of tissue in absolute units, e. g. as
kilobecquerels per cubic centimeter. This process is compromised by photon scatter
[Jasz 84, Kora 88, Frey 94], photon attenuation [LaCr 94, Blan 96, Rome 06, El F 99]
and partial volume artifacts [Kess 84, Gewo 00]. In PET, options to correct for these
confounding variables have been developed and validated several decades ago (for a
review, see e. g. Schelbert et al. [Sche 98], Boellard et al. [Boel 09]), owing to the tech-
nical advantages offered by positron decay and coincidence detection. In SPECT,
technical progress in that regard has been considerably slower with various reports
emphasizing the lack of quantitative abilities [Germ01, Lewi 06, Sido 06]. For ori-
entation, a simplified diagram of the image formation chain for quantitative PET
and SPECT is given (Figure 2.1). We will start this overview with the reconstruc-

7
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tion that nowadays incorporates many correction methods mentioned in the Sections
2.1.3-2.1.5. We will then focus on attenuation, scatter, and partial volume effects:
In each of the paragraphs, a short explanation of the underlying effect and examples
of correction techniques are given. In addition, we will briefly outline a calibration
technique. We will conclude with a discussion of the potential of SPECT and PET
quantification for clinical applications and present some validation studies. For sim-
plification, we assume in the following that the kinetics of the activity distribution
that is of interest are slow with respect to the imaging time. If this is not the case,
significant quantification errors will occur and other approaches like dynamic SPECT
and dynamic PET (as in our study) are beneficial [Gull 10].

Figure 2.1: Illustration of a simplified image formation chain in ECT. The image
of the true activity distribution is confounded by several effects including attenua-
tion, scatter, partial volume and motion. The reconstruction, along with corrections
for the mentioned effects, delivers a measured, three-dimensional count distribution.
With a calibration step, the count distribution is translated into a measured activity
concentration.

2.1.2 Quantitative Reconstruction

In general, two main families of reconstruction techniques are commonly used in
clinical emission computed tomography: non-iterative (e. g. filtered back-projection,
FBP) and iterative methods. Despite its higher demands on computation, iterative
reconstruction seems to be superior with regard to quantification when compared
to non-iterative methods. This is, in principle, mainly due to the possibility to im-
plement corrections and system modeling methods more easily into iterative recon-
struction than into non-iterative methods. Consequently, several publications report
higher quantitative accuracy of iterative reconstructions compared to non-iterative
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methods [Gill 91, Rose 95, Tsui 94].
For SPECT, in the following the most important parts of the system modeling will
be explained (Figure 2.2). In general, the application of collimator-detector response
models in the reconstruction leads to improved system resolution and quantitative
accuracy, as can be seen in the literature listed in the following paragraphs.
As an example, one assumption of the FBP algorithm is that the sensitive volume of
one collimator hole is of cylindrical shape. However, in reality, the sensitive volume
is more cone-shaped. As a result, the system resolution, defined as full width at half
maximum (FWHM) of a point source depends approximately linearly on the distance
between source and detector for a gamma camera that employs absorptive parallel
hole collimation. This effect, known as geometric response function, can easily be in-
corporated as a mathematical model into an iterative reconstruction – in contrast to
FBP. The intrinsic effects of the detector are characterized by the intrinsic response
function. This function mainly describes the effect of scatter in the crystal itself and
the uncertainty in the position estimation of a detected photon.
In SPECT imaging, a compromise between collimator efficiency and image quality
has to be made. Thicker collimator septa reduce the amount of septal penetration,
however, they also reduce the efficiency of the collimator by covering sensitive area
of the detector. As a result of the trade-off, a certain amount of septal penetration
is allowed (e. g. 5%). In general, the probability for photons penetrating the septa of
the collimator is described by a septal penetration function and can be incorporated
to correct for the effect. Another possible interaction between the photons and col-
limator septa is scatter. The probability that photons are scattered by the septa is
modeled by the septal scatter function and is in general more important for medium
and high energy nuclides.
The combination of the four parts of the response function (see Figure 2.3) is known
as the collimator-detector response function. It is used to correct for the aforemen-
tioned effects in the reconstruction step and consequently helps to improve system
resolution and quantitative accuracy.
Analytical corrections for the response functions that can be implemented in non-
iterative techniques are possible. However, there are several reports that show that a
superior resolution can be achieved when corrections are implemented using iterative
reconstruction techniques [Kohl 98b] and quantitative measures [Kohl 98a, Pret 98].
For example, Römer et al. [Rome 06] report the use of a three-dimensional depth de-
pendent blur modeling (OSEM 3-D reconstruction) in a clinical environment. A more
detailed review on the modeling of the collimator-detector response function can be
found in [Zaid 06b].
For clinical SPECT quantification, iterative reconstruction is state of the art and
in general recommended. Corrections for the geometric response and the intrinsic
response are considered to be more important than the modeling of septal scatter
and septal penetration, at least for low energy imaging. They should be applied if
available, as the improved spatial resolution will significantly decrease the confound-
ing effect of partial volume and thus result in higher quantitative accuracy of small
structures.
For PET, due to radically different imaging principles compared to SPECT, the

system modeling is different as well. Because of its coincidence detection, a so called
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Figure 2.2: Simplified illustration of some components that form the collimator-
detector response function. The geometric response function (lower left) models the
source-to-collimator distance effects. The measured response in the crystal varies with
source-to-collimator distance. The intrinsic response function (upper left) describes
the effects of interactions in the detector crystal itself (the point source is collimated
to form a pencil beam). The septal scatter function (upper right) and septal pene-
tration function (lower right) model the interactions between gamma radiation and
the collimator.
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Figure 2.3: The combination of models for the intrinsic response, the geometric
response, the septal scatter and the septal penetration is called the collimator-detector
response function. It can be integrated into the (iterative) reconstruction step.

electronic collimation is applied. This omits the necessity of mechanical collimation
in modern devices, compared to older devices with multiple detector rings that used
collimators in order to prevent coincidence between different rings. However, prob-
lems similar to SPECT, like the effects of depth of interaction and crystal scatter
exist. These effects can be modeled in an intrinsic response function and can be
incorporated in the iterative reconstruction, as it is the case for SPECT. An example
for this is Siemens TrueX reconstruction technique. It incorporates corrections for
the depth of interaction effect. This effect otherwise would lead to the assumption
of an erroneous line of response (LOR). The correction achieves an increased spatial
resolution and increased quantitative accuracy, especially in the peripheral parts of
the camera field of view [Ande 08]. For an illustration of this effect, see Figure 2.4

(a) Without TrueX (b) Siemens TrueX

Figure 2.4: Illustration of the depth of interaction effect for PET. Without corrections
(a), the reconstruction assumes that the decay took place on a wrong line of response
(LOR). The TrueX (b) iterative reconstruction technique corrects for the wrong LOR.

2.1.3 Attenuation Correction

ECT images are affected by attenuation artifacts. In the case of SPECT imaging, the
probability PDet that a gamma quantum emitted at position d ∈ R3 (see Figure 2.5)
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reaches the detector at position D ∈ R3 (assumed that it is emitted in the proper
direction) is calculated according to Equation 2.1 :

PDet ∝
∫
C

−µ(x, y, z) ds

with the two endpoints of the path C given by D and d .
(2.1)

PDet ∝
∫
C

−µ(x, y, z) ds

with the two endpoints of the path C given by D1 and D2 .
(2.2)

The integral covers essentially the path C (by approximation a straight line) of
the radiation from its origin through the object, to the location of detection. The
probability for SPECT consequently depends on the (unknown) location of the de-
cay d and on the linear attenuation coefficients µ(x, y, z) of the object. In contrary,
in PET imaging the probability only depends on the linear attenuation coefficients
along the line of response (LOR) D2 −D1 where the decay happened, but not on
the exact location in this LOR (Equation 2.2).
For the attenuation correction in the reconstruction step, the spatial distribution of
the attenuation coefficients of the examined object for the photon energy of the ra-
dionuclide used needs to be known. Several methods for obtaining attenuation maps
have been employed so far:
The maps can be estimated, if the contours of the object (e. g. via rough segmenta-
tion of the SPECT or PET image) and the attenuation coefficients are known (e. g.
attenuation coefficient of water). The object can be assumed to be homogeneous with
regard to this coefficient (Chang’s correction [Chan 78]). This method is still applied
very successfully to SPECT imaging of the brain, where only one class is predominant
(soft brain tissue). However, it is not very accurate for ECT imaging of the thorax
or pelvis, where large amount of other tissues (e. g. lung and bone) are present.
Another way of generating the attenuation maps is through a simple transformation
of a transmission scan. The transmission images need to be converted to attenuation
factors at the effective energy of the emission scan (140 keV for Tc-99m, 511 keV for
PET) and corrected for the spatial registration between the emission and transmis-
sion images. The resulting attenuation map can be easily integrated into common
iterative reconstruction techniques.
Before the introduction of hybrid SPECT/CT and PET/CT devices, radionuclide
(source-based) transmission measurements (e. g. Gd-153, Tc-99m, Ba-133, Cs-137,
Ge-68/Ga-68) were commonly employed. These source-based methods have the ad-
vantage that the same detectors could be used for both the emission and the transmis-
sion scans, which makes the method very cost-efficient. On the other hand, if using
the same detectors severe disadvantages arise. This often leads to poor image quality
due to a poor signal-to-noise ratio and due to the limited spatial resolution of the
gamma camera detectors. Furthermore, because of radiation safety considerations,
only relatively weak transmission sources are used, which results in lengthy trans-
mission scans (> 10 min). Additionally, the relatively high photon energies of the
transmission sources (100-511 keV) lead to poor tissue contrast compared to X-ray
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CT with effective energies of 40-90 keV. This also limits the quality of image fusion
between emission and transmission images.
With the advent of hybrid devices and thus the availability of highly correlated high
quality X-ray CT transmission scans, it is now standard to use these scans not only
for high quality fused viewing but also for attenuation correction. The CT scans,
usually in Hounsfield units, have to be converted to linear attenuation coefficients at
the respective photon energy. It is important to note that the transformation of the
CT transmission image to attenuation factors at the effective energy of the emission
scan can introduce errors [Zaid 03]: First the transformation is specific for different
acceleration voltages and beam filters of the CT. Second the polychromaticity of the
X-ray beam also introduces artifacts, mainly caused by beam hardening. Patient
motion that occurs between the emission and transmission acquisitions in a hybrid
system can lead to artifacts, which in turn could lead to false readings of the SPECT
images. A manual post-registration can help in most cases to prevent such artifacts
[Chen 06].
Attenuation correction is mandatory for accurate ECT quantification. Methods that
rely on the segmentation of contours in SPECT and PET are sufficient for quantifica-
tion in relatively easy anatomies like the brain. Nevertheless, attenuation correction
by CT is the clinical standard and highly recommended for quantification.

2.1.4 Scatter Correction

The simple reconstruction techniques in earlier methods neglected the cross talk
between the individual lines of response. This assumption fails if photon scatter
occurs. Scatter correction is another important requirement for (quantitative) ECT
imaging. Scattered radiation is produced when gamma quanta emitted from decaying
nuclei interact with surrounding atoms. Compton scattering is the prevalent scatter
process in the energy range of clinically-utilized radio-tracers.
The energy ES of the scattered photon depends only on the scattering angle φ and
is given by Equation 2.3, where E0 is the energy of the photon before the scattering
and mec

2 the invariant mass of the electron. The energy transfer thus does not
depend on the density or atomic number of the absorbing material. However, the
total probability that a photon is scattered by this effect depends heavily on the
properties of the absorbing material, most importantly the electron density.
As seen in Equation 2.3, the gamma quanta loose energy and change their momentum
and direction in the scatter process. Because of the intrinsic energy resolution of the
detector, the system cannot discriminate between unscattered quanta and quanta
that have lost a small amount of energy in the scatter process. As a consequence
some scatter is allowed in the image formation.

ES =
E0

1 + Eo

mec2
(1− cos(φ))

(2.3)

In simple FBP, it is assumed that the decay took place exactly perpendicular
to the detection plane and the detection location (for SPECT, under assumption of
parallel-hole collimation). For scattered quanta, because of the change in direction
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(a) SPECT

(b) PET

Figure 2.5: Simplified illustration for a decay event detected with SPECT (a) and
PET (b). For SPECT, the signal of the decay at position d is decreased by atten-
uation effects. The amount of attenuation depends on the (spatially varying) linear
attenuation coefficients µ(x, y, z) and on the distance between the detector and the
decay, namely |D − d|. For PET, the amount of attenuation depends on µ(x, y, z)
and on the distance between the two detector blocks |D1-D2|, but not on the exact
position of the decay on the line of response.
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in the scatter process, not only the distance of the radionuclei along the LOR is un-
known, but also the correct positions of the LOR to the radionuclei. However, not all
information about the originating nuclei is lost. Scattered radiation is therefore often
understood as anisotropic noise that reduces the image quality of an ECT image.
There exist a variety of methods to correct for scattered radiation. Some of them rely
on “passive” methods: For example, the camera’s energy window could be narrowed
or the lower discriminator cut-off of the window could be increased in order to avoid
accepting scattered photons. Koral et al. [Kora 86] reported improved quantitative
accuracy with this technique. A significant drawback of this method is that unscat-
tered photons are also rejected due to the limited energy resolution of the gamma
camera. Even with a relatively small energy window of ±5 keV for Tc-99m (140
keV), on basis of Equation 2.3, photons with scatter angles of up to 30 degrees are
still accepted.
More common approaches utilize dual- [Jasz 84], triple- [Ogaw91] or even multi-
energy [Kora 88] windows. The additional scatter energy windows are placed below
or above the photopeak energy window; the scatter images are acquired simultane-
ously with the photopeak image. For each pixel of the projection image, the amount
of scattered radiation in the photo peak window image is estimated from the scatter
window images. Subsequently, this amount can be subtracted from the projections or
incorporated in the iterative reconstruction. Besides the simple multi-energy window
approach, a multitude of other approaches exist for estimating and correcting for
scatter radiation (for an overview see [Zaid 06a]). Despite the diversity in the meth-
ods employed, many reports stress the importance of an accurate scatter correction
for quantitative ECT. Shcherbinin et al. [Shch 08] and Vandervoort et al. [Vand 07]
incorporate a method based on the work of Wells et al. [Well 98] in their iterative
reconstruction forward projection step that utilizes the Klein-Nishina formula and
report an improved quantitative accuracy in phantoms measurements. Monte-Carlo
methods seem to promise even more accurate results [Floy 84, Ljun 90, Frey 90]. How-
ever, its application in clinical practice is still limited due to the high computational
costs and the patient specificity.
Although many scatter correction techniques are available, only very few are applica-
ble in a clinical environment. Despite their simplicity, dual- or multi-energy window
approaches can be recommended due to their ability for the correction for scattered
radiation and the ease of application. For PET, due to the limited energy resolution
of its detectors, model based scatter estimation techniques are more common. These
methods utilize the emission and transmission images and mathematical models to
estimate the extent of scattered radiation, individually for every patient [Olli 96].
The results from the scientific literature (see Section 2.1.7) for in-vivo quantification
support this recommendation. The more sophisticated techniques still have to prove
their superiority and applicability in daily clinical usage.

2.1.5 Partial Volume Correction

Partial volume effects are caused by the limited spatial resolution of emission tomo-
graphy devices. Region of interest (ROI) in structures with heterogeneous activity
distribution below approx. two-times the FWHM of the spatial resolution are de-
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graded. The activity is either under- or over-estimated, depending on the combina-
tion of “spill-in” and “spill-out” effects. Spill-in refers to the effect that activity from
outside the ROI or structure due to the limited spatial resolution is integrated into
the ROI: The activity inside the ROI is increased. Spill-out is understood as the
activity of the ROI/structure which is distributed over the borders (again due to the
limited spatial resolution) and therefore “lost” for the quantification of that structure:
the activity inside the ROI is decreased.
The degree of the partial volume effect depends on the (spatially varying) system
resolution of the imaging system, the patient (e. g. motion), and the true distribution
of radioactivity in the image.
In SPECT systems, the spatial resolution (which, in the following, is understood as
the FWHM of a point source) is limited mainly by the collimator performance. Unlike
PET, SPECT utilizes absorptive collimation to identify the direction of the photon
LOR. Only a small fraction of the gamma quanta that hit the collimator surface
pass through it. This leads to a heavily limited detection efficiency when compared
to PET systems (see e. g. Cherry et al. [Cher 03, p. 340]). Since there is a trade-off
between spatial resolution and detection efficiency, SPECT collimators are typically
designed with the maximum allowable resolution in order to partially compensate the
limited detection efficiency.
Besides the collimator design and geometry, the achievable spatial resolution is also
influenced by the detector intrinsic resolution (the spatial resolution of the detector
itself, without a collimator). Today, most SPECT detectors are made of a single crys-
tal plate of NaI that illuminates an array of photomultipliers. The intrinsic resolution
of the detector is influenced by the photo-peak energy of the imaged radionuclide and
the crystal thickness. Higher gamma quantum energy leads to better intrinsic reso-
lution, due to a higher scintillation light output. A larger crystal thickness increases
intrinsic resolution, due to the broader spread of the scintillation light before it exits
the crystal.
Clinical SPECT detectors typically possess an intrinsic spatial resolution in the range
of 3-5 mm for Tc-99m. However, the image resolution for the SPECT system depends
highly on the collimator design and the source-to-collimator distance. For parallel-
hole collimation of Tc-99m and typical source-to-collimator distances it commonly
ranges from 7 to 15 mm FWHM, which is considerably higher than that seen in PET
(2-5 mm FWHM). By applying other collimator geometries, e. g. (multi-)pinhole, even
lower spatial resolution than in PET can be achieved [Schr 03]. Branderhorst et al.
[Bran 10] report sub-millimeter (FWHM) resolution for their small animal SPECT
camera using Tc-99m. However those collimator geometries are more frequently for
small animal studies than in clinical practice. A more detailed description on colli-
mator geometries can be found in [Cher 03].
For clinical PET, the achievable spatial resolution mainly depends on the size of the
individual crystal elements and the detector block geometry (e. g. size of the gantry
bore). Ultimately, the PET resolution is limited by the positron’s free path length in
between the initial decay and the annihilation (which is what is detected in PET).
Another factor is the acollinearity of the two coincident gamma quanta: The remain-
der of the kinetic energy of the positron at the point of annihilation causes the two
emitted gamma quanta to not be exactly emitted in a perpendicular direction (180◦)
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but in smaller angles. These effects sum up to physical limits of ≈ 2 mm for a clinical
PET system.
In the following, the ratio of apparent activity concentration to true activity concen-
tration is called recovery coefficient. The approaches for partial volume correction
can be divided into two groups. Approaches that need additional information (e. g.
CT, MR) on the structures that are imaged and methods that work solely on the
emission images.
A simple to implement and thus common post-reconstruction approach in the latter
group was founded on experiments with physical phantoms and simulation studies
or theoretical derivations. Based on the approaches of Hoffman et al. [Hoff 79] and
Kessler et al. [Kess 84] recovery coefficients for simple geometries (e. g. spheres, discs,
cylinders) are estimated and used for calculating the true amount of radioactivity in
those structures. Several groups report an improved quantification accuracy of this
approach [Blan 96, Gewo 00, Chen 98]. A known limitation of this method is the sole
applicability on simple geometries; in general the distribution of the radioactivity
might not follow this assumption. Seo et al. [Seo 09] report that with their imple-
mentation of a deconvolution based partial volume correction an accuracy of 10% for
In-111 in lesions with a volume of down to 8 ml can be achieved.
Every approach that finally leads to an improved spatial resolution of the imaging
system helps to avoid partial volume effects. Thus, e. g. the methods described in
Section 2.1.2 which incorporate information about the systems (collimator-detector)
response function could, to some extent, be understood as partial volume correction
technique. For example, Hutton et al. [Hutt 98] implement their version of detector-
response modeling into the Maximum Likelihood Expectation Maximization (MLEM)
and Ordered Subset Expectation Maximization (OSEM) reconstruction for a SPECT
system and report improved accuracy for the simulated MCAT phantom. The other
group of methods incorporate structural information in the form of segmented MR
or CT images in the partial volume correction step. The segmentation can be done
automatically or manually by the definition of ROIs. Pretorius et al. [Pret 09] apply
a method based on the work of Da Silva et al. [Da S 01] and Tang et al. [Tang 96]
that incorporates multiple two-class segmentations (regions with activity and regions
without activity) of co-registered myocardial CT images on the MCAT phantom.
They report improved visual characteristics as well as a higher quantitative accuracy
of the corrected SPECT data.
An evolution of the aforementioned approach is the geometric transfer matrix (GTM)
method (Equation 2.4 first applied by Rousset et al. [Rous 93, Rous 98] on brain PET
studies: it allows an almost arbitrary number (n) of regions with homogeneous activ-
ity distribution. The observed activity ti of a certain tissue class i is assumed to be a
linear combination of the true activities Tj of all other tissues classes j = 1 . . . n. The
spatial definition of the regions is commonly done on segmented CT or MRI images.
The ωij represent the regional transfer coefficients: The diagonal terms represent the
spill-out of every region; the off-diagonal terms define the spill-in of other regions.
The ωij can be computed from the defined regions and the point spread function of
the imaging system. In the end, one get a full-rank transfer matrix: the true activities
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Tj can be computed by solving the linear equation defined in Equation 2.4.
t1
t2
...
tn

 =


ω11 ω21 · · · ωn1

ω12
. . . ωn2

... . . . ...
ω1n ω2n · · · ωnn

×


T1

T2
...
Tn

 (2.4)

Du et al. [Du 05] compare variants of the GTM approach to uncorrected images in
a physical brain phantom filled with Tc-99m and find a strong reduction of the bias
induced by the partial volume effect. Soret et al. [Sore 03] studied the effect of the
GTM approach on I-123 again using a physical brain phantom and segmented CT
acquisitions. For uncorrected images and small structures (e. g. putamen) they find
an underestimation of up to 50% when compared to the true activity concentration.
The application of the partial volume correction leads to an over-estimation of about
10%, which could be considered to be a significant improvement.

2.1.6 Calibration

A calibration of the SPECT imaging system volume sensitivity SVol (Equation 2.5)
is the final requirement for absolute quantitative imaging. This is typically obtained
by a correlation of the results to a calibrated well counter. The principle is briefly
outlined in this section, details can be found for example in the NEMA protocols
[Perf 07]. In order to avoid partial volume effects, a large cylindrical phantom with
known activity concentration cVol is scanned. Corrections for attenuated and scat-
tered photons are applied in the reconstruction. A large VOI with volume VVOI is
placed on the reconstructed image. T0 is the start time, Tacq the duration of the ac-
quisition. T 1

2
is the half-life of the used radionuclide and Tcal the time of the activity

calibration. R represents the counting rate measured in the VOI. Finally, according
to Equation 2.5, a calibration factor from the detected counts per second to Becquerel
is derived. In the equation, the measured count rate R is normalized by the volume
VVOI and the activity concentration cVol. The other factors of the equation account
for the differences between aforementioned time points.

SVol =
R

VVOI · cVol

· exp

(
T0 − Tcal

T 1
2

· ln 2

)
·
(
Tacq

T 1
2

· ln 2

)
·

·
(

1− exp

(
−Tacq

T 1
2

· ln 2

))−1

(2.5)

The calibration factor is specific for every radio nuclide as to different intrinsic de-
tector sensitivities and collimators used. Due to non-linearities of the detector at
different count rates and dead time effects at high activities, count rate-dependent
calibration factors for the same radionuclide should be applied as well. Most no-
tably those effects are more pronounced for high energy radionuclides. For example,
Dewaraja et al. [Dewa 08] report on the dead time and pulse pile-up effects for the
SPECT quantification of therapeutic activities 2-6 GBq I-131. For PET imaging,
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this step is often automated and included in the daily quality control procedure. A
homogenous Ge-68/Ga-68 phantom with known activity is placed in the PET field
of view and data is acquired over a certain period of time. Subsequently, a cali-
bration factor is calculated, stored, and automatically applied to the reconstructed
PET data. However, to achieve more accurate values, a cross calibration between
the well counter and the system, analogously to the above listed SPECT procedure
is recommended [Gewo 02].

2.1.7 Validation Studies

Many reports show that accurate absolute quantification is possible. The majority of
the methods are evaluated in phantom or simulation studies. Recently, Shcherbinin
et al. [Shch 08] report errors between 3% and 5% for a study on a torso phantom for
the isotopes Tc-99m, I-123, I-131, and In-111. Du et al. [Du 06] achieve a 2% error
for I-123 in a brain phantom. Vandervoort et al. [Vand 07] performed a simulation
study on the MCAT cardiac-torso phantom and on a Tc-99m filled torso phantom and
achieve 8% error in the simulation and about 4% for the phantom study. Da Silva et al.
[Da S 99] reach an error of 8% in an anthropomorphic phantom with cardiac insert for
Tc-99m. For PET, Jentzen et al. [Jent 08] compare I-124 and F-18 recovery coefficients
in phantoms and find that with application of a recovery correction coefficient specific
for the size of the lesion, accurate quantification is possible, at least for structures
larger than ≈ 1.5 × FWHM. Apostolova et al. [Apos 10] reach 10% quantitative
accuracy with F-18 in a phantom study for solitary pulmonary nodules, applying
their version of motion and partial volume correction. Willowson et al. [Will 12] find
PET to be accurate within 8% for larger structures and threshold based volumes of
interest in a body phantom for Y-90.
Unfortunately only very few reports about in-vivo absolute ECT quantification exist:
Our group [Zein 10] evaluated the activity of Tc-99m-DPD (a tracer for bone imaging)
in the bladder of 16 patients. The reference activity is determined by the measurement
of the activity concentration in the urine right after SPECT imaging. We find an
average deviation of 6.8% between the activity concentration obtained in SPECT and
a well counter measurement, with the corrections for physical effects provided by the
camera manufacturer. Another in-vivo study by Da Silva et al. [Da S 01] evaluates the
accuracy of absolute quantification of Tc-99m-Sestamibi (tracer for cardiac imaging)
in the myocardium of eight pigs. The comparison of SPECT quantification (with
their version of partial volume and attenuation correction) and the ex-vivo activity
concentration of the excised myocardia revealed a deviation of 10%. Quantification
in humans was shown by Willowson et al. [Will 08]. They studied Tc-99m-macro
aggregated albumin in lung perfusion for 12 patients and found an average error
of 2.6% (ranging from −7% to +4%) with corrections for scatter, attenuation and
partial volume. The macro aggregated albumin is trapped almost entirely in the
capillaries of the lung, thus the total activity in the lung can be compared to the
injected activity. Almeida et al. [Alme 99] evaluated the quantitative accuracy of the
uptake of I-123 labelled epidepride in a certain brain region (striatum) of monkeys
(papio anubis baboons). They validated their results using PET acquisitions of C-11
epidepride of the same subjects and found a deviation for defined regions of interest
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of less than 10% between both modalities, using corrections for attenuation, scatter,
and partial volume.

2.1.8 Conclusion

A survey of the current literature as well as our own work show that ECT can
be quantitative with errors below 10% even in a clinical environment (Figure 2.6).
To achieve this, a careful setup and calibration of a state of the art SPECT/CT
or PET/CT system is required. Equally important is an iterative reconstruction
software which is able to model the imaging physics and to correct for degrading
factors. Due to the higher spatial resolution of the clinically PET systems and the
reduced partial volume effects, PET can reach a better quantitative accuracy for
smaller structures than SPECT.
However, there are also some limitations on the applicability in clinical routine. Many
methods rely on complicated manual procedures. At this point more work is needed
to enable intelligent automation. In order to further reduce the quantification errors,
the incorporation of better imaging models within the reconstruction is mandatory.
The improved models should allow a better compensation of physical effects and
patient induced artifacts (e. g. motion).
In general, more sophisticated phantom and animal experiments are needed. Yet the
goal of routine application of absolute quantification in clinical ECT imaging is in
reachable range.

Figure 2.6: Overview of the accuracy of ECT quantification from studies reported in
the literature (blue bars phantom studies, red/orange bars in-vivo studies).
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2.2 Magnetic Resonance Imaging

2.2.1 History and Basics

MRI as an imaging modality was originally developed by Lauterbach et al. and Mans-
field et al. in 1973. It is an evolution of Nuclear Magnetic Resonance Spectroscopy
(NMR), which did not offer any spatially resolved measurements at that time. In the
following section, we explain the basics that are necessary for our work. For further
explanations please refer to e. g. [Reis 08].
In medicine, most MRI applications are based on physical effects of hydrogen atoms,
more precisely, of the H-1 nuclei. In the semi-classical description, the H-1 nucleus
can be understood as a rotating, positively charged sphere. The rotating positive
charge results in a magnetic momentum which points to the direction of the angular
momentum of the atom. In matter, the magnetic momentum of the single atoms
points into random directions. Effectively, no aggregate magnetization of the matter
can be measured. In the presence of an external magnetic field, a force results that
tends to align the magnetic moment along this external field. Due to the conserva-
tion of the magnetic momentum, this alignment is not allowed, the magnetic moment
starts to precess around the direction (parallel) of the external field. The frequency of
this precession is called Lamor frequency. An anti-parallel precession is also possible.
This state corresponds to a higher energetic level and has a lower probability for the
atom to exist in anti-parallel than to exist in parallel precession. Within the context
of scientific literature, the term magnetic moment is also known as spin. For particles
with the charge q and the mass m, the spin s is in relation to the magnetic moment
m according to the following Equation 2.6. The proportional factor g is known as
Lande factor.

m = g
q

2m
s (2.6)

2.2.2 Signal and Contrast Mechanism

As opposed to X-ray CT. the contrast mechanism of MRI is not based on electron
densities but on multiple parameters. As MRI uses the signal from hydrogen atoms/
protons for image formation in most medical applications, the density of the protons
contained in the imaged volume influences the signal intensity, i. e. , the more spins
in the volume that are flipped, the more radio-frequency (RF) energy is deposited in
the volume and hence the higher the emitted signal is when those spins flip back to
their lower energy level.
In matter, the protons are packed within a lattice with the surrounding atoms and
their rotating spins can interact with each other. Consequently, the energy from the
higher energy state can not only be emitted as a photon (at RF) but can also be dis-
sipated in the form of proton movement and vibrations. The average lifetime of the
nuclei in the higher energetic state is called spin-lattice relaxation time or T1-time.
Another parameter is the T2-time or spin-spin relaxation time. As previously de-
scribed, when flipped, the spins precess around the direction of the external magnetic
field. An RF signal can be measured as long as there are enough spins in a voxel
that precess synchronously (precess in phase). The local magnetic field for the spins
in a voxel varies due to several reasons. These are intrinsic, e. g. a spatially varying
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Tissue T2
1 T1 (1.5 T)1 T1 (3 T)1 Attenuation2 FET-Uptake3

[ms] [ms] [ms] [HU] [SUV]

White Matter 69 884 1 084 30 1.1
Gray Matter 99 1 124 1 820 33 0.8
Cerebrospinal Fluid 2 1004 4 2103 - 15 -
Blood 275 1 441 1 932 40 -

1 all [Stan 05] except CSF 2 all [Cala 81] 3 all [Webe 00] 4 [Melh 97]

Table 2.1: Typical values for MRI, CT, and PET contrast parameters.

magnetic moment of molecules and extrinsic, e. g. a non-homogeneous external mag-
netic field. The result of this inhomogeneity is that each spin precesses at a different
frequency and the spins which were in sync after the RF pulse loose their synchronic-
ity. The emitted signals of the spin-systems interfere with each other in a destructive
manner and the measured signal diminishes. The time that describes how fast this
de-synchronization takes place, is called T2-time. To be exact, two different T2-times
exist: the effective (measured) time is called T ∗2 -time, it includes the intrinsic and
extrinsic inhomogeneities. With special MRI acquisition techniques, one can correct
for the extrinsic inhomogeneities and subsequently measure the T2-time, which char-
acterizes only the intrinsic field inhomogeneities.
Proton density, T1- and T2-time are patient and tissue specific. The following relation
is true for most tissue types and applications.

T ∗2 < T2 < T1 (2.7)

Table 2.1 lists typical values of the relaxation times for tissue types encountered in
MR imaging of the brain. For comparison, also CT-Hounsfield values and FET-PET
standardized uptake values (SUV) are shown.

2.2.3 Spatial Encoding and Image Reconstruction

In order to represent a spatial distribution of the signal which is emitted from the
precessing spins, additional steps are necessary. As opposed to CT and emission
tomography where the projection concept prevails, which means obtaining 2-D images
under different viewing angles, MRI uses a different reconstruction scheme. The
projection concept was only used in the early inception of MRI.
All the sequences in our study apply slice selective excitation, only the spins in a
slice of certain thickness are excited by the RF pulse and subsequently only these
spins emit a signal and contribute to the image. For a three-dimensional imaging,
multiple slices need to be acquired separately and have to be stacked in order to form a
volume. Slice selective excitation is done by applying a gradient field perpendicular to
the desired slice, which defines the gradient encoding direction. The gradient changes
the strength of the magnetic field in this direction and leads to a position dependent
Lamor frequency. By emitting the exciting RF pulse at a specific frequency, only
spins with the appropriate Lamor frequency are flipped.
The two-dimensional encoding in the slice itself is achieved by other methods, namely
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phase- and frequency encoding. A short gradient pulse in a direction perpendicular
to the gradient encoding direction is applied at the time between the RF-excitation
and recording of the echo, for phase encoding. The gradient pulse results in a spatial
dependent Lamor frequency. Again, the spins precess at different speeds, depending
on their spatial location along the phase encoding axis. After the short gradient pulse,
all spins in the slice precess with the same frequency again. The intermittent gradient
causes a phase shift of the spins and the amount of the phase shift is proportional on
the spins position along the phase encoding axis. In order to resolve N voxels along
a phase encoding axis, the process needs to be repeated N times. Depending on the
sequence, this is done by repeating the same gradient (e. g. for echo planar imaging)
or by increasing the strength of the gradient for every repetition (regular spin-echo
and gradient-echo sequences).
In frequency encoding another gradient is switched during the acquisition of the
echo. The gradient is along an axis which is perpendicular to both, phase- and
slice encoding direction. This causes variations in the Lamor frequencies along the
frequency encoding axis. The echoes are emitted and acquired at frequencies that
depend on the position of the spins along this axis.
The previously described spatial encoding fills a two-dimensional k-space matrix line-
by-line, with one separate matrix for every slice. It is a 2-D Fourier method wherein
the spatial distribution of the image intensities subsequently is reconstructed by an
inverse Fourier transformation of the k-space matrix for every slice. The reconstructed
slices are stacked in order to form a final 3-D image.

2.2.4 Relevant Sequences

Due to the retrospective nature of our work, the used sequences show a certain het-
erogeneity. In general, we use three contrast mechanisms in our study, the contrast-
enhanced T1-weighted images, the fluid attenuated inversion recovery T2-weighted
images, and images representing the apparent diffusion coefficients, measured by
diffusion-weighted MRI.

Enhanced T1-MRI

For T1-weighted imaging, the sequences use either spin-echo (SE) or gradient-echo
(GRE) techniques. In the following is a schematic outline of SE (Figure 2.7) and
GRE (Figure 2.8) sequences. The signal intensities ISE, IGRE of a certain voxel for
spin-echo and gradient-echo sequences depend on time-to-echo TE, time-to-repeat TR

and on T1 and T2 time of the tissue in the respective voxel according to the Equations
2.8 and 2.9.

ISE ∝ ρP ·
(
1− e−TR/T1

)
· e−TE/T2 (2.8)

IGRE ∝ ρP ·
(
1− e−TR/T1

)
sinα

1− e−TR/T1 cosα
· e−TE/T2 (2.9)

As endovascular contrast agent, e. g. Gadobutrol can be used. It contains Gadolin-
ium (Gd) which would be toxic in its free form and therefore is bound in highly stable
complexes. Gd has seven unpaired electrons and is thus ferromagnetic. It changes
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Figure 2.7: Schematic outline of a spin-echo MRI sequence: The echo is formed
by a 180◦ RF pulse, following the initial excitation by a 90◦ pulse. GS is the slice
selective gradient, GP the phase encoding gradient and GR the read out gradient
that is switched during the acquisition of the RF signal. TE and TR represent the
time-to-echo and time-to-repeat.
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Figure 2.8: Schematic outline of a gradient-echo MRI sequence. The echo is formed
by a rephasing signal of the read out gradient GR, following the initial excitation
by a RF pulse that flips the spins by a flexible angle of α degrees. The remaining
magnetization is destroyed by a spoiler gradient. GS is the slice selective gradient
and GP the phase encoding gradient. TE and TR represent the time-to-echo and
time-to-repeat.
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the relaxation times of adjacent protons. The surrounding tissue shows a shortened
T1-time and has an increased signal intensity in T1-weighted sequences. The injection
of Gadobutrol is widely used for identifying pathologies of the brain. For example, a
by a tumor disrupted blood-brain-barrier results in an extravasation of the contrast
agent and consequently leads to an increased signal in that area.

Fluid Attenuated T2-MRI

In fluid attenuated inversion recovery (FLAIR) MRI, the signal of cerebrospinal fluid
(CSF) is suppressed using an inversion recovery sequence. For an unsuppressed se-
quence, the CSF would appear as hyper-intense (brighter than surrounding normal
tissue) and potentially mask tumors which often appear hyper-intense as well. A
diagram of an inversion recovery sequence is given in Figure 2.9. The signal intensity

Figure 2.9: Schematic diagram of an inversion recovery sequence. The spins are
inverted by the 180◦ pulse at the beginning. After the inversion time TI, an ordinary
spin-echo sequence is carried out. GS is the slice selective gradient, GP the phase
encoding gradient andGR the read out gradient that is switched during the acquisition
of the RF signal. TE and TR represent the time-to-echo and time-to-repeat.

of a voxel for the inversion recovery sequence depends on inversion time TI, time-
to-repeat TR, time-to-echo TE and T1, T2 time of the tissue in the respective voxel
according to Equation 2.10.

IIR ∝ ρP ·
(
1− 2e−TI/T1 + e−TR/T1

)
· e−TE/T2 (2.10)
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Diffusion MRI

In our study, all diffusion MRI data were acquired using an echo-planar imaging
technique which is characterized in the sequence diagram 2.10.

Figure 2.10: Schematic diagram of an echo-planar imaging MR sequence. Only one
excitation RF pulse that flips the spins by a flexible angle of α degrees. An echo train
is generated using alternating signals of the frequency-encoding/read-out gradient
GR. The phase encoding is done by short gradient pulses GP during the ramp up of
GR. GS is the slice selective gradient, TE_eff and TR represent the effective time-to-
echo and time-to-repeat.
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2.3 Transmission Tomography

A German version of excerpts of the current section was published in Der Nuk-
learmediziner [Ritt 11a]. The original article was recently included in the German
guidelines for skeletal scintigraphy [DGN 13].
X-ray computed tomography (CT) is a well established method for the diagnoses of a
multitude of medical problems. Most clinical CTs work according to the rotate-rotate
principle: The main components consist of an X-ray tube and a detector that rotates
around the object that should be imaged.
The X-ray tube is an evacuated unit consisting of the cathode and anode. By the
acceleration of electrons which are emitted by the cathode and slowed down at the
impact on the anode, X-rays are produced. A fan- or cone-shaped X-ray beam, which
is formed by mechanical and electrical collimation and filtering, is sent through the
imaged object and detected by an array of detector elements on the opposing side of
the gantry. In the following, transmission images of the object under different view-
ing angles are acquired. Subsequent electronics and computers allow the calculation
of the spatial attenuation map for X-rays of the object (reconstruction). Multiple
rotations of the X-ray tube are carried out in order to achieve a larger field of view
(FOV) in the axial direction. In between single rotations, the patient table is moved
stepwise (sequential technique, “step and shoot”) or continuously during the rotations
(“helical CT”).
For image reconstruction, computed tomography mostly applies filtered back pro-
jection, which is the inversion of the Radon transform, with adaptions for the fan-
or cone-beam geometry. Since recently, iterative techniques have shown promise in
providing increased image quality at lower radiation doses [Will 13]. In general, im-
ages can be reconstructed in different sharpness and with varying slice thickness and
resolution.
For a speed-up in acquisition time, most modern CTs have multiple detector lines.
Consequently, during one rotation, a larger axial field of view can be covered. Short
scan times are especially important for acquisitions of organs that suffer from move-
ment artifacts, such as heart and thorax/abdomen and are in general convenient for
the patient.
In the following, some basic terms of CT are explained:

• Focus: The size of the impacting electron beam on the anode, projected onto
the detector. Ideally, a point-like focus should be chosen. Certain technical
limitations, among them mainly thermal constraints, restrict the minimum size.
Since a small focus would exceed the thermal capacity of the anode at long CT
examinations, it is necessary to have a larger focus in these cases.

• kV: The kV value reflects the acceleration voltage that is used on the X-ray
tube. In general, kV values for abdominal and cranial CT range between 110
and 140 kV. X-rays with higher energy (high kV value) penetrate the patient
easier and lead to an increased signal-to-noise ratio at the same tube current.

• Collimation: Modern CT devices operate with multiple detector lines. These
lines are placed next to each other and have differing slice widths, at least for
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some devices. It is common that the detector lines are pooled electronically or
mechanically. A collimation of 32× 0.6 mm means, that 32 detector lines with
a width of 0.6 mm each are read out. The same detector could be collimated
with 16×1.2 mm as well, consequently every two detector lines are pooled. The
total collimation is for both examples 32 · 0.6, resp. 16 · 1.2 mm = 19.2 mm.
A smaller collimation, together with adapted reconstruction and tube current,
increases the spatial resolution of the CT acquisition.

• Pitch: The pitch number is defined as the ratio of table feed per rotation to
the total collimation, measured at the center of rotation. A scan with a table
feed of 10 mm per rotation and a total collimation of 10 mm consequently has
a pitch of 1. At 20 mm table feed and constant collimation of 10 mm increases
the pitch to 2. In general, with decreasing pitch the redundancy in the tomo-
graphic projections is increased: The same axial position is scanned in multiple
rotations. With the appropriate reconstruction technique, this redundancy can
be used (e. g. by averaging) to increase the signal-to-noise ratio and with it the
image quality. As drawback of a decreased pitch, the patient dose is increased
and the scanned field-of-view per time is lowered.

• mAs: For single slice computed tomography, the mAs-value corresponds to
the tube current multiplied by the rotation time (current-time product). The
higher the mAs value is, the more X-ray photons are available per rotation.
Consequently, the signal-to-noise ratio and the image quality is in general in-
creased. The mAs value is used as an indicator for image quality. It should be
noted that an increased mAs value is directly related to an increased patient
dose. As mentioned before, the pitch influences the acquisition quality as well.
For this reason, a pitch independent indicator for image quality is defined by
calculating mAseff. = mAs /Pitch. The mAseff. value follows the same rules as
the mAs value: Higher mAseff. value→ higher SNR and improved image quality
but also higher patient dose. Lower mAseff. value → lower SNR, lower image
quality, but also decreased patient dose. The individual requirements of the ex-
amination usually define the optimal mAseff. value. Especially for attenuation
correction and anatomical co-registration like in SPECT/CT and PET/CT, low
values are sufficient.

• CTDIVol: Is an acronym for “Computed Tomography Dose Index”. The ad-
dition “Vol” is an acronym for volume and helps to differentiate a multitude
of other CTDI values. CTDIVol is the effective (= pitch corrected), weighted
(= dose-depth profile corrected) dose value in a slice of the thickness of the
effective collimation.

• Dose-Length-Product (DLP): It is defined as the product of the CTDIVol

value and the length of the CT scan. It is proportional to the effective dose of
the CT acquisition and for this reason one of the most important parameters
for estimating the radiation burden of the examined patient. From literature
or simulation studies, factors for obtaining the effective dose from the DLP can
be gained [Cher 03]. For fusion and attenuation correction of PET and SPECT,
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CT images with limited field of view and low mAs values are sufficient (“low-
dose CT”). The radiation of these low-dose scans is in the range of some mSv
effective dose [Gilm 06].

• Reconstruction kernel: In FBP reconstruction, a mathematical operation
for inverting the Radon transform (folding with a kernel) is applied. This
approach is able to reduce the inherent “smearing” of the back projection. In
clinical practice, a multitude of kernels is established, some are more blurring
(“soft”), some are neutral, and some are sharpening (“bone”). Depending on the
goal of the examination and on the type of the examined structures (bones, soft
tissues), the appropriate kernel for the image reconstruction is chosen.

• Hounsfield Unit (HU): In CT, slice images of the spatial distribution of the
linear attenuation coefficients for the used X-rays are attained. For generating
device independent images which are not influenced by properties of the X-
ray beam, such as photon energy spectrum, Hounsfield et al. chose the linear
attenuation coefficients of water and air as base of a new scale. Every CT for
medical applications is calibrated on these attenuation coefficients by acquiring
special phantoms on the device. Air subsequently corresponds to a HU of
−1000, water to a HU of 0.

• Windowing: The human perception is only able to differentiate up to 80−100
gray level values. On the contrary, the dynamic range of CT system often
offers > 4000 different gray level values. A so called windowing technique is
applied for the reading of CT images and exploiting all the information which
is represented by this multitude of gray levels. The window levels are typically
defined by a center C and width W value in HU. The C value in HU represents
a median-gray on the reading device (film/monitor). The width defines which
HU value on the reading device is represented as black (C − 0.5 ∗W HU) and
white (C + 0.5 ∗W HU).

2.4 Cerebral Gliomas
Gliomas are tumors stemming from glial cells and are the most common class of
tumors in the brain. Glial cells are cells in the brain that support and protect the
neurons and form the myelin, which plays an important role in the signal transmis-
sion of the brain. Tumors are understood as an uncontrolled and abnormal growth
of somatic cells. The abnormal cells often, but not necessarily (e. g. leukemia), form
aforementioned tumors, which are accumulations of the cancer cells. A tumor itself
can be benign, pre-malignant or malignant, depending on its behavior in regard to
other surrounding tissues. The behavior is defined as malignant if the tumor invades
surrounding tissues or forms distant colonies (which are called metastases). Tumors
that do not posses invasive and metastatic properties are called benign. In general
the disease is called cancer if a tumor shows malignant behavior. Most theories as-
sume, that tumors are monoclonal growths, which means that they descend from
an alteration of a single normal cell, which consequently starts to duplicate in an
uncontrolled manner.
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Tumors can be grouped in four major groups, according to their origin: epithelial,
mesenchymal, hematopoeitic, and neuroectodermal. The most common tumors orig-
inate from epithelial cells and are called carcinomas. The carcinomas itself can be
divided in two subgroups, the scamous cell carcinomas, originating from cells that
form protective layers (e. g. oesophagial, dermal cells) and adenocarcinomas, origina-
tion from cells that form secretory layers (stomach, lung). Non-epithelial tumors are
called sarcomas (stemming from mesenchymal tissue), hematopoeitic cancer (stem-
ming from blood cells) and neuroectodermal tumors (stemming from cells of the
nervous system.
As all tumors related to our work are gliomas, a neuroepithelial tumor, we will focus
on these in the following sections.

2.4.1 Causes for Gliomas

Epidemologic studies have shown that gliomas and cancer in general are hugely in-
fluenced by environmental factors. These influences can be divided into chemical
(e. g. tobacco) and physical (e. g. ionizing radiation) agents. It is well known that
even viruses can induce cancer. Quite often carcinogens (cancer causing agents) are
also mutagens (change the DNA). However, there exist also non-genetic mechanisms
that promote tumor genesis.

2.4.2 WHO Classification of Tumors of the Central Nervous
System

As stated in the WHO Classification of Tumors of the Central Nervous System
[Loui 07], based on their histopathological resemblance in bioptic samples, tumors
can be classified into certain classes, groups, and subgroups. One of the first reliable
and strong concepts for the grading of cerebral tumors was introduced in 1926 by P.
Bailey and H. Cushing [Bail 26]. In the following years, more research was carried out
on this topic, which finally resulted in the publication of the volume Histological Typ-
ing of Tumors of the Central Nervous System. Its first edition was published in 1979
by the World Health Organization (WHO), the most recent edition was published in
2007 [Loui 07]. Most of the groups and subgroups in the WHO scheme have an as-
sociated WHO grade. This grade reflects the prognosis for a patient suffering from a
tumor of the respective group and therefore is an important indicator for the optimal
treatment of the disease. The grades are WHO grade 1 (in short WHO 1), WHO 2,
WHO 3 and WHO 4. A higher grade reflects a higher malignancy. E. g. a WHO 1
tumor can be completely curable with very little lifetime restrictions when treated
adequately, whereas patients suffering from a WHO 4 tumor only have a median time
of survival between one and two years when treated (three months untreated).

2.4.3 Entity of Gliomas

As already stated, gliomas stem from glila cells, which themselves are a neuroepithe-
lial tissue. The WHO classification scheme lists nine groups in the class of neuroep-
ithelial tumors. The patients that were included in our study cover three of these
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groups: These are astrocytic tumors, oligodendroglial tumors, and oligoastrocytic tu-
mors (a mixed-type tumor). In the following sections more details about the groups
can be found.

Astrocytic Tumors

A large proportion of the glial tumors is of astrocytic origin. Astrocytes are a special
kind of glial cells. They are star shaped and have numerous functions: They provide
structural support for the brain and play an important role for the blood-brain-
barrier. Additionally they are able to release and re-uptake several neurotransmitters
(e. g. ATP, GABA and glutamate) and therefore influence synaptic transmissions.
However, the understanding of the role of the astrocytes is far from complete and
considered to be at an initial state. The group of astrocytomas (astrocytic tumors)
itself can be divided in further subgroups according to their histopathology. The
subgroups encountered in our patient collective are:

• Pilocytic astrocytoma (WHO 1)

• Diffuse astrocytoma (WHO 2)

• Anaplastic astrocytoma (WHO 3)

• Glioblastoma (WHO 4)

Oligodendroglial Tumors

Oligodendroglial tumors (oligodendrogliomas) are believed to stem from oligoden-
droglia, another type of glial cells. One of their main roles is to provide electrical
insulation of neurons by wrapping their axons with a myelin sheath. In order to do
so, they extend their branches to several axons which leads to a typical appearance
(small nucleus and branch like extensions of the membrane). Oligodendrogliomas are
divided into two subgroups:

• Oligodendrogliomas (WHO 2)

• Anaplastic oligodendrogliomas (WHO 3)

Oligoastrocytic Tumors

Oligoastrocytic tumors are mixed type tumors of the aforementioned groups. They
contain astrocytic and oligodendroglial parts. Two subgroups with a differing grading
exist, these are:

1. Oligoastrocytomas (WHO 2)

2. Anaplastic oligoastrocytomas (WHO 3)
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2.4.4 Grading of Cerebral Gliomas

The gold-standard in terms of diagnostic confidence is the classification and grading
of glial tumors based on histologic analysis of invasively gained bioptic samples. The
bioptic grading allows for an accurate classification in over 90% of all cases [Well 04].
One has to keep in mind that the WHO classification scheme is mainly founded on
the histopathologic appearance of those tumors.
It is of general consent that MRI of the human brain is the standard for the initial
diagnosis of glial tumors. As mentioned in the previous sections, a variety of MRI
sequences are acquired in order to cover different aspects of the glioma.
Metrics that can be obtained from contrasted T1 and T2 images and which are thought
to indicate the class and the grade of a suspected glioma to a certain degree [Riem02,
Upad 11, Asar 94], are:

• Tumor heterogeneity

• Formation of a cyst or necrosis

• Hemorrhage or bleeding

• Crossing of the mid line

• Extent and degree of an edema

• Degree and heterogeneity of the contrast enhancement

• Shift of other regions of the brain (called mass effect)

Other imaging modalities like X-ray CT, PET, and SPECT can add beneficial infor-
mation for the task of tumor grading/classification: The extent and the kinetics of
the amino acid uptake (obtained by FET-PET) and existence and shape of calcifica-
tion (obtained by X-ray CT) of a glial tumor could give indications of its underlying
class and grade [Rapp 13, Popp 07]. Figure 2.11 provides an example that shows the
multimodal aspects of a glial tumor.
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(a) T2-FLAIR MRI (b) Contrast-enhanced T1-MRI

(c) Diffusion-weighted MRI (d) Low-dose X-ray C

(e) FET-PET

Figure 2.11: Multimodal images of a 68 year old, male patient, diagnosed with
Glioblastoma (WHO4) by biopsy.



Chapter 3

Patient Population and Image
Acquisition

3.1 Patient Population

An initial screening of patients examined with FET-PET/CT in the Clinic of Nuclear
Medicine in Erlangen yielded 232 patients between 05th of June 2007 and 21st of
March 2011. After applying our inclusion criteria (listed below), we had 16 patients
left. As part of a cooperation, we received another 32 patients from the Institute of
Neuroscience and Medicine at Forschungszentrum Jülich, Germany, which met our
inclusion criteria. Table A.1 provides additional details like age, weight, injected dose,
time between the acquisition and several other parameters of the patient population.
The inclusion criteria were:

• Dynamic PET acquisition using the amino acid FET, optional: CT images

• T2-weighted MRI, contrast-enhanced T1-weighted MRI, optional: diffusion-weighted
MRI

• No prior treatment (esp. surgery, chemotherapy, radiotherapy)

• After imaging: tumor classification by histology on bioptic samples

As we have basically four different classification tasks, we create different (overlap-
ping) subsets of our patient population for those tasks. The number of patients in
each class is balanced by a random downsampling. The subsets are defined in Table
3.1. Table A.2 lists which patient is included in each subset.

3.2 Image Acquisition

The image acquisition consists of two main procedures for all patients in our collec-
tive: one is the PET(/CT) (Section 3.2.1), the other the MRI (Section 3.2.2). The
average time distance between the separate PET(/CT) and MRI acquisition was ∼ 18
(0 − 77) days. The PET(/CT) and MRI sections themselves have instrumentation
and acquisition parts: The medical devices and their specifications are given in the

35
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Subset Name Contained Modalities Classes Patients in Class

SUB44 T1-MRI, T2-MRI, PET LG/HG 22/22
SUB32 T1-MRI, T2-MRI, PET WHO1/2/3/4 8/8/8/8
SUB22 ADC-MRI LG/HG 11/11
SUB14 X-ray CT LG/HG 7/7

Table 3.1: The modalities, tumor classes, and number of patients contained in the
subsets for the different classification tasks. LG: Low-grade, HG: High-grade.

instrumentation part, patient preparation, data acquisition and data reconstruction
routines are described in the acquisition part.

3.2.1 PET/CT

The PET and CT data for 16 patients were acquired using a hybrid PET/CT system
(TruePoint Biograph 64, Siemens Healthcare MI, Knoxville) (Figure 3.1). The PET
and the CT are integrated into a common gantry in sequential spatial order. The
PET data for the remainder of the patients (32) were acquired on a ECAT EXACT
HR+ (Siemens Healthcare MI, Knoxville) 3.1.

Figure 3.1: Product images of the PET system used in our studies: (a) Siemens Ecat
Exact HR+, (b) Siemens Biograph 64 TruePoint PET/CT.

CT Instrumentation

The CT part consists of a 64 slice device with 40 detector rows. The detector consists
of 26 880 ceramic elements in total. The transaxial FOV is 50 cm.
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CT Acquisition

After the patient positioning, a low-dose CT scan was acquired. The following param-
eters were chosen: Size of the focal spot: 1.2 mm; Rotation time: 1.0 s; Tube voltage:
120 kV. The actual mean current for our patient collective was about 50 mAs. For
each patient, we reconstructed two datasets using the manufacturer supplied FBP
methods, one with a softer kernel (B08s) for attenuation correction purposes, one
with a sharper kernel (B41s) for automatic classification and reading by the physi-
cians. Both datasets have a matrix size of 512×512×111 (0.49×0.49×2.00 mm). The
reconstructed images have an intensity resolution of 16 bits. The image intensities
are in Hounsfield Units (HU). After the CT procedure, the patient was transferred
to the PET part of the gantry by an automatic table movement in axial direction.

PET Instrumentation

The TruePoint Biograph 64 system is equipped with Lutetium Oxyorthosilicate (LSO)
as detector material. Each detector block consists of 13×13 = 169 individual detector
elements, each with the size 4.0× 4.0× 20 mm. Our scanner has four detector block
rings, each consisting of 48 detector blocks. This results in a total number of 32 448
detector elements. The transaxial FOV is 605 mm, the axial 216 mm. The sensitivity
of the system is 8.0 cps · kBq−1 [Jako 11]. According to the manufacturer, the axial
resolution is 5.7 mm, and the transaxial resolution is 4.8 mm at 10 cm distance from
the center of the FOV, following the measurement procedures of the NEMA 2001
standard.
The other scanner used for our study was the ECAT EXACT HR+. It is equipped
with Bismuth Germanate (BGO) as detector material and each detector block consists
of 8× 8 = 64 individual detector elements, each with the size 4.0× 4.4× 30 mm. It
has four detector block rings, each consisting of 72 detector blocks. The total number
of detector elements subsequently is 18 432. The transaxial FOV is 155 mm, the axial
FOV is 583 mm. The sensitivity of the scanner is 26.4 cps· Bq−1· ml−1 [Adam97], the
axial resolution is 5.3 mm, the transaxial resolution is 5.4 mm at 10 cm distance to
the center of the FOV. The ECAT EXACT HR+ is no hybrid device, thus uses three
Ge-68/Ga-68 rod sources to acquire transmission data for attenuation correction.

PET Acquisition

The PET acquisition started simultaneously with the injection of the radioactive
tracer. The PET images were acquired over 40 − 50 minutes, the raw PET detec-
tor events were recorded together with a time stamp (listmode acquisition). This
allowed a retrospective reconstruction into any desired combination of time bins. For
the Biograph 64, we choose five short (1 minute each) bins at the beginning of the
acquisition and subsequently seven long (5 minutes each) time bins throughout the
end of the acquisition (40 minutes total). The time bins for the ECAT EXACT HR+
varied slightly: five 1 minute frames followed by five 3 minute frames, followed by
four or six 5 minute frames (40/50 minutes total). The raw data of each bin were
reconstructed into (nearly) isotropic 3-D datasets with a size of 168 × 168 × 109
(2.03 × 2.03 × 2.02 mm), using the iterative OSEM algorithm with six iterations
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and eight subsets and CT based attenuation correction for the Biograph 64 and
128× 128× 63 (2.00× 2.00× 2.42 mm) with either Filtered Back Projection (Shepp-
Logan Filter FWHM 2.48 mm) or iterative OSEM with six iterations and 16 subsets
and Ge-68/Ga-68 transmission based attenuation correction for the ECAT EXACT
HR+. Corrections for decay, scatter and random coincidences were applied for both
scanners according to the implementation of the manufacturer. As post-processing
step at the Biograph 64, smoothing with a Gauss filter (Kernel width 5 mm) was used.
Consequently this yielded in total twelve 3-D datasets for the Biograph 64 and 14
or 16 3-D datasets for the ECAT scanner. The intensity resolution of these files was
16 bits. As both PET scanners were calibrated in order to allow absolute quantifica-
tion, the image intensities were converted to Becquerel per Milliliter (Bq ·ml−1) with
the help of the calibration factors. These factors are individual for every acquisition
and were stored in the DICOM tags for rescale slope (tag address: 0028, 1053) and
rescale intercept (tag address: 0028, 1052) of the reconstructed datasets. An overview
of the PET acquisition parameters can be found in Table A.8, the assignment of the
acquisition protocols to the individual patients can be found in Table A.2.

3.2.2 MRI

MRI Instrumentation

The MRI acquisitions were done on various systems (for images, see Figure 3.2). One
Philips 1.0 T system (Gyroscan NT), three Siemens 1.5 T systems (Magnetom Avanto,
Magnetom Sonata, Magnetom Symphony, Siemens Healthcare, Erlangen), one Philips
1.5 T system (Intera, Philips Electronics N.V.) and one 3 T system (Magnetom Trio,
Siemens Healthcare). The following section lists the acquisition parameters for the
MRI data used in our study. In general, even the parameters within one weighting
differ, which reflects the fact that the data originate from clinical routine.

MRI Acquisition

T1-MRI
For the T1-weighted MRIs an intravenous injection of 0.1 mmol/kg body weight
Gadobutrol (Gadovist, Bayer Schering Pharma) was used in most cases as contrast
agent (alternatively Gadodiamide, Omniscan, GE Healthcare; Gadopentetate dimeg-
lumine, Magnevist, Bayer Schering Pharma). The images were acquired with a TE
ranging from 1.7 to 17 ms and TR ranging from 145 to 690 ms. The typical slice
thickness was 3−6 mm with in-plane pixel size of 0.4−0.9 mm. However, the param-
eters for the (almost) isotropic T1-MRI (MPRAGE) differed: The TE was 2.2− 3.93
ms, TI was 900− 1100 ms, TR was 1950− 2200 ms, in plane pixel size was 0.5− 1.1
mm with 1.0− 1.5 mm slice thickness.

T2-Flair MRI
The anisotropic T2-Flair MRIs were acquired using an inversion time of 1800− 2500
ms, TE ranged 79 − 150 ms, TR 5000 − 10000 ms. The in-plane pixel size was
0.4 − 1.0 mm with a slice thickness of 3 − 6 mm. Again, the parameters for the
isotropic datasets differed: The TI was 1800 ms, TE was 389 ms, TR was 5000 ms.
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Figure 3.2: Product images of the MRI systems used in our study. (a) Philips
Gyroscan NT, (b) Philips Intera, (c) Siemens Magnetom Symphony, (d) Siemens
Magnetom Avanto, (e) Siemens Magnetom Sonata, (f) Siemens Magnetom Trio.

The in-plane pixel size was 0.5 mm and the slice thickness was 1 mm.

ADC MRI
For the diffusion weighted MRIs, the TE was 91− 101 ms, TR was 3200− 3900 ms.
The in-plane pixel size was 0.6− 1.8 mm and the slice thickness ranged 5− 6 mm.

An overview of these parameters for the different MRI sequences can be found in
the appendix, Table A.7. The assignment of the sequences to the individual patients
in our study is listed in Table A.2.
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Chapter 4

Preprocessing and Feature Handling

Proper preprocessing is crucial for a high classification performance. For this reason,
we applied multiple methods to our patient datasets. These preprocessing meth-
ods are described in the current chapter. We wrote a software framework for the
purpose of feature extraction and for the incorporation of the various preprocessing
steps: This framework is briefly introduced in Section 4.2. After that, the crite-
ria for the definition of the volumes of interests (VOI) from which the features are
extracted are outlined (Section 4.1). We then propose methods for inter-device and
inter-patient normalization of medical images (Section 4.3). We outline a motion cor-
rection technique for dynamic PET as well (Section 4.5). The automated multimodal
image registration is a necessary prerequisite in many of our preprocessing steps. For
this reason, we evaluated the accuracy of the multimodal registration (Section 4.4).
Thereafter, we provide a detailed description of the extracted features by specify-
ing the equations to calculate them (Section 4.6). Feature normalization is carried
out in two different methods (Sections 4.7.1 and 4.7.2). In order to ensure proper
inter-device calibration and as we calculated the quantitative values of PET and CT
(namely kBq/ml and HU) in our own framework, we confirmed the accuracy of these
calculations by a phantom experiment (Section 4.2.1). In our framework, the single
features were collected into feature sets. These feature sets are subsequently used in
the classification stage. The feature selection process and feature transformations are
described in Section 4.8.

4.1 Volume of Interest Definition

In general, it is possible to define a VOI in several ways: there exist fully automatic
(e. g. by automatic segmentation), semi-automatic (e. g. by segmentation using manu-
ally defined seed points) or manual methods. We decided to use a manual delineation
of the VOI on the basis of the images from T2-weighted MRI. This is motivated by the
fact that an implementation and evaluation of the automated methods was beyond
the scope of this work. The manual segmentation is known to be robust, therefore we
could focus on the classification task itself. In the future, automated methods should
be implemented as a viable enhancement on the way towards further automation.
The T2-weighted MRI itself is considered as the standard sequence for the tumor
localization in the brain. It has a superior soft-tissue contrast when compared to
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X-ray CT. T2-MRI also promises increased sensitivity and specificity over FET-PET
for detecting intracranial lesions. This is mainly caused by the lower spatial resolu-
tion of PET when compared to MRI and due to non-specific FET uptake of healthy
structures in the brain, which is especially given for tumor that are small and show
low FET uptake.
The borders of the tumors were delineated slice-by-slice with help of the ITK-Snap
tool [Yush 06] by a board-certified radiologist. In addition to the tumor VOI, one
contra-lateral, healthy reference VOI with approximately the same volume as the
tumor VOI was drawn. An example of this procedure is given in Figure 4.1. Due to
the heterogeneity of MRI sequences, the image windowing for drawing the VOIs had
to be adjusted manually to ensure proper tumor visualization.
The average volume for the tumor and reference VOI were 42.6 cm3, ranging from 2.8
cm3 to 156 cm3. The VOIs were subsequently saved as DICOM datasets and imported
into the InSpace volume renderer. Further computations such as co-registration,
inter-dataset normalization and feature extraction and calculation were carried out
in that program. InSpace is a standalone version of the commercially available Syngo
InSpace application (Siemens Healthcare).
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(a) T2-FLAIR MRI (b) Contrast-enh. T1-MRI (c) Diffusion-weighted MRI

(d) Low-dose X-ray C (e) FET-PET

Figure 4.1: Example for a volume of interest in multimodal images of a 68 year
old, male patient, diagnosed with Glioblastoma (WHO4) by biopsy. The red VOI
covers the tumor, the green VOI a contralateral, healthy reference region. In the
current case, the ventricles of the left and right hemisphere are asymmetric due to
the compression of the ventricle by the tumor. As the VOIs should cover the soft-
tissue parts of the brain and not areas filled with cerebrospinal fluid, the VOIs needed
to be adjusted and consequently became asymmetric.
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4.2 Software Framework: Multi-Modality Work Bench
We developed a software tool which incorporates several of the methods presented in
the following sections in a single application. We called the software “Multi-Modality
Work Bench” (MMWB). It is entirely written in C++ and incorporates methods of
the Insight Toolkit (ITK, [Iban 05]). MMWB is realized as a plug-in to the InSpace
volume rendering software. It handles static as well as dynamic 3-D images (multiple
3-D datasets ordered as consecutive time frames). So far, it was successfully tested
with MRI, CT, PET and Ultrasound (US) datasets. It extracts the features in fully
automated fashion and outputs a result file with the extracted features of a certain
patient. These result files are later on used in the classification step of our experiment.
The main features of MMWB are:

• Concurrent handling of up to six static and three dynamic 3-D datasets for
feature extraction.

• Importing of VOI files (MetaImage file format), generated by ITK-Snap (Section
4.1), containing up to 5 VOIs.

• Motion correction for dynamic datasets by image registration (Section 4.5).

• MR image intensity normalization by histogram matching (Section 4.3.3).

• Feature extraction from the multimodal datasets:

– Co-registration (Section 4.4) of all images to the reference dataset (dataset
where VOIs were defined).

– Transfer of VOIs to all dynamic and static datasets.

– Feature extraction from all dynamic and static datasets (list of features,
Section 4.6).

– Calculation of quantitative ECT features (Section 4.3.1).

• Output of a file which contains all extracted features for a specific patient.

• Intuitive graphical user interface.

• Visualization of multi-modal features in the InSpace application (e. g. see Figure
4.2).

• Configurable via config file.
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Figure 4.2: Example of the MMWB display of the extracted features of a 68 year
old, male patient, diagnosed with Glioblastoma (WHO4) by biopsy. For the static
modalities ((a): T2-FLAIR MRI, (b): contrast-enhanced T1-MRI), the distribution
of image intensities in certain VOIs (red: tumor VOI, green: contralateral, healthy
VOI) are displayed in the upper part of the window. For the dynamic modalities
((c): FET-PET), the upper part of the window displays the time-activity-curves of
mean and max gray levels in the VOIs. Additionally, the slope of the curves between
10-40 minutes are shown as well. Below these curves, the values for several extracted
features are listed. One can see, that the T2-MRI of the patient shows increased
intensity values when compared to the reference region, which represents an increased
protein accumulation in the tumor. In the T1-MRI, one finds an extravasation of the
intravenous Gadolinium contrast agent, which indicates a disruption of the blood
brain barrier and leads to hyper-intense image intensities when compared to the
reference region. This could potentially indicate a higher grade tumor. The PET
shows a distinct increase in FET-uptake quotient between tumor and reference VOI,
which, together with the negative slopes of the time-activity-curves, points towards
a higher grade tumor as well.
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Description Expected Value Measured Value Deviation

Mean activity concentration 8.05 kBq/ml 8.10 kBq/ml ≈ 1%
Mean SUV 1.00 1.01 ≈ 1%
Intercept of dyn. curve 8.05 kBq/ml 8.11 ≈ 1%
Slope of dyn. curve 0 kBq/ml/min 0.00 ≈ 0%
Quotient to reference VOI 1 1 ≈ 0%

Mean HU value 0 HU −1.8 HU ≈ 2%
Quotient to reference VOI 1 0.99 ≈ 1%

Table 4.1: Comparison of the expected and measured values for PET phantom mea-
surement. The measurement confirmed our ECT calibration: Only minor deviations
were found.

4.2.1 Validation by Phantom Measurements

We conducted several phantom measurements in order to validate our PET system
calibration and to ensure that our software extracts the correct voxel intensity values
from PET and CT.
Firstly, the quantitative accuracy in PET was evaluated: We filled a standard quality
control phantom (Flangeless Esser PET Phantom, DataSpectrum Corp.) with 73.1
MBq of F-18 (measured in well counter) suspended in water. The active volume
of the phantom was measured by weighting the phantom in filled and empty state,
calculating the difference and dividing by the density of water (0.998 g/cm3 at 21◦C).
We found the volume to be 5.69 l, thus the activity concentration was 12.8 kBq/ml
at preparation time and 7.6 kBq/ml at acquisition time. The cross calibration factor
between the well counter and the PET device was 1.06, which leads to a corrected
activity concentration of 8.06 kBq/ml at acquisition time. The phantom was dynam-
ically measured for 40 minutes and reconstructed in 12 volumes of 200 × 200 × 109
voxels (4.07 × 4.07 × 2.03 cm3) each, using the OSEM algorithm with 6 iterations,
8 subsets, 5.0 mm Gauss filter, scatter correction, and CT-based attenuation correc-
tion. The 12 volumes consisted of data from five 1-minute frames and seven 5-minute
frames. These parameters resemble the parameters of the PET acquisitions for the
patients (Section 3.2.1). The phantom was evaluated in the same way as the patient
data: Three VOIs were manually drawn and the intensities in the VOIs were evalu-
ated using our tool (Section 4.1).
Table 4.1 shows a comparison of expected values and measured values for the analysis
of the phantom. We always used the expected value as normalizing constant for the
calculation of the deviation, except for CT where we chose 100 HU. This is motivated
by the fact, that the soft tissue in brain varies around the same extent (see Table
2.1).
In general, the deviations are in the low single-digit percentage range. The de-

viations that we found were not caused by our software but by inaccuracies in the
respective scanning process. It is known that absolute quantification in emission to-
mography devices is only possible within certain errors (Section 2.1). The values for
the features Mean activity concentration, Mean SUV and Intercept of dyn. curve
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Figure 4.3: CT (left) and PET (right) images of an ECT quality control phantom with
three different sections. First row : Cold cylinders in hot background. Second row :
Homogeneous section of hot background. Third row : Cold bars in hot background.
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therefore are considered to be extracted in an accurate way. The Mean HU value of
the phantom slightly differs from the expected 0 HU due to beam hardening artifacts
of the CT scan. However, the deviation of 2 HU is negligible for our purposes as the
inter-patient variation is considerably higher.
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4.3 Inter-Dataset Normalization

Inter-dataset normalization for medical images refers to a process with the goal to
ensure that identical anatomical or physiological structures have constant intensity
values, regardless of their imaging system and sequence variant (inter-device) or pa-
tient (inter-patient). For this, it is desirable to measure absolute physical quantities
in order to achieve inter-device comparability. These can be HU in CT, absolute
activity concentration in ECT or relaxation times in MRI. Very little need for ad-
ditional inter-device standardization is given for medical imaging devices that rely
on these physical properties. Nevertheless, a small amount of inter-patient variation
still exists: The HU values of bones in CT, as well as soft tissues in MRI are known
to vary across different patients. Additionally, the image intensities vary if external
contrast agents are used (e. g. iodine for CT and gadolinium for MRI) and depend
on the application protocol (amount, time point, bolus pressure,...).
Emission tomography consequently suffers from the same inherent problem as it is
based on radioactive tracers which are external contrast agents as well. Thus, the
image intensities depend on the amount and the distribution volume of the injected
radioactive tracer, even if the ECT device itself is calibrated to absolute activity con-
centrations. There exist several approaches to overcome these limitations:

4.3.1 PET Normalization

In emission tomography like PET and SPECT, the concept of the calculation of
standardized uptake values (SUV) is widely used for improved diagnostic results
[Habe 91]. In our case, we use the following method to calculate the SUV (Equation
4.1).

SUV =
Cmeasured

Ainjected/Mpatient

(4.1)

where Cmeasured is the activity concentration in kBq/ml, measured in the PET image
and Ainjected is the injected activity in MBq at the time point of the image acquisition
and Mpatient is the body weight of the patient in kg.
We also used other methods for the inter-patient standardization. We calculated
quotients of tumor and reference region (see Section 4.1). This concept is established
in nuclear medicine and is expected to deliver more reliable diagnostic results when
compared to other methods. It is recommended in the German guidelines for brain
tumor imaging by PET and SPECT using labeled amino acids [Lang 11].

4.3.2 CT Normalization

In X-ray CT, inter-patient normalization is not commonly applied. In practice, the
scanners are calibrated to the attenuation values of air and water at the tube voltages
of the device with the help of body mimicking phantoms. However, some patient vari-
ations remain, which is mainly due to beam hardening. One can partially overcome
these effects if CT devices with two X-ray sources are used. The two sources operate
at different tube voltages [Heis 09]. We did not take into account dual-source CT in
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our study, as we did not have this kind of data available. Still, we do not consider
this to be a major drawback as we found the inter-patient variation to be very low as
only the soft tissue parts of the brain were covered. This can be observed from the
HU values in the reference VOI, which represent normal brain tissue: The standard
deviation of ≈ 8 HU (at ≈ 39 HU mean) is low compared to the range of general soft
tissue in CT, which is at least 100 HU for the soft tissues of the brain. Nevertheless,
we applied the quotient normalization method known from ECT since it does not
rely on sophisticated acquisition techniques.

4.3.3 MRI Normalization

The biggest range of soft tissue intensities is observed in the MRI sequences. This is
mainly caused by the fact that the images of the patients stem from different MRI
devices and were obtained using different sequences. This variation is expressed by
a large range of image intensities for normal brain tissue acquired by similar MRI
sequences and can be seen in Figure 4.5. The inter-dataset variance of ± ≈ 47% for
T1-, ± ≈ 36% T2-weighted MRI, and ± ≈ 109% for diffusion-weighted MRI is much
higher than the variation seen in CT.
In order to reduce the amount of inter-patient and inter-device variation, we applied
a histogram matching approach which is based on the work of Nyul et al. [Nyul 99].
It employs a piecewise-linear mapping of a target histogram to a reference histogram,
based on certain calculated landmarks of these histograms. The approach is reported
to be robust and sufficient for “easy” anatomies like cranial MRI. Still, more ad-
vanced methods which are even suitable for the normalization of whole-body MRI
exist: Jäger et al. [Jage 10] describe an approach that relies on non-rigid registration
of the target and the reference histogram. The approach consists of two important
steps, step one employs an affine alignment of the histograms, step two incorporates a
regularized, non-rigid registration. The regularizer term incorporates the first deriva-
tive of the deformation field and ensures that neighboring intensities are mapped as
similar as possible. Both, affine as well as the non-rigid registration use either the
Sum of Squared Differences or the Jeffrey Divergence as measure for the goodness of
fit between the reference and the deformed target histogram. The method has the
advantage that it allows for intensity transformations that are not piecewise-linear
but non-linear, which is probably the case in reality.
As we aim for the normalization of cranial MRI, we decided to apply the well evalu-
ated approach by Nyul et al. for its ease of usage. Still, we believe more sophisticated
normalization methods should be tested in future research. Our method worked as
follows:
Let V be an image consisting of an array of voxels vi with certain intensities. Without
further restrictions we assume we have integer intensities and that v ≥ 0 ∀v ∈ V ,
namely v ∈ N+

0 . Vj, j ∈ {1, . . . , N}, is the set of all N images in the study, each
image has mj voxels. The maximum, minimum and mean intensities are defined
as mj = max{v} ∀v ∈ Vj, mj = min{v} ∀v ∈ Vj, µj = 1

mj

∑mj

i=1 vi ∀v ∈ Vj.
The mean intensity of the MR image is considered as a good approximation for di-
viding the image into the foreground F = {vi with vi > µ} and the background
B = {vi with vi ≤ µ}. This approach has been proven to work for a multitude of
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MRI images, including cranial MRI [Nyul 99].
Now let Hj be the histogram of Fj for image Vj and dk,j, k ∈ {10, 20, . . . , 90}, be the
k-th percentile of Hj (deciles). The image containing the transformed and corrected
intensities is called target image and denoted by V∗. One fixed image V0 is the refer-
ence image: In our setup, the reference image is an MRI image of a healthy patient
which is not part of the datasets that are classified, in order to avoid a potential bias
of the intensity normalization towards a certain tumor class.
Finally, we define a piecewise linear transformation f(x) for the image intensities:

f(x) =



m0 − d10,0

mj − d10,j

(x−mj) +m0, if mj ≤ x < d10,j

d10,0 − d20,0

d10,j − d20,j

(x− d10,j) + d10,0, if d10,j ≤ x < d20,j

...
d90,0 −m0

d90,j −mj

(x− d90,j) + d90,0, if d90,j ≤ x ≤ mj

Using the above definitions, the corrected images V∗j are calculated using Algorithm 1.

input : Reference image V0, target images Vj, j = 1, 2, . . . , N
ouput: Transformed images V∗j , j = 1, 2, . . . , N

begin
calculate m0, m0 and µ0 for the reference image;
calculate the histogram H0 of the foreground F0;
calculate dk,0 ∀k ∈ {10, 20, . . . , 90} from H0;
forall the j ∈ {1, . . . , N} do

calculate mj, mj and µj for Vj;
calculate the histogram Hj of the foreground Fj;
calculate dk,j ∀k ∈ {10, 20, . . . , 90} from Hj;
map the intensity values of all v ∈ Vj according to function v∗ = f(v);
save the mapped intensity values in the transformed image V∗;

end
end

Algorithm 1: Algorithm for the MRI intensity normalization

Figure 4.4 illustrates the piecewise linear rescaling of the image intensities. The
parameters were set to 100 levels of the histogram H and eleven matching points
(nine deciles and two extrema) for the linear transformation. As mentioned above,
the background of the images was not considered for the histogram generation and
matching. This choice of parameters is reported to successfully reduce the inter-
dataset variation on a huge amount of different MRI datasets [Nyul 00].
The actual implementation uses the itk::HistogramMatchingFilter of the Insight Toolkit
(ITK, [Iban 05]).
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Figure 4.4: The intensity x of the target image Vj is piecewise linearly scaled on basis
of points derived from the reference image V0 and Vj. Together with the extrema m
and m, we have chosen the deciles dk, k ∈ {10, 20, . . . , 90} as landmark points.
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By applying this method, we successfully reduced the inter-dataset variation for
our patient collective, not only in the healthy reference regions but also in the dif-
ferent tumor regions. The effect is visually perceptible (see Figure 4.7), aligns the
image’s histograms (Figure 4.6) and reduces the inter-dataset variation (Figure 4.5).
There exist multiple reports on the benefit of MRI intensity normalization for other
segmentation and classification tasks, e. g. [Weis 04, Coll 04]. However, to the best of
our knowledge we were the first group that applied MRI normalization for the au-
tomatic classification of cerebral gliomas. The amount of the increased classification
accuracy is presented in Section 6.3 and discussed in Section 7.3.
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(a) T1-MRI (b) T2-FLAIR-MRI

(c) ADC-MRI (d) PET

Figure 4.5: The range of image intensities, separated by type of VOI and
normalized/non-normalized datasets are shown. The range of the image intensities
was calculated by the mean and one standard deviation for all patients in subset
SUB44. Red: high-grade tumors, yellow: low-grade tumors, green: healthy reference
region. The left bar of each colored pair reflects non-normalized values, the right
bar inter-dataset normalized values. All intensities and standard deviations are dis-
played as multiples of the mean intensity of the reference region. One can see that
the inter-dataset variation is significantly reduced for the normalized datasets.
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(a) (b)

Figure 4.6: Column (a) compares the histograms of two patients to a reference his-
togram. Column (b): After matching to the reference histogram, the example his-
tograms show an improved alignment especially in the intensity regions of the soft
tissue in the brain. The red line indicates the peak intensity of the brain tissue in
the reference histogram.
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(a) Non-Normalized (b) Normalized

Figure 4.7: Column (a) displays non-normalized MRI images of two patients, column
(b) the normalized images. As all images are shown using the same windows settings
of center 350 and width 250, one can see that the differences of the intensity values
of the brain are successfully reduced by the presented approach.
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4.4 Image Registration
Parts of the following section are based on the two publications [Ritt 10, Kief 11].
Image registration is a crucial part of our workflow. The medical images from dif-
ferent modalities, acquired at different points in time usually do not have identical
intrinsic orientation. This means that a voxel with certain coordinates does not nec-
essarily contain the same anatomical structure of a voxel with the same coordinates
in another dataset. The coordinate transformation from the voxel in one dataset to
the corresponding voxel in another dataset is in our case obtained by application of
a fully automated rigid registration approach, introduced by Hahn et al. [Hahn 10].
Some algorithmic details are outlined in the Section 4.4.1. As studies about the ac-
curacy of retrospective registration between PET and MRI of the brain were still
lacking at the point of above mentioned publication, we present an evaluation for
this topic in Section 4.4.2.

4.4.1 Implementation and Algorithmic Details

The registration of the images was carried out using an InSpace plugin. The dataset
which was used to define the VOIs (in our case the T2-weighted MRI) was considered
as reference volume. Subsequently, all other datasets were registered to this dataset,
using callbacks to a plugin which is based on the algorithms of Hahn et al. [Hahn 10].
The registration itself is realized as a rigid registration and therefore has 6 degrees
of freedom (three translations, three rotations). It is based on the pixel intensities of
the images and the normalized mutual information is used in its objective function.
The objective function is iteratively optimized by a hill climbing algorithm. The
algorithm features a multi-resolution approach in order to speed up computational
time. For further details refer to [Hahn 10].

4.4.2 Validation of Registration Accuracy

To ensure that the VOIs are transferred in an anatomical correct way, we evalu-
ated the registration accuracy for independently acquired cranial FET-PET and T1-
weighted MRI datasets of 49 patients. The mean time between the imaging was 80
days, ranging from 0 to 366 days. The images were registered using the InSpace
platform and the previously described method (Section 4.4.1). The distances be-
tween the centers of gravity of the manually delineated skull contours of PET and
MRI images were measured on multi-planar reconstructed views in axial, coronal and
sagittal views (see Figure 4.8 for an example). The accuracy and reproducibility of
the measurement method itself was evaluated by performing the procedure on 20
identical MRI and 20 identical PET images, which inherently were perfectly aligned.
The isotropic voxel sizes of the PET images was ≈ 2 mm and ≈ 1 mm for the MRI
images.

The accuracy of the measurement method itself was 1.21 ± 0.61 mm (95% con-
fidence interval [1.01 mm; 1.40 mm] for the root-mean-squared error and 0.59± 0.51
mm for the error in a single dimension. The mean distance for the centers of
gravity of the PET-MR patient data was 2.31 ± 1.08 mm (95% confidence inter-
val [2.00 mm; 2.63 mm] with mean distances of 0.66 ± 0.56 mm in right-left (R→L)
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Figure 4.8: MPR views of PET (red colors) and MR (gray colors) images of the skull
with delineated contours.

direction, of 1.36±0.99 mm in anterior-posterior (A→P) direction, and of 1.36±1.06
mm in foot-head (F→H) direction (Figure 4.9). The distances in R→L direction were
found to be significantly smaller (p< 0.05) than for the other two directions using a
Friedman test [Shes 03, p. 845].

We concluded, with the confidence intervals in mind, that the measured mean
distances for the centers of gravity are significantly higher than the accuracy of the
measurement method itself. This is presumably caused by a limited accuracy of
the rigid registration. Possible causes are differences in the position of the brain
relative to facial and cervical soft-tissues in the independently acquired datasets.
This assumption could explain the significantly higher misalignment in A→P and
F→H directions as well. An example image is given in Figure 4.10. It can be seen
that the automatic registration achieved better accuracy in the axial slice than in
sagittal slices (green circles). Still, we found that a mean misalignment in the range
of the size of one voxel is sufficient and will not influence the feature extraction and
classification results in a negative manner.
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Figure 4.9: Misalignment of separately acquired and retrospectively registered PET
and MR images of skulls. The misalignment is separated by spatial direction. A→P:
Anterior-Posterior; F→H: Foot-Head; R→L: Right-Left.

Figure 4.10: Misalignment between PET (red contours) and MR (gray colors) images
that were retrospectively registered. The misalignment probably results from non-
rigid motion in the cervical region.
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4.5 PET Motion Correction

As our PET images were acquired dynamically (see Section 3.2.1), multiple 3-D
datasets exist, each covering different time periods of the complete acquisition. These
datasets are called frames. Due to the lengthy (up to 50 minutes) acquisition and
the fact that for PET, in opposite to e. g. radiotherapy, the heads of the patients are
not completely fixed, the occurrence of patient motion is probable. In fact, patient
motion was noticeable in ≈ 90% of our datasets (for an example, see Figure 4.11. In

Figure 4.11: Checkerboard of 8th and 12th frame of a dynamic PET dataset of one
patient. The noticeable misalignment is the result of motion that occurred in between
the respective frames. Please note that the difference in intensities is partially due
to the kinetics of the radioactive tracer and not due the patient motion.

order to partially compensate the motion, we applied the previously described and
validated registration technique (Section 4.4). The reconstructed 3-D PET datasets
were registered as a preprocessing step for our feature extraction. As before, the
registration was of rigid manner and relied on the mutual information as a measure
for goodness of fit. In a first step we evaluated two different strategies for the motion
correction.
The first approach (Figure 4.12) employed a reference dataset which was kept con-
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stant: In our setting, the last frame of the N frames was picked as the reference
frame. All other N − 1 frames were then registered to this reference frame.

Figure 4.12: Illustration of motion correction incorporating a fixed reference frame.

The second approach employed a recursive technique. Its schematic can be found in
Figure 4.13. First, frame N was picked as reference and frame (N −1) was registered
to it. By resampling with the registration matrix, a new corrected frame (N − 1) is
calculated. The frame (N −1) was the new reference to which the frame (N −2) was
then registered. This was repeated until all frames were corrected.
The recursive method provided better visual results (see Figure 4.14). This might

be motivated by the fact that the intensity distribution changed over the acquired
time period, even without any patient motion. Thus neighboring frames were more
similar to each other than other arbitrary combinations like in the approach with
fixed reference frame.
Therefore, we chose the recursive reference method for all of the further motion

corrections. An example of the achieved correction is given in Figure 4.15, where one
finds a significantly better match of 8th and 12th frame of the dynamic PET when
compared to Figure 4.11.

For evaluating the efficacy of our motion correction method, we chose a random
subset of 27 patients out of our patient collective. In a blinded experiment, one
experienced nuclear medicine reader was presented with either an uncorrected or a
corrected dynamic PET image. The reader rated the amount of patient motion in
the image on a subjective scale with grades ranging from 0 to 3. Grade 0 implied no
visible motion, grade 3 heavy motion. Table A.9 contains the detailed result of this
analysis. AWilcoxon signed-rank test (two-sided) [Shes 03, p. 189] revealed significant
differences between the grading of corrected and uncorrected images (p < 0.05). The
corrected images received lower ranks, thus the rated amount of motion is lower in
those images. In another experiment, the image pairs were analyzed retrospectively
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Figure 4.13: Illustration of PET motion correction using a recursive reference frame.
The reference frame changes after each single registration.

in side-by-side view in order to determine, if a) the motion correction reduces the
amount of motion, b) does not change the amount of motion or c) even introduces
more motion. In 59% (16 cases), the amount of motion was reduced; in 22% (6
cases) the amount of motion stayed the same; however, in 19% (5 cases) the motion
correction introduced artifacts that increased the subjective amount of motion (Figure
4.16).
The influence of the motion correction on the accuracy of the automatic classification
is described in Section 6.4.
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(a) Fixed reference frame (b) Recursive reference frame

Figure 4.14: Side by side comparison of fused images (first and last frame) of motion
correction with (a) fixed reference frame and (b) recursive reference frame for the same
patient. White depicts the first frame, green the last frame. The amount of matching
is better for the recursive method in the areas indicated by the small red ellipses.
In the area indicated by the big red ellipse, two different structures can be seen: In
white, the cranial sinus, a venous blood vessel is the prevailing structure. In green,
the scalp on top of the skull is the most prominent structure. These two structures
are separated among others by the skull, the meninges (membrane of the brain),
and liquor. The method with the fixed reference frame aligns the two structures too
closely together, the recursive method yields results which are anatomically correct.
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Figure 4.15: Checkerboard of 8th and 12th frame of a dynamic PET dataset after
registration. When compared to the uncorrected Figure 4.11, the amount of mis-
alignment is significantly reduced.



4.5. PET Motion Correction 65

Figure 4.16: Pie chart for the results of the PET motion correction. We found that
motion correction significantly reduces the amount of motion in the PET images.
However, in some cases, weak “wiggling” is introduced by the correction and the
amount of perceived motion is slightly increased.
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4.6 Extracted Features

Depending on the modalities included in the classification task, the number of ex-
tracted features varied. The nature of the features can be described as statistical,
contextual or textural. Statistical means in this context that the feature is calculated
on the basis of the intensity value distribution of a single VOI. Contextual means
that the feature is calculated by combining features from more than one VOI. In our
case this always refers to a combination of the tumor VOI and the reference VOI of a
patient dataset. In our implementation, based on the work of Haralick et al. [Hara 73],
textural features incorporate information about the co-occurrence of intensity values
in a VOI.
In general, the features were extracted from different medical datasets. We distin-
guished static and dynamic datasets. The static datasets were: T2-weighted MRI,
T1-weighted MRI, diffusion-weighted (ADC) MRI, and X-ray CT. PET was the only
dynamic modality in our experimental setup. Nevertheless, the feature extraction
framework can handle any dynamic DICOM data, regardless of its origin. For a de-
tailed description of the datasets see Chapter 3. Tables A.3 and A.4, which provide
an overview on all features, are found in the appendix.
All features were chosen to represent the key metrics for tumor grading. These key
metrics were introduced in 2.4.4. Those are:

• Tumor heterogeneity

• Formation of a cyst or necrosis

• Hemorrhage or bleeding

• Crossing of the mid line

• Extent and degree of an edema

• Degree and heterogeneity of the contrast enhancement

• Shift of other regions of the brain (called mass effect)

• Extent, degree and kinetic of amino acid uptake

• Extent and degree of calcification

In the following, we reference for all features which metrics they cover.

4.6.1 Statistical Features

The intensity values of the N voxels in a volume of interest (VOI) are xi ∈ R.

Mean Intensity Value
The mean voxel value µ of the tumor VOI was calculated by the arithmetic mean.
A lower arithmetic mean in T1-MRI indicates the formation of a cyst or necrosis or
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hemorrhage or bleeding. A high mean in ADC-MRI indicates an edema.

Minimum Intensity Value
The minimum voxel value xmin of the VOI. Again, a low minimum intensity value for
T1-MRI represents the formation of a cyst or necrosis.

Maximum Intensity Value
The maximum voxel value xmax of the VOI. A high maximum intensity value in
contrasted T1-MRI hints to a distinct contrast enhancement, which is an important
indicator of tumor grade. In CT, a high maximum intensity values is very likely a
calcification.

95%-Quantile of Intensity
First, the probability density function (PDF) ρ(x) ∈ R of the intensity distribution
was estimated by randomly choosing a number M of voxels (10% of the total voxel
numberN in the VOI, in order to reduce computational requirements) and calculating
4.2.

ρ(x) =
1

σM
√

2π

∑
i

exp

{
−(x− xi)2

2σ2

}
(4.2)

with the bandwidth σ = (xmax − xmin)M− 1
2 . The 95%-Quantile x95% of the PDF

subsequently was calculated solving Equation 4.3 for x.

0.95 =

∫ x95%

−∞
ρ(x) dx (4.3)

In our experiment, bandwidth and mean intensity in the VOI were always in a way
that

∫ x95%

−∞ ≈
∫ x95%

0
. The integration was numerically carried out using the trapezoidal

rule. ∫ b

a

f(x) dx ≈ 0.5 · (b− a)(f(a) + f(b)) (4.4)

The 95%-quantile is an indicator for the maximum of the intensities in the VOI and
is not as prone to noise as the maximum intensity value. For this, it shares the same
motivation as the maximum: a high value in T1-MRI indicates a contrast enhance-
ment.

Position of Peak in Intensity
The position of the peak xpeak of the tumor PDF was:

xpeak = argmax
x

ρ(x) (4.5)

The peak position of the PDF represents the gray-level values of the most predomi-
nant class in the VOI. It indicates a variety of metrics. For contrasted T1-MRI the
extent of contrast enhancement and the degree of edema, for ADC-MRI and CT the
degree of edema.
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Height of Peak in Intensity
Following Equation 4.5, the height ρpeak of the peak in the tumor PDF was:

ρpeak = ρ(xpeak) (4.6)

Slope and Intercept of Mean Intensity Value Curve
For dynamic datasets with J frames, indexed by j = 1, . . . , J , and time points tj of
the frame, the slope b of the mean intensity value was calculated by linear regression
(based on least squares) of the mean value µj of those frames for the tumor VOI .
The arithmetic mean values of µj and tj over the J frames are denoted by µ̄ and t̄.

b =

∑
j(µj − µ̄)(tj − t̄)∑

j(µj − µ̄)2
(4.7)

The intercept a was calculated by

a = t̄− bµ̄ (4.8)

The slope and the intercept of the mean intensities for the dynamic PET represent
the average extent, degree and kinetic of amino acid uptake. A low amino acid up-
take points toward a lower tumor grade, whereas a negative slope is an indicator of
a higher tumor grade.

Slope and Intercept of Maximum Intensity Value Curve
Similarly to the calculation of Slope of Mean Intensity Value Curve, the slope for
the maximum intensity value curve bmax was calculated on the basis of the maximum
value of all voxels xmax,j in the tumor VOI of the j-th time frame. x̄max denotes the
arithmetic mean of the xmax,j over J frames.

bmax =

∑
j(xmax,j − x̄max)(tj − t̄j)∑

j(xmax,j − x̄max)2
(4.9)

And the intercept:
amax = t̄− bmaxx̄max (4.10)

It was shown for PET, that in some cases the kinetics of the extremal values can
offer better tumor grading [Popp 07]. In general, the same aspects apply as for the
kinetics of the mean intensity.

Slope and Intercept of Minimum Intensity Value Curve
Again, similarly to the features Slope of Mean Intensity Value Curve, the slope for
the minimum intensity value curve bmin was calculated on the basis of the minimum
value of all voxels xmin,j in the VOI of the j-th time frame. Again, x̄min denotes the
arithmetic mean of the xmin,j over J frames.

bmin =

∑
j(xmin,j − x̄min)(tj − t̄j)∑

j(xmin,j − x̄min)2
(4.11)

And the intercept:
amin = t̄− bminx̄min (4.12)



4.6. Extracted Features 69

4.6.2 Contextual Features

Proportion of Iso-intense Voxels
Iso-intensity was defined to lie within one standard deviations σ around the peak
intensity value xpeak of the reference VOI: all values below were hypo-intense, all
values above were hyper-intense. The proportion of iso-intense voxels in the tumor
VOI is denoted by Piso. The total number of voxels in the tumor VOI is N , the
number of iso-intense voxels is Niso. X is a the set of pixel intensities that fulfills the
specified condition.

Niso = |X | X = {xi|xpeak − σ ≤ xi < xpeak + σ} (4.13)

Piso =
Niso

N
(4.14)

The proportion of voxels in the tumor VOI reflects the tumor heterogeneity. A high
proportion of iso-intense voxels indicates low heterogeneity, which could point to-
wards a tumor of lower grade.

Proportion of Hypo-intense Voxels
Similarly to the feature Proportion of Iso-intense Voxels, the proportion of hypo-
intense voxels Phypo in the tumor VOI is

Nhypo = |X | X = {xi|xi < xpeak − σ} (4.15)

Phypo =
Nhypo

N
(4.16)

with the number of hypo-intense voxels in the primary VOI being Nhypo.
The proportion of hypo-intense voxels reflects the extent of edema and cyst or necro-
sis as seen in T1-MRI.

Proportion of Hyper-intense Voxels
Similarly to the calculation of Proportion of Iso-intense Voxels, the proportion of
hyper-intense voxels Phyper in the tumor VOI is

Nhyper = |X | X = {xi|xi ≥ xpeak + σ} (4.17)

Phyper =
Nhyper

N
(4.18)

with the number of hypo-intense voxels in the primary VOI being Nhyper.
The proportion of these voxels indicate the extent of contrast enhancement for T1-
MRI, the extent of an edema for ADC-MRI, and the degree of calcification for CT.

Kullback-Leibler (KL) divergence
The Kullback-Leibler divergence D(ρtumor||ρreference) ∈ R+

0 is a measure for the differ-
ence of two probability density functions. We computed the KL divergence for the
PDFs of the reference (ρreference) and the tumor (ρtumor) VOI. For the classification,
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we used the symmetric variant of the KL divergence Deff . This variant is based on
the left and right KL divergences and calculated by:

D(ρtumor||ρreference) =

∫ ∞
−∞

ρtumor(x) ln
ρtumor(x)

ρreference(x)
dx (4.19)

D(ρreference||ρtumor) =

∫ ∞
−∞

ρreference(x) ln
ρreference(x)

ρtumor(x)
dx (4.20)

Deff(ρreference||ρtumor) = D(ρreference||ρtumor) +D(ρtumor||ρreference) (4.21)

The idea for using the KL divergence is, that the difference between the tumor- and
the reference PDF is related to the tumor grade. If both PDFs represent healthy
tissue, D will be close to zero. With increasing D, the likelihood for a high-grade
tumor increases as well.

Quotient Mean Tumor to Mean Reference VOI
The feature Qmean was calculated by:

Qmean =
µtumor

µreference

(4.22)

where µtumor and µreference represent the mean intensity value in the tumor and in the
reference VOI.
The motivation of quotients of parameters of tumor and reference VOI is to gain
a certain stability against inter-patient and inter-dataset variation. In general, the
same tumor metrics as for the mean intensity value are addressed. A Qmean < 1 in
T1-MRI is a strong indicator of formation of a cyst or necrosis or hemorrhage or
bleeding. A Qmean > 1 in ADC-MRI indicates an edema.

Quotient Maximum Tumor to Mean Reference VOI
This feature Qmax was calculated by:

Qmax =
xmax,tumor

µreference

(4.23)

where xmax,tumor is the maximum intensity value in the tumor VOI and µreference is
the mean intensity value in the reference VOI.
Analogously as for the quotient of the means, here the metrics for the maximum
intensity values are addressed. A Qmax � 1 in contrasted T1-MRI shows a textitdis-
ruption of the blood-brain-barrier. A calcification in the tumor leads to Qmax � 1 in
CT.

Quotient Minimum Tumor to Mean Reference VOI
This feature Qmin was calculated by:

Qmin =
xmin,tumor

µreference

(4.24)

where xmin,tumor is the minimum intensity value in the tumor VOI and µreference is the
mean intensity value in the reference VOI.
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Analogously as for the previous two features, when Qmin < 1 in T1-MRI, it is very
likely that the tumor leaded to the formation of a cyst or necrosis.

Quotient Maximum Tumor to Mean Reference VOI (Dynamic)
In the case of dynamic modalities, the quotients were defined in a different way: Qmax

was calculated by finding the maximum value xmax of all N voxels in the tumor VOI
of all time frames J and dividing by the mean µ̄ of the reference VOI over all time
frames. Namely

xmax = max
i,j
{xi,j} (4.25)

µ̄ =
1

NJ

∑
j

∑
i

xi,j (4.26)

Qmax =
xmax

µ̄
(4.27)

This feature was only calculated for dynamic PET. Here the idea is that with in-
creasing tumor grade Qmax increases as well.

Quotient Mean Tumor to Mean Reference VOI (Dynamic)
This feature is the quotient Qmean of the mean over all frames of the reference VOI
(µ̄reference) and of the tumor VOI.

Qmean =
µ̄primary

µ̄reference

(4.28)

As for the previous feature, a Qmax > 1 indicates a tumor. With increasing Qmax, a
higher grade tumor is likely.

Quotient Minimum Tumor to Mean Reference VOI (Dynamic)
Qmin was calculated by finding the minimum value xmin of all N voxels in the tumor
VOI of all time frames J and dividing by the mean µ̄ of the reference VOI over all
time frames.

xmin = min
i,j
{xi,j} (4.29)

µ̄ =
1

NJ

∑
i,j

xi,j (4.30)

Qmin =
xmin

µ̄
(4.31)

4.6.3 Textural Features

Whereas most metrics of List 4.6 are covered by previously described features, es-
pecially the aspect of tumor heterogeneity is represented poorly so far. For this, we
decided to include textural features in order to map this aspect in the set of features.
For the textural features, so called graytone spatial-dependence probability-distribution
matrices [Hara 73], also known as gray-level co-occurrence (GLCM) matrices are cal-
culated. These matrices contain the probabilities that a VOI’s voxel with intensity
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value l has a neighboring voxel in a specific direction r with an intensity value m (see
Figure 4.17). In 3-D, one voxel has 26 neighbors, as long as it is not at the border
of the VOI. Consequently, the probabilities are calculated for 26 directions and one
gets co-occurrence matrices P r for every direction. Since P r = P>−r (symmetry for
opposite directions), the number of necessary matrices can be reduced to 13. In order
to achieve a certain directional invariance, out of the 13 co-occurrence matrices, one
mean matrix P with elements pl,m is calculated, where the p are the aforementioned
probabilities. Since we used 256 intensity levels, P ∈ R256×256. Voxels which are
at the border of the VOI and do not have the neighbors in the specified directions
are omitted in the calculations, but in general represent only a small amount of the
total number of voxels as we had rather large VOIs. We calculated 6 different tex-
tural features according to Connors et al. [Conn 84]. The elements of the gray-level
co-occurrence matrices pl,m were normalized, so that

∑
l,m pl,m = 1. Despite its long

history, the proposed textural features are still successfully applied for automatic
classification of medical MRI [Zulp 12].

Figure 4.17: Schematic diagram of neighbors of a voxel with intensity value l. The
GLCM matrices contain the probabilities that a VOI’s voxel has a neighboring voxel
in a specific direction r with an intensity value m. (In 3-D every voxel has 26
neighbors, consequently 26 such matrices exist. Due to the symmetry of the problem,
it is sufficient to calculate the matrices for 13 directions, omitting opposite directions.
For clearness, not all directions and neighbors are shown.)
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Energy

E =
∑
l,m

(pl,m)2 (4.32)

The energy is a measure for the homogeneity (similar gray-levels) and for textural
uniformity (neighboring voxels having similar gray-level pairs) of the VOI. In the
extremal case, when the whole VOI features the same image intensity or when all
neighbors have the same gray-level pair, pl,m has only one non-zero entry. Due to
the normalization of pl,m, this entry is 1 and the energy consequently is E = 1 as
well. Thus, the closer E approaches 1, the higher is the homogeneity and textural
uniformity.

Entropy

H = −
∑
l,m

pl,m log(pl,m) (4.33)

The entropy is a measure for the orderliness of the VOI. If the image has a low textu-
ral uniformity (white noise image, neighboring voxels having quasi-random gray-level
pairs), many entries of pl,m will be close to 0 and the entropy H will approach high
values. The entropy is inversely correlated to the energy.

Local Homogeneity

L =
∑
l,m

1

1 + (l −m)2
pl,m (4.34)

The local homogeneity is especially sensitive to the homogeneity of the VOI, which
means L will be small if strong edges (large differences in neighboring voxels) are
present. On the opposite, L approaches its maximum if the difference between neigh-
boring voxels is small (high near-diagonal entries in pl,m). The local homogeneity is
strongly inversely correlated to the inertia.

Inertia

I =
∑
l,m

(l −m)2 pl,m (4.35)

In inertia, the pl,m are weighted by the squared differences of their intensity values.
Inertia is a measure for the contrast in the VOI. A VOI that features high differences
in the gray-level of the neighboring voxels (meaning strong edges and high spatial
image frequencies) leads to a high inertia. On the other side, if a lot of neighboring
voxels have similar intensity values (soft edges, low spatial image frequencies), the
pl,m will have only have high entries near its diagonal where the difference (l−m) is
small, thus the inertia becomes small.
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Cluster Shade

A =
∑
l,m

(l +m− µl − µm)3 pl,m (4.36)

where µl =
∑

l,m lpl,m and µm =
∑

l,mmpl,m.

Cluster Prominence

B =
∑
l,m

(l +m− µl − µm)4 pl,m (4.37)

with µl, µm as defined above.
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4.7 Feature Normalization

The different imaging modalities have different image intensity levels, consequently
the features in our experiment have differing numerical ranges. The numerical range
of our features spans about ≈ 10 orders of magnitude, as seen in Figure 4.18. In order
to ensure an equal weight of the features in the classification process, feature nor-
malization is crucial. We applied two different feature normalization methods: linear
scaling to a range and linear scaling to unit variance. We compared their influence
for our classification task.
Not all classifiers are equally prone to a bias that is potentially introduced by the
different scaling of the features. E. g. the nearest neighbor classifier using the Eu-
clidean distance as measure is sensitive to scaling differences. Implicitly, more weight
is assigned to the dimensions of the multidimensional feature vectors that dominate
in terms of the magnitude of the features values. The nearest neighbor classifier with
Euclidean distance is translation invariant but not scale invariant.
On the other hand, for adaptive boosting with decision stumps as weak classifier, the
scaling of the feature vector dimensions is not of importance. The decision stumps
classify on basis of the threshold of a univariate feature. For this, only the order of
the instances is relevant. The decision stump is scaling and translation invariant.
Above examples are of course only valid if we can assume that all feature values can
be uniquely coded using the implemented computer number format.

Figure 4.18: The mean values and numeric range of 20 selected features. The features
have a large dynamic range which spans ≈ 10 orders of magnitude. The black marker
indicates the mean value of each feature, the red bars indicate the range (from min
to max).
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4.7.1 Linear Scaling to Range (LSR)

One of the most frequently proposed methods for feature normalization is scaling
the features to the interval [−1; 1]. The training set S consists of N instances S =
{(xi, yi)} i = 1, . . . , N , with xi ∈ Rd and yi ∈ Z. xi,j denotes the j-th element
of sample xi. By applying Equation (4.38) to the xi,j we obtained the normalized
values x̃i,j. maxj and minj represent the maximum and minimum values of the j-th
dimension in the feature set.

x̃i,j =
xi,j − 1

2
(maxj + minj)

1
2
(maxj −minj)

i = 1, . . . , N, j = 1, . . . , d (4.38)

In the following, the term normalized by LSR always refers to the method men-
tioned above. This method reduces the numeric range over all dimensions of the
feature vector. As we aimed to verify the numeric range of the feature vectors as
seen by the classifier during classification of the unknown test samples, we used the
leave-one-out cross-validation (LOO-CV) strategy. We divided the data into test- and
training set, normalized the training set with appropriate choices of maxj and minj,
normalized the test set using the same parameters, and stored the normalized test
set. This procedure was repeated for all LOO-permutations. The resulting numeric
range of all test data for some features can be seen in Figure 4.19. Naturally, due to
the LOO-CV, this range exceeds the interval [−1; 1].

Figure 4.19: The mean values and the numeric range of 20 selected features after
normalization by linear scaling to the range [−1; 1]. The black marker indicates the
mean value of each feature, the red bars indicate the range (from min to max).
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4.7.2 Linear Scaling to Unit Variance (LSUV)

As an alternative to scaling to a specified range 4.7.1, scaling to unit variance can
be used to ensure an equal weight of all features during the classification process.
Scaling to unit variance does not rely on (potentially noisy) extremal values like, e. g.
maxima, minima but on the mean µj and the standard deviation σj of j-th dimension.
We chose to scale the feature values in such a way that for the transformed features
x̃i, µ̃j = 0 and σ̃2

j = 1. This is achieved using Formula 4.39 on the values. As
previously, xi,j denotes the j-th element of sample xi:

x̃i,j =
xi,j − µj

σj
i = 1, . . . , N, j = 1, . . . , d (4.39)

In the following, the term normalized by LSUV always refers to this method.
Again, we find a similar range for all displayed features (Figure 4.20). These results
were obtained analogously as for the numeric range of LSR as previously described.
For this, µ̃j and σ̃j differ slightly from their targeted values.
When we compare LSUV to LSR, we find that the former performs better in keeping
the mean values close to zero and the latter prevents larger outliers.

Figure 4.20: The mean and variance values of 20 selected features after normalization
by linear scaling to unit variance and zero mean. The red marker indicates the mean
value of each feature, the black markers the variance.
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4.8 Feature Selection and Feature Transformation

4.8.1 Manual Feature Selection

As we aimed to examine how the specific types of features are suited for the automatic
classification of cerebral gliomas, we chose a manual approach for selecting these sets
over automatic approaches.
The features listed in Section 4.6 were one-dimensional. Each feature was extracted
for different modalities, e. g. theMean Intensity Value of the tumor VOI was extracted
for T1-MRI, T2-MRI, ADC-MRI and CT. The univariate features are either directly
used for classification or collected into feature sets, according to manually defined
rules. E. g. the feature set with the index 56 consisted of the six texture features for
each modality. In the case of patient subsets SUB44 and SUB32 (Chapter 3) with
modalities T1-MRI, T2-MRI and FET-PET, the feature set 56 had the dimension 12,
with 6 texture features from T1-MRI and 6 texture features from T2-MRI.
Table A.5 provides a list of the different feature sets for the classification of the sub-
sets SUB44 and SUB32 and specifies which features are included in a certain feature
set. We included the univariate features (features 1-50), as well as all features for
a specific modality (feature sets 51-56). The feature sets 57-62 contained the trans-
formed features: these were features consisting of a varying component number of
the PCA transformation of all features. Details about the PCA transformation are
found in Section 4.8.2.
Table A.6 provides the same information for the classification of the subsets SUB22
(ADC-MRI) and SUB14 (X-ray CT). In case of these modalities the number of dif-
ferent feature sets was 21.
In the classification stage, every feature set was classified. Consequently this resulted
in 62 classification rates for SUB44 and SUB32 and 21 classification rates for SUB22
and SUB14, for each classifier.

4.8.2 Principal Component Transformation

We applied the principal component analysis (PCA) as feature transformation method
in our experiments. It is based on the work of Karl Pearson in 1901 [Pear 01]. It
transforms the data linearly into a new coordinate system. The transformation is
characterized by the fact that the new coordinate axes lie in the direction of greatest
data variances and are orthogonally to each other. Coordinates that were possibly
correlated are transformed to new, uncorrelated coordinates.
Let S ∈ Rd×N the matrix containing as columns the feature vectors x ∈ Rd of the
training set S = {(x1, y1), (x2, y2), . . . , (xN , yN)} with classes y ∈ Z. We assume
that the x are centered, thus have zero mean, which can be achieved by subtracting
their means. Furthermore, let Σ ∈ Rd×d be the covariance matrix of the data. As
Σ is estimated by the maximum likelihood method (Equation 4.40), it is positive
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semi-definite and symmetric.

Σ =
1

N

N∑
i=1

(xi − µ)(xi − µ)>

with the mean µ =
1

N

∑
i

xi

(4.40)

Therefore, a transformation
D = U>ΣU (4.41)

exists, where D ∈ Rd×d is a diagonal matrix with the Eigenvalues of Σ and U ∈
Rd×d is an orthogonal matrix with its column vectors being Eigenvectors of Σ. For
dimension reduction, the Eigenvectors are sorted by the size of their corresponding
Eigenvalues λi ∈ R+

0 , i = 1, . . . , d. A transformation matrix Û ∈ Rd×k, k ≤ d is
formed by using the Eigenvectors belonging to the k largest Eigenvalues as columns
in Û . A data point x is then transformed by

x̂ = Û
>
x . (4.42)

Analogously to Equation 4.41, the matrix D̂ ∈ Rk×k is the resulting covariance matrix
after this transformation. The variance v ∈ R+

0 in the data, that is explained by those
k largest components (PCA components) is accordingly:

vk =

∑k
i=1 λi∑d
j=1 λj

(4.43)

The components of the Eigenvectors are known as loadings and describe how much
each initial component of x contributes to the new coordinates x̂.
The PCA as described above decorrelates the data, the covariance matrix of the
transformed data is a diagonal matrix with certain Eigenvalues λj on the diagonal,
which usually are different from each other. Making these Eigenvalues the same
is called “whitening” the data. The whitened data w ∈ Rk can be obtained by
transforming x̂ according to Equation 4.44.

w = D̂
− 1

2 x̂ = D̂
− 1

2 Û
>
x (4.44)

The resulting covariance matrix Σw of the PCA is then:

Σw =
1

N

N∑
i=1

(wi − µw)(wi − µw)>

=
1

N

N∑
i=1

(
D̂
− 1

2 Û
>
xi − D̂

− 1
2 Û
>
µ

)(
D̂
− 1

2 Û
>
xi − D̂

− 1
2 Û
>
µ

)>
=

1

N

N∑
i=1

D̂
− 1

2 Û
>

(xi − µ)(xi − µ)>ÛD̂
− 1

2
>

= D̂
− 1

2 Û
>
ΣÛD̂

− 1
2
>

= D̂
− 1

2 D̂D̂
− 1

2
>

= E ,

(4.45)
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with the identity matrix E ∈ Rk×k and the mean µw = 1
N

∑N
i=1wi.

In our experiments, we used the transformation 4.42 to decorrelate the data and
to reduce the dimension of the feature vectors to k = {3, 5, 7, 10, 15} components.
However, when applying the LSUV method (Section 4.7.2) to the PCA components,
the result is whitened data as well.
Figure 4.21 shows the explained variance depending on the choice of k for patient
subsets SUB44 and SUB32. One sees that > 90% of the variance are explained by
the first 11 (SUB32) and 12 (SUB44) components. The 10 largest loadings of the first
PCA component are listed in Table 4.2. We found that all different imaging modalities
contribute to the transformed vectors to a significant amount, which makes the PCA
features truly multimodal. The loadings for the second and third PCA components
can be found in the Appendix in Tables A.10 and A.11.

SUB44
Component # Loading Feature Name

1 +0.17 MRIT2FlairHyperDensePixels
2 −0.17 MRIT2FlairIsoDensePixels
3 −0.16 PETQuotMinVOIMeanRef
4 +0.16 MRIT2FlairQuotMeanMeanRefVOI
5 −0.16 PETDynVOIMin
6 +0.15 MRIT2FlairEffectiveKLDPDF
7 −0.15 PETInterceptMin
8 −0.15 MRIT1EnhancedQuotMinMeanRefVOI
9 +0.14 MRIT1EnhancedHypoDensePixels
10 −0.13 MRIT1EnhancedIsoDensePixels

SUB32
Component # Loading Feature Name

1 +0.16 PETQuotMinVOIMeanRef
2 −0.16 MRIT2FlairHyperDensePixels
3 +0.16 MRIT2FlairIsoDensePixels
4 +0.16 PETDynVOIMin
5 −0.15 MRIT2FlairQuotMeanMeanRefVOI
6 −0.15 MRIT2FlairEffectiveKLDPDF
7 +0.15 PETInterceptMin
8 −0.15 MRIT1EnhancedHypoDensePixels
9 +0.14 MRIT1EnhancedIsoDensePixels
10 +0.13 MRIT1EnhancedQuotMinMeanRefVOI

Table 4.2: The ten largest loadings (coefficients) of the first Eigenvector of the prin-
cipal component analysis for the features of patient subset SUB44 and SUB32. The
transformed feature vectors are to a large degree formed by a linear combination of
feature from T2-MRI, T1-MRI, and PET.
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Figure 4.21: Pareto chart of the explained variance depending on the PCA compo-
nent for patient subsets SUB32 (a) and SUB44 (b). The bars indicate the variance
explained by the individual component, the line graph shows the summed variance
that is explained by the union of those components.
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Chapter 5

Classification

In this chapter, we aim to introduce the underlying principle of each classifier. For
this, we derive basis equations and algorithms, decision functions, and decision bound-
aries. We also present our cross-validation setup in order to estimate a generalized
classification accuracy and introduce measures for the classification performance.
The huge variety of different classification concepts that we used in this work was
motivated by the results from literature. E. g. Caruana et al. [Caru 06] presented a
comparison between ten supervised learning methods, SVMs, Neural Nets, Logistic
Regression, Naïve Bayes, memory-based learning, Random Forests, decision trees,
bagged trees, boosted trees, and boosted stumps and found that “although some
methods clearly perform better or worse than other methods on average, there is sig-
nificant variability across the problems and metrics. Even the best models sometimes
perform poorly, and models with poor average performance occasionally perform
exceptionally well.”. Similar work was done earlier by King et al. [King 95]. They
compared a variety of classifiers (e. g. Naïve Bayes, k-Nearest Neighbor, Linear and
Quadratic Discriminant Analysis, and Neural Networks) on a set of different prob-
lems from the field of image analysis, medicine, engineering, and finance. Their “main
conclusion is that there is no single best algorithm,...”. The general consensus thus
is, that it is not a priori clear which classifier will perform better on an unknown
problem.
We applied several automatic approaches, as well as one semi-automatic classification
approach to our data. All our automatic approaches are based on algorithms that
rely on supervised learning. In general, we worked with balanced datasets, which
means that all classes have equal occurrence probabilities.
We used two classifiers which base on Bayes’ theorem and which assume Gaussian
data: the Naïve Bayes classifier and the Linear Discriminant Analysis. The former
assumes that the individual dimensions of the feature vector of the data are mutually
independent. The latter transforms the data in a certain way in order to find an
optimal decision boundary. Naïve Bayes yields quadratic decision boundaries, LDA
linear decision boundaries, both assuming Gaussian probability densities. Classifiers
that in theory can approximate arbitrary functions as decision boundaries in the fea-
ture space are: AdaBoost, which fits an additive model of weak classifiers (Decision
Stumps). A Neural Network in the form of a single hidden layer perceptron and
non-linear activation functions. A Support Vector Machine with soft margins and
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polynomial or Gaussian kernels. Additionally, we used a k-Nearest Neighbor classi-
fier as simple approach which can lead to highly non-linear decision boundaries as
well.
For further information and more detailed derivations, please refer to e. g. Hastie
et al. [Hast 09], which were used as orientation for writing these sections. Techni-
cally, the scripting and cross-validation was carried out using MathWorks MATLAB
[MATL10]. The classifiers were incorporated by Java calls to the WEKA framework
(Version 3.6.0) [Hall 09].

Notation
If not specified otherwise, italics (e. g. z or Z) denote scalars, lowercase boldface (z)
vectors, uppercase boldface (Z) matrices and uppercase calligraphic Z sets.

The norm ||.||2 is the L2-norm: ||x||2 =
(∑d

i=1 x
2
i

) 1
2 .

The sign function is denoted by sgn(x):

sgn(x) =


−1 if x < 0

0 if x = 0
1 if x > 0

(5.1)

The determinant of a matrix Z is denoted by |Z|. If not noted otherwise, a single
quotation mark as in f ′(x) denotes the derivative of the function f(x) at point x.

5.1 Bayes’ Classifier

We used two classifiers that found on Bayes’ theorem, which states that the class
conditional probability density can be expressed by the posterior probability, the
prior probability for class y ∈ Z and the evidence of feature vector x ∈ Rd.
Let p(x|y) be the class conditional probability density for the feature vector x and
the class y ∈ Z, p(y|x) be the corresponding posterior probability, p(x, y) be the joint
probability, p(y) be the prior probability for the class y and p(x) the evidence of x
in the feature space. Bayes’ theorem is subsequently derived by the definition of the
conditional probability:

p(x|y) =
p(x, y)

p(y)
if p(y) > 0 (5.2)

p(y|x) =
p(y,x)

p(x)
if p(x) > 0 (5.3)

using p(y,x) = p(x, y) and combining 5.2 and 5.3 leads to Bayes’ theorem

p(x|y) · p(y) = p(y|x) · p(x) (5.4)
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For classification, we aim to assign class y∗ to feature vector x that maximizes the
posterior. The decision rule for a Bayes’ classifier is subsequently:

y∗ = argmax
y

p(y|x)

which can be rewritten with Bayes’ rule

= argmax
y

p(x|y) · p(y)

p(x)

= argmax
y

p(x|y) · p(y)

(5.5)

As we do not know the class conditional probability density p(x|y) directly and have
to estimate it from our training data, we model the class conditional as Gaussian dis-
tribution with class specific mean vector µy ∈ Rd and co-variance matrix Σy ∈ Rd×d,
namely p(x|y) ∈ N (x|µy,Σy).

5.2 Gaussian Classifier

For the Gaussian classifier, the class conditional probability p(x|y) is modeled by a
Gaussian.

p(x|y) =
1√

(2π)d|Σy|
exp{−1

2
(x− µy)>Σ−1

y (x− µy)} , (5.6)

The decision boundary F (x) for Gaussian classifiers can be calculated by equating
the posterior probabilities for the two classes. Here, we arbitrarily assign y ∈ {−1, 1}.

p(y = 1|x) = p(y = −1|x)

log
p(y = 1|x)

p(y = −1|x)
= 0 = F (x)

log
p(x|y = 1) p(y = 1)

p(x|y = −1) p(y = −1)
= 0

log
p(y = 1)

p(y = −1)
+ log

√
(2π)d|Σy=−1|√
(2π)d|Σy=1|

− 1

2
(x− µy=1)>Σ−1

y=1(x− µy=1)+

+
1

2
(x− µy=−1)>Σ−1

y=−1(x− µy=−1) = 0

1

2
x>
(
Σ−1
y=−1 −Σ−1

y=1

)
x+ x>

(
Σ−1
y=1µy=1 −Σ−1

y=−1µy=−1

)
+

+ log
p(y = 1)

p(y = −1)
+ log

√
(2π)d|Σy=−1|√
(2π)d|Σy=1|

+
1

2

(
µ>y=−1Σ

−1
y=−1µy=−1 − µ>y=1Σ

−1
y=1µy=1

)
= 0 ,

(5.7)

which represents a quadratic decision boundary for x.
From the training set S = {(x1, y1), (x2, y2), . . . , (xN , yN)} with Ny as the number
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of samples in a certain class, the µy, Σy, and p(y), are estimated by the maximum
likelihood method:

µy =
1

Ny

∑
i:yi=y

xi (5.8)

Σy =
1

Ny

∑
i:yi=y

(xi − µy)(xi − µy)> (5.9)

p(y) =
Ny

N
(5.10)

For a potentially d = 62 dimensional feature vector like in our case and assuming
mutual dependency of the feature dimensions, one would have to estimate the d di-
mensions of µy plus d · (d + 1)/2 dimensions of Σy plus the prior p(y) which results
in a total of 2016 parameters per class.

5.2.1 Naïve Bayes

We apply a simplification of the problem in order to reduce the number of those
parameters. It is assumed that the dimensions of the feature vectors are mutually
independent. The co-variance matrices Σy only have non-zero elements on the diago-
nal. With this, the number of parameters to be estimated is reduced to 2d+ 1 = 125
per class.
Thus the Naïve Bayes approach is:

p(x|y) =
d∏
i=1

p(xi|y) (5.11)

The decision rule of the Naïve Bayes algorithm is then:

y∗ = argmax
y

p(y)
d∏
i=1

p(xi|y) (5.12)

Without further limitation, the decision boundary of the classifier is quadratic. The
Naïve Bayes classifier inherits this property from the underlying Gaussian classifier.
Figure 5.1 is an example for such a decision boundary for the patient subset SUB44
and a two-dimensional feature space. If we want to take into account the mutual
dependency of the different feature vector dimensions, but aim only to find linear
decision boundaries, the Linear Discriminant Analysis can be applied.



5.2. Gaussian Classifier 87

 

 

M
R

IT
2F

la
ir

Q
u
ot

M
ax

M
ea

n
R

ef
V

O
I

PETDynVOIMax

High Grade

Low GradeTraining Accuracy 0.80

1 2 3 4 5 6 7 8 9

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Figure 5.1: Decision boundary of the Naïve Bayes classifier for patient subset SUB44
and a two-dimensional feature space. The training accuracy is 80% in this example.
The dashed line represents the decision boundary. The instances of SUB44 are colored
in red if the underlying tumor was high-grade and colored in green if it was low-grade.
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5.2.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a classifier that is based on the projection of
samples, in order to yield decision boundaries that are linear in the feature space.
Most basic work on this topic has been carried out by Fisher in 1936 [Fish 36]. How-
ever, we do not follow the original derivation but use the equivalency of LDA to a
multivariate Gaussian classifier with a feature transformation which leads to identical
covariance matrices for all classes [Frie 89]. The principle is as follows:
We assume that the class-conditional probability p(x|y) of a feature vector x ∈ Rd

with a class y ∈ {−1, 1} is p(x|y) ∈ N (x|µy,Σy). The means µy ∈ Rd, the covari-
ance matrices Σy ∈ Rd×d, and the priors p(y) ∈ [0, 1] are again maximum likelihood
estimated by Equations 5.8 - 5.10.
As a consequence of this, the covariance matrices are positive semi-definite and sym-
metric, which means that they can be decomposed into orthogonal matricesU ∈ Rd×d

and diagonal matrices D ∈ Rd×d.

Σy = U yDyU
>
y = (U yD

1
2
y )(U yD

1
2
y )>

= (U yD
1
2
y )E (U yD

1
2
y )>

(5.13)

where E is the identity matrix. Analogously we find for Σ−1
y :

Σ−1
y =

(
U yDyU

>
y

)−1
= U>−1

y D−1
y U

−1
y

(since U−1 = U>) = U yD
−1
y U

>
y = (U yD

− 1
2

y )E(U yD
− 1

2
y )>

(5.14)

When we combine Equations 5.14 and 5.6, we get:

p(x|y) =
1√

(2π)d|Σy|
exp{−1

2
(x− µy)>(U yD

− 1
2

y )E(U yD
− 1

2
y )>(x− µy)}

=
1√

(2π)d|Σy|
exp{−1

2
(D
− 1

2
y U>y x−D

− 1
2

y U>y µy)
>E(D

− 1
2

y U>y x−D
− 1

2
y U>y µy)}

(5.15)

One finds that Equation 5.15 represents a Gaussian distributed random variable with
transformed coordinates x′ = φy(x) = D

− 1
2

y U>y x. The covariance matrix of this
transformed variable is the identity matrix.
When looking at the decision boundary for Gaussian classifiers (Equation 5.7), for
class-wise identical covariance matrices Σy=1 = Σy=−1 = Σ = E, which is the case
for the transformed variables x′, the quadratic terms cancel and we get a boundary
that is linear in x′.

log
p(y = 1)

p(y = −1)
− 1

2
µ′>y=1Eµ

′
y=1 +

1

2
µ′>y=−1Eµ

′
y=−1 + x′>E(µ′y=1 − µ′y=−1) = 0

log
p(y = 1)

p(y = −1)
− 1

2
||µ′y=1||22 +

1

2
||µ′y=−1||22 + x′>(µ′y=1 − µ′y=−1) = 0 ,

(5.16)

with µ′y = φy(µy). See Figure 5.2 for an example of an LDA decision boundary.



5.2. Gaussian Classifier 89

 

 

M
R

IT
2F

la
ir

Q
u
ot

M
ax

M
ea

n
R

ef
V

O
I

PETDynVOIMax

High Grade

Low GradeTraining Accuracy 0.73

1 2 3 4 5 6 7 8 9

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Figure 5.2: Decision boundary of the Linear Discriminant Analysis for patient subset
SUB44 and a two-dimensional feature space. The training accuracy is 73% in this
example. The dashed line represents the decision boundary. The instances of SUB44
are colored in red if the underlying tumor was high-grade and colored in green if it
was low-grade. Please refer to Figure 5.1 for the same data classified with a Naïve
Bayes classifier.
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A disadvantage of this approach is, that the transformation is class specific. Also,
the dimension of the initial feature vectors is not reduced, which means φy(x) ∈ Rd.
The decision rule of the LDA then is:

y∗ =argmax
y

p(y|φy(x))

(Bayes rule)⇔ =argmax
y

p(φy(x)|y) p(y)

(Gaussian dist.)⇔ =argmax
y

p(y)
1√

(2π)d|Σy|
exp{−1

2
(φy(x)− φy(µy))>E (φy(x)− φy(µy))}

⇔ =argmax
y

{
log(p(y))− 1

2
(φy(x)− φy(µy))>(φy(x)− φy(µy))

}
⇔ =argmin

y

{
1

2
||φy(x)− φy(µy)||22 − log(p(y))

}
(5.17)

Which means that for equal class occurrences, the x is classified as belonging to the
class that minimizes the distance between φy(x) and the centroid φy(µy) of the class
y.

5.2.3 Multi-Class for Naïve Bayes and LDA

Both classifiers are inherently able to be applied to class numbers k > 2. Therefore
we did not use the one-versus-one classification scheme here.
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5.3 AdaBoost
AdaBoost, an abbreviation for “Adaptive Boosting”, is an algorithm that was origi-
nally published by Freund and Shapire in 1995 [Freu 95]. It is nowadays one of the
most frequently applied boosting schemes. It is based on the intuitive idea that a
combination of weak classifiers, which only perform slightly better than random pre-
diction, can eventually lead to a strong classifier. What follows is the derivation of
some key aspects of the AdaBoost algorithm.
Boosting can be understood as fitting an additive model (Equation 5.18) of a set of
M basis functions b(x,γm) ∈ R, with the individual weights βm ∈ R and a specific
set of parameters of the basis function, defined by a parameter vector γm.

f(x) =
M∑
m=1

βmb(x;γm) (5.18)

For comparison, in three layer perceptrons (single hidden layer) b(x;γ) = actH(γ0 +
γ>1 x) is a (usually non-linear) activation function of the hidden layer and γ models a
linear combination of the feature vector’s elements (see Section 5.5). For AdaBoost,
the b(x;γ) are weak classifiers.
Now let S = {(xi, yi)} , i = 1, . . . , N be the training set, with feature vectors
xi ∈ Rd and assigned class labels yi ∈ {−1, 1}. The additive models are fit by
minimizing a certain loss function L ∈ R (Equation 5.19) which takes into account
the summed error of all samples in the training set.

argmin
{βm,γm}Mm=1

N∑
i=1

L

(
yi,

M∑
m=1

βmb(xi;γm)

)
(5.19)

In case of AdaBoost, the following simplification and specifications to Equation 5.19
apply:

• The modeling is carried out in a stage-wise forward manner, which means that
the basis functions are added sequentially, without changing the parameters and
weights of the already added basis functions. fm(x) = fm−1(x) + βmb(x;γm)

• The basis functions b(x;γm) are weak classifiers Gm(x) ∈ {−1, 1}.

• The loss function is the exponential loss L(y, f(x)) = exp{−y f(x)}.

In consequence, at a step m, one must solve the problem:

(βm, Gm) = argmin
β,G

N∑
i=1

exp{−yi(fm−1(xi) + βG(xi))} (5.20)

One can re-write this with w(m)
i = exp{−yifm−1(xi)}:

(βm, Gm) = argmin
β,G

N∑
i=1

w
(m)
i exp{−yiβG(xi)} (5.21)
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As w(m)
i does not depend on G(x) or on β, it can be seen as weight factor that is

updated after each iteration.
By splitting the sum in correctly and incorrectly classified terms and by using the
indicator function I

I(yi 6= G(xi)) =

{
1 if yi 6= G(xi)
0 if yi = G(xi)

(5.22)

Equation 5.21 can be reformulated to:

(βm, Gm) = argmin
β,G

{e−β
∑

i:yi=G(xi)

w
(m)
i + eβ

∑
i:yi 6=G(xi)

w
(m)
i }

= argmin
β,G

{(eβ − e−β)
N∑
i=1

w
(m)
i I(yi 6= G(xi)) + e−β

N∑
i=1

w
(m)
i } .

(5.23)

This optimization problem is solved in two steps: first, for every β > 0, some factors
can be neglected as they are constants.

Gm = argmin
G

N∑
i=1

w
(m)
i I(yi 6= G(xi)) (5.24)

By using this solution for the Gm (Equation 5.24) in the objective function (Equation
5.20) and solving for βm, one yields:

βm =
1

2
log

1− errm
errm

(5.25)

With errm =
∑N

i=1 w
(m)
i I(yi 6=Gm(xi))∑N

i=1 w
(m)
i

, which effectively is an error rate, where each mis-

classification is weighted by w(m)
i .

As already defined, the update rule is of additive nature

fm(x) = fm−1(x) + βmGm(x) , (5.26)

which leads to the update rule for the weights

w
(m+1)
i = w

(m)
i · exp{−yiβmGm(xi)} . (5.27)

By using the indicator function I and −yiGm(xi) = 2 · I(yi 6= Gm(xi))− 1, one can
reformulate this to

w
(m+1)
i = w

(m)
i · exp{2βm · I(yi 6= Gm(xi))} · e−βm . (5.28)

Commonly, the term 2βm is referred to as αm = 2βm. Please note, that in its original
version of the algorithm (Alg. 2), the factor e−βm for updating the weights is omitted.
However, this is still equivalent to Equation 5.28. The factor changes all weights in
the same way and is therefore neither relevant in the training of the classifiers Gm(x)
on basis of the weighted samples, nor on the calculation of the weighted error rate
errm, since e−βm multiplies numerator and denominator of the fraction.
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In conclusion, AdaBoost iteratively optimizes an exponential loss function. In each
step of the iteration, a new weak classifier is fitted to re-weighted data. The weights
of the data depend on the misclassification rate in the previous step. The weight
is increased for misclassified samples since the argument of the exponential function
in Equation 5.28 is positive in these cases. In an illustrative view, with increas-
ing iteration number, the classifier focuses on the hard-to-classify samples. Figure
5.3 displays the decision boundaries of an AdaBoost scheme with decision stumps
for a varying number of iterations. One can see how the weak classifiers are forced
to focus more and more on the hard-to-classify instances. Different variants for
the actual implementation of AdaBoost exist. We used for our experiments the
AdaBoost.M1 algorithm (Algorithm 2), which originally has been proposed by Freund
et al. [Freu 96]. With this, the classification rule for an unknown sample x is simply

input : Training Set S, weak classifier Gm(x), integer M specifying the
number of iterations

ouput: Final classifier G∗(x) =
∑M

m=1 αmGm(x)
begin

Initialize the weights wi = 1/N ∀i;
for m = 1 to M do

Fit the classifier Gm(x) to the training data S, using the weights wi;

Calculate the weighted error rate errm =
∑N

i=1 w
(m)
i I(yi 6=Gm(xi))∑N

i=1 w
(m)
i

;

If errm > 0.5 set M = m− 1 and abort loop;
Calculate αm = log{ (1−errm)

errm
};

Update the weights wm+1
i = w

(m)
i · exp{αm · I(yi 6= Gm(xi))} ∀i ;

end
Output the final classifier G∗(x) =

∑M
m=1 αmGm(x);

end
Algorithm 2: AdaBoost.M1

y∗ = G∗(x) = sgn(
∑M

m=1 αmGm(x)).
As mentioned, we used decision stumps for the weak classifiers. These are one-level
decision trees [Ai 92]. They classify on basis of one single feature. For real-valued
feature vectors, as in our case, a decision stump is fully defined by the feature it
operates on and a threshold for this feature that separates the two classes.

Multi-Class Implementation
Since the AdaBoost.M1 algorithm needs the classification accuracy of the weak clas-
sifier to be at least > 1

2
, which is hard to achieve in the 4 class case using decision

stumps, we applied a one-versus-one classification scheme in that cases. Consequently
we trained 4 · (4 − 1)/2 binary classifiers and decided by majority vote. Ties (both
classes have the same number of votes) were assigned by random decision.
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(d) 18 Base Classifiers

Figure 5.3: Decision boundaries of the weak classifiers for multiple iteration numbers
(=number of base classifiers) for Adaptive Boosting with decision stumps as weak
classifiers. a) 1 weak classifier, b) 3 weak classifiers, c) 11 weak classifiers, and d)
18 weak classifiers. Please note that for c) and d), not all decision boundaries of the
weak classifiers are displayed as they lie too close to each other. The data is from
patient subset SUB44 and a two-dimensional feature space. The training accuracy
increases from a) 77% to b) 79% to c) 84% until d) 93%. The dashed lines represent
the decision boundaries of the weak classifiers. The instances of SUB44 are colored in
red if the underlying tumor was high-grade and colored in green if it was low-grade.
Please also compare to Figures 5.1 and 5.2 for the same data classified with a Naïve
Bayes classifier and Linear Discriminant Analysis.
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5.4 Nearest Neighbor
The k-Nearest Neighbor (kNN) classifier is a model free classifier – no specific prop-
erties of the underlying probability distributions of the features of distinct classes are
assumed. It is thought to originate from ideas and formulations of Fix and Hodges in
1951. Later on several properties were proved by Cover et al. [Cove 67], e. g. that for
1-nearest neighbor classification and dense training sets (number of training samples
N → ∞) it approaches twice the error rate of the Bayes classifier and therefore can
be used to estimate the best achievable training performance in some cases. kNN is
a prototype method, which means that the training data are represented by a set of
points in feature space – called prototypes. Furthermore it is a “lazy” classifier in the
sense that all training samples need to be kept in the memory and all computation
is done during classification of an unknown sample x ∈ Rd. The algorithm is given
in pseudo-code in Algorithm 3:

input : Test sample x, training set S, distance measure d(x,xi), integer k
specifying the number of nearest neighbors to be evaluated

ouput: Class estimate y∗ of sample x, according to the classifier
begin

for i = 1 to N do
Calculate the distances di(x,xi);

end
Determine the k-closest training samples based on di;
Determine the most frequent class label y∗ among the k-closest training
samples;
Output the class estimate y∗ of x;

end
Algorithm 3: k-Nearest Neighbor Classifier

We used the Euclidean distance as distance metric d(x,xi) = ||x−xi||2 and evaluated
the classification accuracy for our problems for different numbers of neighbors k. The
nearest neighbor method is inherently able to handle classification problems with a
class number > 2, thus was not applied in a one-versus-one classification scheme.
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(a) 1-Nearest Neighbor

 

 

High Grade

Low Grade
Training Accuracy 0.73

M
R

IT
2F

la
ir

Q
u
ot

M
ax

M
ea

n
R

ef
V

O
I

PETDynVOIMax
−1 0 1 2 3

−1

0

1

2

3

4

5

(b) 3-Nearest Neighbors

Figure 5.4: Decision boundaries for the k-Nearest Neighbor classifier for a) 1-nearest
neighbor and b) 3-nearest neighbors. The data is from patient subset SUB44 and a
two-dimensional feature space. The training accuracy drops from a) 100% to b) 73%.
The instances of SUB44 are colored in red if the underlying tumor was high-grade
and colored in green if it was low-grade. The data were normalized to unit variance
and zero mean (LSUV). Please compare to the other figures in this chapter for the
same data classified with other classifiers.
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Figure 5.5: Schematic diagram of a perceptron featuring a single hidden layer. The
input layer contains the elements of the feature vector x ∈ Rd. The output of the
perceptron is a class vector y. The output of the hidden layer is a vector z ∈ Rm.
The layers are connected with weights α, β ∈ R. For clearness, not all connections
and weights are shown.

5.5 Neural Networks

5.5.1 Definition of the Neural Network

We used a three layer perceptron (featuring a single hidden layer) as classifier of the
neural networks family. The concept of the perceptron was first described in 1958 by
Rosenblatt [Rose 58], which did not feature hidden layers in its original form. The
network in our implementation is a feed-forward network without shortcuts. the input
layer is only connected to the hidden layer and the hidden layer is only connected
to the output layer. Every neuron of a certain layer is connected to all neurons
of its succeeding layer (see also Figure 5.5). Now let x ∈ Rd be a feature vector
and y be its class, coded as binary vector, i. e. , for two classes y ∈

{
(0, 1)>, (1, 0)>

}
and for four classes y ∈

{
(0, 0, 0, 1)>, (0, 0, 1, 0)>, (0, 1, 0, 0)>, (1, 0, 0, 0)>

}
. The single

hidden layer perceptron and most other neural networks are inherently able to handle
classification problems with a class number > 2. Thus we did not apply a one-versus-
one classification scheme in case of the classification of the four individual WHO
grades.
The input of the neurons of the input layer contains the elements xp, p = 1, . . . , d, of
the feature vector, the output of the neurons in the output layer is an estimated class
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vector y∗ as previously described. The number of input neurons equals the dimension
of the feature vector d, the number of hidden neurons is m, the number of output
neurons equals the class number k. The connections between the neurons of the
input layer and the hidden layer are weighted by factors αo,p, o = 1, . . . ,m, p =
1, . . . , d, the weights between the hidden layer and the output layer are βj,o, j =
1, . . . , k, o = 1, . . . ,m. We also allow for constant biases αo,0 and βj,0. The input
in(H)
o (x) ∈ R of the o-th neuron of the hidden layer under the input of a feature

vector x is a weighted sum (Equation 5.29). For input and activation function, the
superscript (H) indicates the hidden layer and (O) the output layer:

in(H)
o (x) = αo,0 +

d∑
p=1

αo,pxp o = 1, . . . ,m (5.29)

At the hidden layer, an activation function is applied to the input. This activation
function should be a differentiable, non-linear function, in order to achieve a non-
linear decision boundaries and to be able to update the weights by gradient descent
steps. In our case, the activation function at the hidden layer is a sigmoid function
act(H)(a) = 1

1+exp{−a} ∈ R. With this, the output of the o-th neuron of the hidden
layer is:

zo(x) = act(H)
o (in(H)

o (x)) o = 1, . . . ,m (5.30)

As a consequence, the input of the j-th neuron of the output layer in
(O)
j (x) ∈ R is

the weighted sum of the outputs of the hidden layer:

in
(O)
j (x) = βj,0 +

m∑
o=1

βj,ozo(x) j = 1, . . . , k (5.31)

Commonly, an activation function act
(O)
j (in

(O)
j (x)) is also applied at the output layer.

From literature, multiple possible functions are reported. To ensure the comparability
of the output of the neural net and the binary coded classes y, the functions should
feature the properties

∑
j act

(O)
j (in

(O)
j (x)) = 1 and act

(O)
j (in

(O)
j (x)) ∈ [0; 1]. In the

implementation that we used, the activation function of j-th neuron of the output
layer was the “softmax” function, which fulfills the mentioned properties:

act
(O)
j (in

(O)
j (x)) =

exp{in(O)
j (x)}∑k

v=1 exp{in(O)
v (x)}

j = 1, . . . , k (5.32)

5.5.2 Backpropagation of Errors

During training, the neural network learns by adjusting the weights α and β. In order
to measure the goodness of fit of the classifier in its current state to the set S of the
training data, we have to define an error function which is later on minimized. Several
possibilities for an error function exist, however in most cases the sum-of-squared error
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(SSE) function is used, but other functions are possible, e. g. cross-entropy. With SSE,
the error is computed as follows:

SSE =
N∑
i=1

k∑
j=1

(yi,j − act
(O)
j (xi))

2

=
N∑
i=1

SSEi

(5.33)

Several techniques exist for optimizing the error function by adjusting the weights.
The implementation that we used applied a gradient descent method for updating
α(r+1), β(r+1) from their previous versions α(r), β(r). In this context, the superscripts
indicate the iteration number r. Also, another free parameter γ is introduced which
controls the step width of the gradient descent:

α(r+1)
o,p = α(r)

o,p − γ
N∑
i=1

∂ SSEi

∂α
(r)
o,p

o = 1, . . . ,m, p = 1, . . . , d (5.34)

β
(r+1)
j,o = β

(r)
j,o − γ

N∑
i=1

∂ SSEi

∂β
(r)
j,o

j = 1, . . . , k, o = 1, . . . ,m (5.35)

The partial derivatives are simply calculated by subsequent application of the chain
rule (xi,j is the j-th element of sample xi):

∂ SSEi

∂αo,p
=

k∑
j=1

∂ SSEi

∂ act
(O)
j (xi)

∂ act
(O)
j (xi)

∂ in
(O)
j (xi)

∂ in
(O)
j (xi)

∂zo(xi)

∂zo(xi)

∂ in(H)
o (xi)

∂ in(H)
o (xi)

∂αo,p

= −2
k∑
j=1

(yi,j − act
(O)
j (xi)) · act

′(O)
j (xi) · βj,o · act′(H)

o (in(H)
o (x)) · xi,p

(5.36)

∂ SSEi

∂βj,o
=

∂ SSEi

∂ act
(O)
j (xi)

∂ act
(O)
j (xi)

∂ in
(O)
j (xi)

∂ in
(O)
j (xi)

∂βj,o

= −2(yi,j − act
(O)
j (xi)) · act

′(O)
j (xi) · zo(xi)

(5.37)

With δj,i := −2(yi,j−act
(O)
j (xi))·act

′(O)
j (xi) and so,i :=

∑k
j=1 βj,o act

′(H)
o (in(H)

o (xi))·
δj,i This can be re-written to:

∂ SSEi

∂αo,p
= so,ixi,p (5.38)

∂ SSEi

∂βj,o
= δj,izo(xi) (5.39)

Where δj,i and so,i are proportional to the difference of the output of the neural net
and the actual class and can be understood as errors of the classification at a certain
iteration. With these equations, the training of the neural network is as follows:
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• The weights α, β are kept fixed and a feature vector x is propagated through
the network (forward pass).

• The output of the net is compared to the actual class yi and with it, the δ and
subsequently the s are calculated (backward pass).

• Then, the δ and s are used to compute the gradients (Equations 5.36 and 5.37)
and update the weights (Equations 5.34 and 5.35).

This kind of training algorithm is known as backpropagation of errors. This method
ultimately goes back to the PhD-thesis of Werbos in 1974 [Werb 74] and is in depth
described in Rumelhart et al. from 1986 [Rume 86]. The parameter γ influences the
step width of every gradient descent step and is a free parameter of the classifier. It
is commonly known as ”learning rate”. See Figure 5.6 for an example of the back-
propagation of error process for an increasing number of iterations. In general, one
does not aim to find the global minimum of the objective function of the neural net
as it is very likely that the classifier overfits the problem at that point. In order to
avoid overfitting, we optimize the number of iterations in a cross validation scheme
and aim to find a number of iterations that terminates the process of learning before
over-adaption occurs.

5.5.3 Speed-Up of Convergence

For a speed-up of the convergence, a momentum term [Rume 86] is added to α, β at
training run r+ 1 (Equations 5.40 and 5.41). In an illustrative view, the momentum
term enforces the convergence of the gradient descent at shallow areas of the objective
function. The momentum term is weighted by the parameter κ, which itself is another
free parameter that was optimized in our experimental setup.

α(r+1)
o,p = α(r)

o,p + κα(r)
o,p − γ

N∑
i=1

∂ SSEi

∂α
(r)
o,p

o = 1, . . . ,m p = 1, . . . , d (5.40)

β
(r+1)
j,o = β

(r)
j,o + κβ

(r)
j,o − γ

N∑
i=1

∂ SSEi

∂β
(r)
j,o

j = 1, . . . , k o = 1, . . . ,m (5.41)

5.5.4 Training Algorithm and Decision Function

The algorithm for the training of the neural network using all training samples and
backpropagation of error works as defined in Algorithm 4.
The decision function, given a feature vector x and a trained neural net is simply:

y∗ = argmin
y

k∑
j=1

(
yj − act

(O)
j (x)

)2

, (5.42)

which effectively is deciding for the class y with the highest activation.
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(a) γ = 1.0 κ = 0.1 Epoch # = 10
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(b) γ = 1.0 κ = 0.1 Epoch # = 100
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(c) γ = 1.0 κ = 0.1 Epoch # = 1000
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(d) γ = 0.1 κ = 0.1 Epoch # = 1000

Figure 5.6: Decision boundaries of a single hidden layer perceptron for a different
number of iterations (epochs) and two values of the learning rate γ. The momentum
weight κ was held constant. One finds, with increasing iteration number, that the
classifier adapts better to the training data. When comparing c) and d), we see that a
lower step width delays the adaption of the classifier to the problem. However, large
step widths could lead to the effect that the global minimum of the error function
is missed. The training accuracy of this example was a) 57%, b) 70%, c) 80%, and
d) 75%. The configuration of the network was: Two neurons in the input layer, two
neurons in the hidden layer, and two neurons in the output layer. As in the examples
for other classifiers, the data stem from patient subset SUB44 and a two-dimensional
feature space and were normalized to unit variance and zero mean (LSUV). The
instances of SUB44 are colored in red if the underlying tumor was high-grade and
colored in green if it was low-grade. Please compare to the other figures in this
chapter for the same data classified with other classifiers.
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input : Training set S, float γ specifying the learning rate, float κ specifying
the momentum rate, integer R specifying the number of epochs

ouput: The trained neural network
begin

Construct a neural net with a input layer with d neurons and one output
layer with k neurons and a single hidden layer with (d+ k)/2 neurons;
Initialize the weights α, β to a random number ∈ [−1, 1];
for r = 1 to R do

for i = 1 to N do
Use feature vector xi as input and calculate the output of the net;
Update the weights α(r), β(r) according to the backpropagation of
error equations;

end
end
Output the trained neural network;

end
Algorithm 4: Training algorithm for the single hidden layer perceptron

5.5.5 Initialization of the Neural Network

Neural networks are especially sensitive to the initially chosen weight values α(0)
o,p, β

(0)
j,o .

E. g. if the starting weights are chosen to be equal, the input in(H) and the output
z for all hidden neurons are equal as well, as are the inputs in(O) and output y.
As a consequence, when updating the weights with the backpropagation of errors
(Equation 5.36, 5.37) all weights are adjusted the same way and are equal again. If
good adaption to the problem requires unequal weights, the problem can never be
appropriately solved. As a solution for this, a random initialization of the weights was
proposed by Rumelhart et al. [Rume 86]. Regarding the magnitude of the weights,
initializing the starting weights to large values can result in very slow convergence of
the algorithm. The reason is that the activation functions used in the hidden layer
saturate for large inputs, which means that their derivatives become near zero. For
good convergence and for avoiding saturation with sigmoidal activation functions, it
is recommended for the inputs to be of order unity [Bish 95].
Let us assume that our input data are standardized, i. e. 〈xp〉 = 0 and 〈x2

p〉 = 1, p =

1, . . . , d with 〈.〉 denoting the expected value. The expected average input 〈in(H)〉 for
a hidden unit is:

〈in(H)〉 =
d∑
p=1

〈αpxp〉

(αp,xp uncorrelated)⇔ =
d∑
p=1

〈αp〉〈xp〉

since 〈xp〉=0⇔ = 0

(5.43)
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And the expected variance 〈(in(H))2〉 of the input is:

〈(in(H))2〉 =

〈(
d∑
p=1

αpxp

)(
d∑
q=1

αqxq

)〉
(αp,αq uncorrelated)⇔ =

d∑
p=1

〈α2
p〉〈x2

p〉

= σ2d

(5.44)

with the variance σ2 of the weights. Consequently, for large σ2 the probability in-
creases that some units of the hidden layer are already saturated from beginning,
which could potentially lead to poor classification results [Hast 09].
For mentioned reasons, the starting weights in our implementation are chosen as ran-
dom values near zero. E. g. for properly normalized input features, it is common to
chose the starting weights α(0)

o,p, β
(0)
j,o ∈ [−1, 1].
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5.6 Support Vector Machines

Support Vector Machines (SVM) are based on the learning theory proposed by Vap-
nik et al. [Vapn 82] in 1982. SVMs are linear classifiers, the decision boundary that
they fit is a hyperplane. As there exist an infinite number of separating hyperplanes
(assuming linearly separable data), one can ask which of these hyperplanes is optimal
in terms of generalization of the classifier. For that, SVM are constructed in such
way that they fit a hyperplane which maximizes the distance (margin) to the closest
training samples from both classes. It is thought that this helps in correctly classify-
ing samples which have not been in the training set.

5.6.1 Hard Margin SVM

We start with a training set S = {(xi, yi)} , i = 1, . . . , N , with feature vectors
xi ∈ Rd and class labels yi ∈ {−1, 1}. Let{

x : β>x+ β0 = 0
}

(5.45)

be a hyperplane defined by β and β0. For a point x0 on the plane one finds

β>x0 = −β0 . (5.46)

The signed distance d(x) ∈ R of any point x to the plane is then (with β̂ = β
||β||2 )

d(x) = β̂
>

(x− x0)

=
β>

||β||2
x+

β0

||β||2
)

=
1

||β||2
(β>x+ β0)

(5.47)

Using Equation 5.47, for correct classification of all training data, one gets the con-
dition

yi
1

||β||2
(β>xi + β0) ≥ 0 ∀i. (5.48)

Now let us assume that all xi should have a certain distanceM ∈ R to the hyperplane:

yi
1

||β||2
(β>xi + β0) ≥M ∀i (5.49)

The fundamental principle of SVMs is, that the distance M is maximized, which
leads to the following optimization problem:

argmax
β,β0

M

subject to yi
1

||β||2
(β>xi + β0) ≥M ∀i

(5.50)
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ChoosingM = 1
||β||2 and reformulating as an equivalent convex optimization problem,

one gets

argmin
β,β0

1

2
||β||22

subject to yi(β
>xi + β0) ≥ 1 ∀i.

(5.51)

The Lagrangian Lp in primal form, with multipliers λi (or λ as vector) is

Lp(β, β0,λ) =
1

2
||β||22 −

N∑
i=1

λi
[
yi(β

>xi + β0)− 1
]

subject to λi ≥ 0 ∀i.
(5.52)

The Karush-Kuhn-Tucker (KKT) conditions for optimality lead to further implica-
tions for the problem:

1. The primal constraints have to be fulfilled:

− yi(β>xi + β0) + 1 ≤ 0 ∀i (5.53)

2. The dual constraints hold:
λi ≥ 0 ∀i (5.54)

3. The gradient of the Lagrangian has to be zero:

∂Lp(β, β0,λ)

∂β
!

= 0

→ β =
N∑
i=1

λiyixi

(5.55)

∂Lp(β, β0,λ)

∂β0

!
= 0

→ 0 =
N∑
i=1

λiyi

(5.56)

4. The complementary slackness has to be fulfilled:

− λi
[
yi(β

>xi + β0)− 1
]

= 0 ∀i (5.57)

From the KKT conditions, some properties of the SVM are visible:

• If λi > 0, from Equation 5.57 follows:

yi(β
>xi + β0) = 1 (5.58)

This means that the xi is exactly at the boundary of the margin. These xi are
called support vectors, giving the classifier its name.
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• Otherwise, if yi(β>xi + β0) > 1, the λi = 0. The points which are not on
the boundary of the margin subsequently play no role in the definition of the
hyperplane.

• From Equation 5.55 one can see that the parameters β of the optimally sepa-
rating hyperplane is a linear combination of those training samples xi for which
λi > 0

Additionally, the conditions for the gradient of the Lagrangian (Equation 5.55 and
5.56) can be used to reformulate the optimization problem to its dual form Ld:

Ld =
N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
>
i xj

subject to λi, λj ≥ 0 ∀i, j
(5.59)

The optimal values β∗, β∗0 that minimize Ld can be found by using quadratic pro-
gramming techniques (e. g. Platt’s Sequential Minimal Optimization [Plat 98]).
The decision function is then:

y∗ = sgn
{
β∗>x+ β∗0

}
(5.60)

5.6.2 Soft Margin SVM

Above formulations are to a large extent valid for linearly separable data only. How-
ever, in real-world scenarios, non-linearly separable problems are common. There
exist two approaches in current implementations in order to make SVM usable even
for those scenarios:
Cortes et al. [Cort 95] proposed the usage of soft margins. Consequently, a certain
amount of misclassification is allowed. This can be achieved by introducing a slack
variable ξ (with elements ξi) in Equation 5.51, which are weighted by a parameter
C:

argmin
β,β0,ξi

1

2
||β||22 + C

N∑
i=1

ξi

subject to yi(β
>xi + β0) ≥ 1− ξi

ξi ≥ 0 ∀i.

(5.61)

For soft margin SVMs, the parameter C controls the size of the margin. A higher
value for C results in a smaller margin. For SVMs using mapping to higher dimen-
sional spaces (Section 5.6.4), a higher value for C usually leads to decision boundaries
which are better adapted (see Figure 5.7) but prone to overfit the training data. On
the opposite, smaller values of C result in rather smooth, more general decision
boundaries.
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Analogously to the derivations for linearly separable data, the Lagrangian with mul-
tipliers λ,µ in primal form is:

Lp(β, β0, ξ,λ,µ) =
1

2
||β||22 + C

N∑
i=1

ξi −
N∑
i=1

λi
[
yi(β

>xi + β0)− (1− ξi)
]
−

N∑
i=1

µiξi

subject to λi ≥ 0

µi ≥ 0

ξi ≥ 0 ∀i
(5.62)

The KKT conditions for this Lagrangian are:

1. The primal constraints:

−yi(β>xi + β0) + (1− ξi) ≤ 0 ∀i (5.63)
−ξi ≤ 0 ∀i (5.64)

2. The dual constraints:

λi ≥ 0 ∀i (5.65)
µi ≥ 0 ∀i (5.66)

3. Zero gradient of the Lagrangian:

∂Lp(β, β0, ξ,λ,µ)

∂β
!

= 0

→ β =
N∑
i=1

λiyixi

(5.67)

∂Lp(β, β0, ξ,λ,µ)

∂β0

!
= 0

→ 0 =
N∑
i=1

λiyi

(5.68)

∂Lp(β, β0, ξ,λ,µ)

∂ξ
!

= 0

→ λi = C − µi ∀i
(5.69)

4. The complementary slackness:

−λi
[
yi(β

>xi + β0)− (1− ξi)
]

= 0 ∀i (5.70)
µiξi = 0 ∀i (5.71)

Some properties of the soft-margin SVM differ from the properties of the hard-margin
version, such as:
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• Among the support vectors (λi > 0), for points that lie exactly on the margin
(ξi = 0), an upper bound for λi exists, as a consequence of Equations 5.71 and
5.69:

0 < λi < C (5.72)

• On the contrary, for points with ξi > 0, from Equations 5.71 and 5.69 follows:

λi = C (5.73)

Again, with help of the gradient conditions, Lp (Equation 5.62) can be reformulated
to its dual form:

Ld =
N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
>
i xj

subject to 0 ≤ λi, λj ≤ C

N∑
i=1

λiyi = 0

(5.74)

The decision function is analogous to the hard margin case (Equation 5.60). One can
reformulate this with the help of Equation 5.67 to:

y∗ = sgn(
N∑
i=1

λiyix
>
i x+ β0) (5.75)

We find, that the feature vectors only appear as scalar products in this function. Ad-
ditionally, when comparing the dual forms (Equations 5.59 and 5.74) to their primal
versions (Equations 5.52 and 5.62), one finds that in the dual form the feature vectors
x only appear in scalar products as well. This is a favorable property to compute
non-linear decision boundaries, which can be exploited, as shown Section 5.6.4.

5.6.3 Hinge Loss Function

From the complementary slackness for soft margin SVMs, defined by Equation 5.70,
for any λi > 0 one finds

1− yi (β>xi + β0)︸ ︷︷ ︸
=||β||2·d(xi)

= ξi , (5.76)

where the term in brackets is ||β||2-times the distance of the xi to the separating
hyperplane. Together with the primal constraints ξi ≥ 0, this can be rewritten as
hinge loss function h(xi) ∈ R+

0 :

h(xi) = max
{

0, 1− yi(β>xi + β0)
}

(5.77)

The loss function is zero if the xi is correctly classified (d(xi) and yi have the same
sign) and the distance of the xi to the hyperplane is greater 1

||β||2 . For all points that
are closer to the separating hyperplane or which are classified incorrectly, the loss
increases proportional to d(xi).
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5.6.4 Kernel Trick

In order to obtain linearly separable data, the features can be transformed to a
higher dimensional space. This transformation of a feature vector x ∈ Rd is denoted
by φ(x) ∈ Rd′ (d′ > d). The method is effective to fit highly non-linear decision
boundaries in the feature space (see Figure 5.7).
Now we use the fact that the dual Lagrangian contains only scalar products of the
feature vectors. These scalar products 〈φ(xi), φ(xj)〉 for the transformed feature
vectors can be represented by kernel functions k(xi,xj) ∈ R:

k(xi,xj) = 〈φ(xi), φ(xj)〉 (5.78)

With this, the Lagrangian in dual form 5.74 becomes

Ld =
N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyjk(xi,xj)

subject to 0 ≤ λi, λj ≤ C

N∑
i=1

λiyi = 0

(5.79)

The decision function for a feature vector x is then

y∗ = sgn(
N∑
i=1

λiyik(xi,x) + β0) (5.80)

We used two different kernel functions in our experiments, a Gaussian kernel and a
polynomial kernel of degree two.

k(x,x′) = exp{−γ||x− x′||22} (5.81)
k(x,x′) = (1 + x>x′)2 (5.82)

5.6.5 Numerical Optimization

We used the libSVM software framework for the SVM classification [Chan 09]. There,
the optimization problem posed in the Lagrangian dual (Equation 5.79) is solved by
a sequential minimal optimization type decomposition: only a subset of the λi are
modified in each iteration. The subset itself poses a smaller sub-problem that has to
be minimized in each iteration. More details about this procedure can be found in
[Chan 09]. How these subsets can be selected in an optimal way is described in Fan
et al. [Fan 05].

5.6.6 Multi-Class SVM

The SVM as described above is able to handle two-class problems only. In the case of
our 4-class classification, we used the one-versus-one classification scheme. We trained
4 · (4 − 1)/2 binary classifiers and decided by majority vote. Ties were assigned by
random decision.
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(a) C = 2−2 γ = 21
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(b) C = 28 γ = 21
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(c) C = 24 γ = 2−3
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(d) C = 24 γ = 23

Figure 5.7: Decision boundaries of the C-Support Vector Classifier for different values
of weight C and kernel width γ. One sees that C and γ influence the decision
boundaries to a large extent. In general, larger values for C force the classifier
to decision boundaries which are better adapted to the training data. However,
the increased adaption might lead to over-fitting and to reduced generalizability for
unknown test data. As in the previous examples for other classifiers, the data stem
from patient subset SUB44 and a two-dimensional feature space and were normalized
to unit variance and zero mean (LSUV). The training accuracy for this example was
a) 75%, b) 95%, c) 77%, and d) 98%. The instances of SUB44 are colored in red if
the underlying tumor was high-grade and colored in green if it was low-grade. Please
compare to the other figures in this chapter for the same data classified with other
classifiers.
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5.7 Grid-Search for Best Parameters

For estimating the optimal values for the free parameters of the applied machine
classifiers, we applied a grid search method. The cross validated accuracies (see
Section 5.8) for all points on the grid were calculated. In the results section, usually
only the highest accuracy corresponding to a single point on the grid is presented.
Table 5.1 lists the free parameters of the different classifiers and the numerical range
of each parameter.

Classifier Parameter Range # Grid Points

AdaBoost # of base classifiers M [5, 6, . . . , 20] 16
LDA - - 0
NaiveBayes - - 0
NearestNeighbor # of neighbors k [1, 3, 5] 3
NeuralNetworks Learning rate γ [0.1, 0.3, . . . , 0.9]

Momentum rate κ [0.1, 0.3, . . . , 0.9]
# of epochs R [100, 200, . . . , 1000] 250

SVM (Poly) Weight C [2−5, 2−4, . . . , 215] 21
SVM (RBF) Weight C [2−5, 2−4, . . . , 215]

Kernel width γ [2−15, 2−14, . . . , 23] 399

Total # grid points 689

Table 5.1: The numerical range for the free parameters of the machine classifiers.
Parameter is the free parameter of the respective classifier. The Range specifies the
numerical range, # of Grid Points is the total number of points on the grid for the
respective free parameters.

5.8 Leave-One-Patient-Out Cross-Validation

In order to test the generalizability and to reduce a possible bias towards higher
classification rates by over-fitting, all listed results of the machine classifiers were
generated by performing a leave-one-patient-out cross-validation (LOPO-CV). The
Figure 5.8 provides a diagram for our setup. The initial data was divided into training
and test set. The training set was further divided into development and validation
sets. The necessary statistics were calculated from the development set and the
features from development, validation and test set were normalized with that infor-
mation. Additionally, for the PCA features, the Eigenvectors were learned from the
development set and the feature vectors from development, validation, and test set
were transformed into the new coordinates. The optimal free parameters were then
obtained be a grid search, in which the development set was used for training the
classifier and the validation set for evaluating the classification accuracy. The grid
search was five-fold cross-validated. The choice of parameters which obtained the
best classification accuracy was then used for classifying the test set. The output
of this algorithm is the LOPO-CV classification accuracy for every feature set. For
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the classification of subsets SUB44 and SUB32 (those including T1-MRI, T2-MRI,
FET-PET), we had 62 different feature sets. The algorithm consequently outputs
one LOPO-CV classification accuracy for each of the 62 feature sets.
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Figure 5.8: The setup of our experiments, incorporating a grid search for the best
classifier parameters and a leave-one-patient-out cross validation. For the grid search,
the training set was further subdivided into development and validation set. The
parameters for the normalization and the PCA were learned from the development
set only.
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5.9 Receiver Operating Characteristic Analysis

In medicine, the receiver operating characteristic (ROC) curve is commonly employed
to assess the significance of a feature for a binary classification task. In fact, many
studies in the field of glioma grading involve ROC curves and the obtained parameter
values are used in everyday medical routine [Popp 07, Popp 06, Calc 11]. In order to
compare our methods to these results, we additionally carried out an ROC analysis
for the task of differentiating between low-grade and high-grade gliomas.
The ROC analysis is applicable for multi-dimensional, scalar features and two-class
classification. Commonly, it incorporates a diagram where sensitivity vs. (1 −
specificity) is plotted. The method or feature that results in the ROC curve with
the largest area under the curve (AUC) is considered to be superior in terms of dis-
criminative power when compared to the others. For reference, we always list the
optimal parameter choice for our ROC curves. The optimal parameter value is the
value with the highest Youden’s index (= sensitivity + specificity−1). The Youden’s
index has its maximum when the accuracy is maximal. The accuracy is calculated
by:

accuracy = sensitivity · prior probability + specificity ·(1− prevalence) (5.83)

The prevalence for a two-class task with balanced groups, as in our case, is:

prior probability = 0.5

In opposite to the other machine classifiers in our study, the ROC analysis classifies
retrospectively on all samples without any division into test and training sets.

5.10 Measures for Classification Performance

For evaluating the success of a specific classifier to classify samples, the results of the
classification are often compared to a rating which is considered as ground truth (or
gold standard). In our case this is the grading of the tumor based on the histological
analysis of invasively gained bioptic samples. The output of the classifier is compared
to this ground truth and multiple measures have been established for this comparison.

In order to present these measure in an illustrative way, we start with a confusion
matrix for the classification, as seen in Figure 5.2. The elements nj,i in the matrix
contain the absolute frequencies (number) of samples, which were classified as class i
and have the underlying ground truth class j. The total number of classes is k. The
total number of classified samples is N =

∑k
j=1

∑k
i=1 nj,i. The marginal frequencies

are defined as nj,∗ =
∑k

i=1 nj,i and n∗,i =
∑k

j=1 nj,i.

5.10.1 Accuracy

We refer to classification accuracy ACC to the fraction of correctly classified examples,
expressed as percentage. This measure is also known as total recognition rate. The
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Hypothesis
Class 1 Class i . . . Class k

R
ef
er
en
ce

Class 1 n1,1 n1,i . . . n1,k n1,∗
Class j nj,1 nj,i . . . nj,k nj,∗

...
... . . . ...

Class k nk,1 nk,i . . . nk,k nk,∗
n∗,1 n∗,i . . . n∗,k N

Table 5.2: General confusion matrix of a multi-class classification with k different
classes. The absolute frequencies nj,i ∈ N. The total number of samples is N . The
marginal frequencies are calculated according to nj,∗ =

∑k
i=1 nj,i and n∗,i =

∑k
j=1 nj,i.

accuracy is the diagonal sum in the confusion matrix divided by the total number of
samples:

ACC =
1

N

k∑
i=1

ni,i · 100% (5.84)

The accuracy as a measure to judge a classifier for suitability or to compare multiple
classifiers has the limitation that it heavily depends on the prior probability of a
certain class. A classifier that always decides for the class which has the largest prior
probability pj = nj,∗/N can achieve high subjective classification rates for highly
imbalanced classes. For this, other measures can be defined, e. g. the unweighted
average recall UAR:

UAR =
1

k

k∑
j=1

nj,j
nj,∗
· 100% (5.85)

The UAR does not depend on the prior probabilities and is equal to ACC when
nj,∗ = N

k
∀j. However, as we deal with balanced or nearly balanced data, we do not

expect this to be a significant source of bias for our experiments.

5.10.2 Cohen’s Kappa

This measure was introduced by Cohen in 1960 [Cohe 60]. In its original context it
was introduced for assessing the agreement of human raters. However, it can also
be used for judging the classification performance of machine learning techniques.
Cohen’s κ is calculated on the basis of the observed agreement po of two raters and
the by chance agreement pc that is expected for statistically independent decisions of
both raters:

κ =
po − pc
1− pc

(5.86)

The estimates for po is analogous to the accuracy:

po =
1

N

k∑
i=1

ni,i (5.87)
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pc is estimated by an averaged product of the marginals:

pc =
1

N2

k∑
i=1

n∗,i ni,∗ (5.88)

Cohen’s Kappa features some useful properties. κ = 1 only if all off-diagonal elements
in the confusion matrix are zero, which is induced by a perfect agreement between
both raters. For other values of κ, several guidelines exist in literature. We follow the
recommendation of Fleiss et al. [Flei 03], which propose the guidelines found in Table
5.3. In order to test if an obtained result yielding a certain κ-value is different from

κ Strength of Agreement

κ ≤ 0.40 Poor
0.40 < κ ≤ 0.75 Fair to good

0.75 < κ Excellent

Table 5.3: The strength of agreement of two independent raters depending on the
magnitude of Cohen’s Kappa according to Fleiss et al. [Flei 03].

the hypothesis that the two raters are independent (κ = 0) in a significant way, one
needs to estimate the standard error SE(κ) of κ. Fleiss et al. [Flei 03, Flei 69] showed
that this can be achieved by Equation 5.89:

SE(κ) =
1

(1− pc)
√
N

√√√√pc + p2
c −

1

N3

k∑
i=1

n∗,i ni,∗(n∗,i + ni,∗) (5.89)

By assuming that κ’s underlying distribution is normal, the according standard-score
z is:

z =
κ

SE(κ)
(5.90)

For a significance level of α ≤ 0.05, which means that a classification result yielding
a certain value κ has at most a 5% probability to be generated by chance, the critical
value of z is z ≥ 1.645 (α ≤ 0.01 for z ≥ 2.326, α ≤ 0.001 for z ≥ 3.090).
From this, we considered in our experiments a classification with an associated con-
fusion table resulting in κ ≥ 0 and a significance level α ≤ 0.05 to be significantly
better than random prediction.
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Results

In this chapter, we aim to elaborate the differences in classification accuracy for fea-
ture normalization method, imaging modality, inter-dataset normalization method,
PET motion correction and the different classifiers. All statistical analysis were car-
ried out by help of the IBM SPSS Statistics [SPSS 10] package.

6.1 Feature Normalization Technique
The current section lists the classification results for the two different feature nor-
malization techniques. These are linear scaling to range (LSR) and linear scaling to
unit variance (LSUV) (for details, see Sections 4.7.1 and 4.7.2).
The Tables 6.1 (two-class) and 6.2 (four-class) show the maximum classification ac-
curacies of the 62 feature sets for the different classifiers on patient subsets SUB44
(two-class) and SUB32 (four-class). All values in the tables reflect LOPO-CV results
and were tested for statistical significance on the basis of Cohen’s Kappa: The results
that are not significantly better (p < 0.05) than random prediction are denoted in
italics. The values of Cohen’s Kappa are listed as well.
Additionally, the classification rates of the LSR and LSUV variants were compared by
a two-sided Wilcoxon signed-rank test. In this context, one asterisk (*) indicates that
the LSUV normalization method achieved significantly (p < 0.05) higher classifica-
tion accuracy, two asterisks (**) indicate that the LSR method achieved significantly
higher accuracy.
For reference, we also provide the results of the AdaBoost classifier, although, with
decision stumps as weak classifier, it is insensitive to data scaling and translation.
The last rows of the tables contain the mean, standard deviation and maximum of
the respective column.
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Automated Two-Class Classification

LSR LSUV

Classifier Max. Acc. Cohen’s Mod. Max. Acc. Cohen’s Mod.
[%] κ [%] κ

AdaBoost 79.6 0.59 PET 79.6 0.59 PET
LDA 72.7 0.46 MM 75.0 0.50 MM
NaiveBayes 72.7 0.46 MM 70.5 0.41 PET
NearestNeighbor 79.6* 0.59 PET 86.4* 0.73 MM
NeuralNetworks 79.6* 0.59 MM 86.4* 0.64 MM
SVM (Poly. Kernel) 81.8** 0.64 MM 75.0** 0.50 MM
SVM (RBF. Kernel) 84.1 0.68 PET 84.1 0.68 MM

Mean±SD (Max) 78.6± 4.3 (84.1) 79.6± 6.3 (86.4)

Table 6.1: Maximum classification accuracies (Max. Acc.) for the two-class problem
(low-grade/high-grade), separated by classifier and normalization technique. Cohen’s
κ was calculated according to Section 5.10.2. Mod. indicates the modality on which
the feature set was calculated (PET = dynamic FET-PET with SUV inter-patient
normalization, MM = Multimodality).

Automated Four-Class Classification

LSR LSUV

Classifier Max Acc. Cohen’s Mod. Max Acc. Cohen’s Mod.
[%] κ [%] κ

AdaBoost 65.6 0.54 T2 65.6 0.54 T2

LDA 56.3* 0.42 MM 62.5* 0.50 MM
NaiveBayes 56.3** 0.42 MM 50.0** 0.33 T2

NearestNeighbor 59.4 0.46 MM 62.5 0.50 MM
NeuralNetworks 68.8 0.58 T2 68.8 0.58 T2

SVM (Poly. Kernel) 65.6 0.54 MM 62.5 0.50 MM
SVM (RBF. Kernel) 62.5 0.50 MM 62.5 0.50 MM

Mean±SD (Max) 62.0± 4.9 (68.8) 62.0± 5.8 (68.8)

Table 6.2: Maximum classification accuracies (Max. Acc.) for the four-class prob-
lem (WHO1/WHO2/WHO3/WHO4), separated by classifier and normalization tech-
nique. Cohen’s κ was calculated according to Section 5.10.2. Mod. indicates the
modality on which the feature set was calculated (T1 = contrasted T1-MRI, T2 =
T2-FLAIR-MRI, MM = Multimodality).
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6.2 Imaging Modalities
This section focuses on the differentiation of the classification results for feature sets
derived from the different modalities. Table 6.3 lists the results for the two-class
problem and machine classifiers, Table 6.4 the results for the four-class problem and
machine classifiers and Table 6.5 the results of the ROC analysis.
For all machine classifiers, the maximum classification accuracies of the 62 available
features sets are listed, separated by imaging modality. As in the previous section,
all values reflect LOPO-CV results and were tested for statistical significance with
Cohen’s Kappa: Italics denote non-significant results. The values of Cohen’s Kappa
are listed as well.
The last rows of the tables contain the mean, standard deviation and maximum of
the respective column.
The classifications for feature sets from T1-, T2-MRI, PET and Multimodality (com-
bining the three previously named) were carried out on patient subsets SUB44 (two-
class) and SUB32 (four-class). The classification for ADC-MRI (SUB22, 22 patients)
and X-ray CT (SUB14, 14 patients) was only done for two-classes, due to the limited
dataset number in these groups.
The table for the ROC analysis contains three features for every modality that
achieved the highest area under the curve (AUC). For reference, the threshold value
representing the highest Youden’s index for the separation of low- and high-grade
tumors, the accuracy, the sensitivity and specificity using this threshold are listed as
well. Every ROC curve was tested for significant differences (p < 0.05) of their AUCs
to the null hypothesis AUC = 0.5. Non-significant results are denoted in italics. For
PET, four ROC curves are given for the comparison in later sections.
The ROC curves itself can be found in Figures A.1 (T1-MRI), A.2 (T2-MRI) and A.3
(PET) in the Appendix.
Please note that the results for the PET are based on the SUV normalized datasets
since this technique (Section 4.3) is the standard in nuclear medicine. The results of
all other modalities base on the non-normalized variants.
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Automated Two-Class Classification

T1 T2 PET (SUV)

Classifier Max. Acc. Cohen’s Max. Acc. Cohen’s Max. Acc. Cohen’s
[%] κ [%] κ [%] κ

AdaBoost 75.0 0.50 75.0 0.50 79.6 0.59
LDA 56.8 0.14 59.1 0.18 70.5 0.41
NaiveBayes 63.6 0.27 63.6 0.27 70.5 0.41
NearestNeighbor 65.9 0.32 65.9 0.32 79.6 0.59
NeuralNetworks 65.9 0.32 77.3 0.55 77.3 0.55
SVM (Poly.) 61.4 0.23 70.5 0.41 72.7 0.46
SVM (RBF.) 70.5 0.41 75.0 0.50 84.1 0.68

Mean±SD (Max) 65.6± 5.9 (75.0) 69.5± 6.8 (77.3) 76.3± 5.2 (84.1)

Multimodality ADC CT

Classifier Max. Acc. Cohen’s Max. Acc. Cohen’s Max. Acc. Cohen’s
[%] κ [%] κ [%] κ

AdaBoost 68.2 0.36 81.8 0.64 71.4 0.46
LDA 75.0 0.50 54.6 0.10 64.3 0.32
NaiveBayes 72.7 0.46 63.6 0.27 64.3 0.32
NearestNeighbor 86.4 0.73 72.7 0.46 71.4 0.46
NeuralNetworks 86.4 0.73 86.4 0.73 64.3 0.32
SVM (Poly.) 81.8 0.64 72.7 0.46 71.4 0.46
SVM (RBF.) 84.1 0.68 86.4 0.73 78.6 0.59

Mean±SD (Max) 79.2± 7.2 (86.4) 74.0± 12.0 (86.4) 69.4± 5.4 (78.6)

Table 6.3: Maximum classification accuracies Max. Acc. for the two-class problem
(low-grade/high-grade), separated by classifier and imaging modality. T1 = con-
trasted T1-MRI, T2 = T2-FLAIR-MRI, PET = dynamic FET-PET using SUV inter-
patient normalization, Multimodality = multimodal feature sets, ADC = ADC-MRI,
CT = X-ray CT. Cohen’s κ was calculated according to Section 5.10.2.
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Automated Four-Class Classification

T1 T2

Classifier Max. Acc. Cohen’s Max. Acc. Cohen’s
[%] κ [%] κ

AdaBoost 59.4 0.46 65.6 0.54
LDA 37.5 0.17 34.4 0.13
NaiveBayes 43.8 0.25 50.0 0.33
NearestNeighbor 53.1 0.38 53.1 0.38
NeuralNetworks 62.5 0.50 68.8 0.58
SVM (Poly.) 46.8 0.29 53.1 0.38
SVM (RBF.) 62.5 0.50 59.4 0.46

Mean±SD (Max) 52.5± 9.8 (62.5) 54.9± 11.4 (68.8)

PET (SUV) Multimodality

Classifier Max. Acc. Cohen’s Max. Acc. Cohen’s
[%] κ [%] κ

AdaBoost 53.1 0.38 53.1 0.38
LDA 43.8 0.25 62.5 0.50
NaiveBayes 46.9 0.29 56.3 0.42
NearestNeighbor 53.1 0.38 62.5 0.50
NeuralNetworks 59.4 0.46 65.6 0.54
SVM (Poly.) 37.5 0.17 65.6 0.54
SVM (RBF.) 56.3 0.42 62.5 0.50

Mean±SD (Max) 50.0± 7.7 (59.4) 61.2± 4.7 (65.6)

Table 6.4: Maximum classification accuracy Max. Acc. for the four-class problem
(WHO1/WHO2/WHO3/WHO4), separated by classifier and imaging modality: T1

= contrasted T1-MRI, T2 = T2-FLAIR-MRI, PET = dynamic FET-PET using SUV
inter-patient normalization, Multimodality = multimodal feature sets. Cohen’s κ was
calculated according to Section 5.10.2.
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ROC Analysis

Contrasted T1-MRI

Feature # AUC Optimal Threshold Accuracy Sens. Spec.

10 0.61 1.23 63.6 59.1 68.2
12 0.59 1.94 65.9 72.7 59.1
16 0.59 0.45 61.4 45.5 77.3

T2-FLAIR-MRI

Feature # AUC Optimal Threshold Accuracy Sens. Spec.
10 0.66 3.15 68.1 100 36.4
9 0.62 0.35 65.9 100 31.8
3 0.62 684 65.9 50.0 81.8

ADC-MRI

Feature # AUC Optimal Threshold Accuracy Sens. Spec.

14 0.65 9.47 77.3 90.9 63.6
8 0.60 2.3E− 4 68.1 90.9 45.5
18 0.58 1.16E4 72.7 100 45.5

X-ray CT

Feature # AUC Optimal Threshold Accuracy Sens. Spec.

3 0.74 509 71.4 71.4 71.4
13 0.67 −0.31 71.4 42.9 100
18 0.67 659 71.4 57.1 85.7

PET (SUV)

Feature # AUC Optimal Threshold Accuracy Sens. Spec.

5 0.82 2.72 77.3 90.9 63.6
8 0.80 3.30 77.3 81.8 72.7
10 0.80 4.16 75.0 63.6 86.4
4 0.74 1.19 75.0 77.3 72.7

Table 6.5: Maximum area under the curve AUC values for the two-class problem
(low-grade/ high-grade), separated by imaging modality. The Optimal Threshold
(achieving highest accuracy) is listed in units of the feature. Sensitivity and Specificity
are in %. Feature Index denotes the index of feature set. The name and type of the
feature set can be found in Tables A.3, A.4 and for indices 51-62 in Table A.5.
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6.3 Effect of Inter-Dataset Normalization
The current section lists the change in classification results for the inter-dataset nor-
malization techniques. Please refer to Section 4.3 for the normalization methods.
As in the previous sections, for machine classifiers, Table 6.6 lists the maximum
accuracies for the different feature sets, separated by modality. All results reflect
LOPO-CV values and were tested for statistical significance (p < 0.05) with Cohen’s
Kappa: Italics denote non-significant results. The values of Cohen’s Kappa are listed
as well.
Additionally, the accuracy differences to the non-normalized variants are given. These
differences were tested for significance (p < 0.05) with the help of a two-sided
Wilcoxon signed-rank test. One asterisk (*) denotes results for which the normalized
variant obtained significantly higher classification rates.
The last rows of the tables contain the mean, standard deviation and maximum of
the respective column.
The classifications for feature sets from T1-, T2-MRI, PET and Multimodality were
carried out on patient subsets SUB44 and SUB22 for ADC-MRI.
For the ROC analysis, as in the previous sections, Table 6.7 contains three features
for every modality that achieved the highest AUC. For reference, the threshold value
representing the highest Youden’s index for the separation of low- and high-grade
tumors, the accuracy, the sensitivity and specificity using this threshold are listed as
well. Every ROC curve was tested for significant differences (p < 0.05) of their AUCs
to the null hypothesis AUC = 0.5. Non-significant results are denoted in italics.
Additionally, the difference to the AUC of non inter-dataset normalized results is
given.
Please note that the PET results are based on datasets without SUV inter-patient
normalization. For the comparison to normalized PET, only feature sets were taken
into account which do not rely on quotients to the reference region, as normalized
and non-normalized variants would achieve the same results due to the underlying
methodology of the SUV.
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Automated Two-Class Classification

T1-MRI Normalized T2-FLAIR-MRI Normalized

Classifier Max. Acc. Cohen’s Diff. Max. Acc. Cohen’s Diff.
[%] κ [%] [%] κ [%]

AdaBoost 77.3 0.55 +2.3 90.9 0.82 +15.9*
LDA 54.6 0.10 −2.2 61.4 0.23 +2.3
NaiveBayes 63.6 0.28 ±0.0 65.9 0.32 +2.3
NearestNeighbor 70.5 0.41 +4.6 77.3 0.55 +11.4*
NeuralNetworks 65.9 0.32 ±0.0 65.9 0.32 −11.4
SVM (Poly.) 70.5 0.41 +9.1* 65.9 0.32 −4.6
SVM (RBF.) 72.7 0.46 +2.2 79.5 0.59 +4.6

Mean±SD (Max) 67.9± 7.4 (77.3) +2.3 72.4± 10.5 (90.9) +2.9

FET-PET ADC-MRI Normalized

Classifier Max. Acc. Cohen’s Diff. Max. Acc. Cohen’s Diff.
[%] κ [%] [%] κ [%]

AdaBoost 77.3 0.55 −2.3 72.7 0.46 −9.1
LDA 77.3* 0.55 +6.8* 63.6 0.27 +9.1*
NaiveBayes 75.0 0.50 +4.5 63.6 0.27 ±0.0
NearestNeighbor 77.3 0.55 ±0.0 72.7 0.46 ±0.0
NeuralNetworks 79.6 0.59 +2.3 81.8 0.64 −4.6
SVM (Poly.) 72.7 0.46 ±0.0 72.7 0.36 ±0.0
SVM (RBF.) 77.3 0.55 −6.8 81.8 0.64 −4.6

Mean±SD (Max) 76.6± 2.1 (79.5) +0.3 72.7± 7.4 (81.8) −1.3

Multimodality Normalized

Classifier Max. Acc. Cohen’s Diff.
[%] κ [%]

AdaBoost 79.6 0.59 +11.4*
LDA 77.3 0.55 +2.3
NaiveBayes 79.6 0.59 +6.9*
NearestNeighbor 77.3 0.55 −9.1
NeuralNetworks 84.1 0.68 −2.3
SVM (Poly.) 84.1 0.68 2.3
SVM (RBF.) 86.4 0.73 2.3

Mean±SD (Max) 81.2± 3.6 (86.4) +2.0

Table 6.6: Maximum classification accuracies for the two-class problem using inter-
dataset normalization. The values for PET reflect non-normalized values. Diff.:
Accuracy differences of inter-dataset normalized and non-normalized results. Cohen’s
κ was calculated according to Section 5.10.2.
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ROC Analysis

T1-MRI Normalized

Feature AUC Diff. Optimal Threshold Accuracy Sens. Spec.

9 0.65 +0.04 0.18 63.6 72.7 54.5
10 0.62 +0.03 1.32 63.6 59.1 68.2
14 0.62 +0.03 8.85E− 3 63.6 72.7 54.5

T2-FLAIR-MRI Normalized

Feature AUC Diff. Optimal Threshold Accuracy Sens. Spec.

10 0.69 +0.03 3.12 65.9 100 31.8
11 0.62 ±0.0 1.26 61.4 90.9 31.8
9 0.58 −0.04 0.87 61.4 63.6 22.7

ADC-MRI Normalized

Feature AUC Diff. Optimal Threshold Accuracy Sens. Spec.

16 0.65 ±0.0 1.32E− 1 63.6 81.8 45.5
15 0.59 −0.01 9.15 68.1 90.9 45.5
18 0.56 −0.02 7.91E3 68.1 100 36.4

FET-PET

Feature AUC Diff. Optimal Threshold Accuracy Sens. Spec.

5 0.81 −0.01 8.95E3 79.5 77.3 81.8
8 0.79 −0.01 1.03E4 79.5 77.3 81.8
4 0.74 ±0.0 3.43E3 77.3 77.3 54.5

Table 6.7: Maximum AUC values for the two-class problem, separated by imag-
ing modality, using inter-dataset normalization. The values for PET reflect non-
normalized values. Diff.: Accuracy differences of inter-dataset normalized and non-
normalized results. The Optimal Threshold (achieving highest accuracy) is listed in
units of the feature. Sensitivity and Specificity are in %. Feature Index denotes the
index of feature set, for reference see Tables A.3 and A.4.
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6.4 Effect of PET Motion Correction by Rigid Reg-
istration

The current section focuses on the influence of the PET motion correction on the
classification results. Please refer to Section 4.5 for the motion correction method
itself.
As in the previous sections, Table 6.8 lists the the maximum classification accuracy
of all available feature sets for the motion corrected and SUV normalized PET data
(patient subset SUB44). Again, all values were LOPO cross-validated and tested for
statistical significance (p < 0.05) on basis of Cohen’s Kappa: All results were signif-
icantly better than random prediction. The values of Cohen’s Kappa are listed as
well.
Additionally, the accuracy differences to the non-motion corrected variant are given.
These differences were tested for significance (p < 0.05) with the help of a two-sided
Wilcoxon signed-rank test. We did not find any significant differences between non-
motion and motion corrected classification results.
For the ROC analysis, as in the previous sections, Table 6.9 contains the three fea-
tures that achieved the highest (AUC) for motion corrected PET. For reference, the
threshold value representing the highest Youden’s index for the separation of low- and
high-grade tumors, the accuracy, the sensitivity and specificity using this threshold
are listed as well. Every ROC curve was tested for significant differences (p < 0.05)
of their AUCs to the null hypothesis AUC = 0.5. All AUCs differed significantly
from the null hypothesis.
Additionally, the difference to the AUC of the non-motion corrected results is given.
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Automated Two-Class Classification

PET Motion Corr. (SUV)

Classifier Max. Acc. Cohen’s Diff.
[%] κ [%]

AdaBoost 79.6 0.59 ±0.0
LDA 75.0 0.50 +4.5
NaiveBayes 77.3 0.55 +6.8
NearestNeighbor 75.0 0.50 −4.6
NeuralNetworks 77.3 0.55 ±0.0
SVM (Poly.) 72.7 0.46 ±0.0
SVM (RBF.) 77.3 0.55 −6.8

Mean±SD (Max) 76.3± 2.2 (79.6) ±0.0

Table 6.8: Maximum classification accuracy Max. Acc. for the two-class problem
for motion corrected and SUV normalized PET, separated by classifier. The column
Diff. lists the differences in classification accuracy of motion corrected and non-
motion corrected PET. Cohen’s κ was calculated according to Section 5.10.2.

ROC Analysis

SUV Normalized, Motion Corrected PET

Feature AUC Diff. Optimal Threshold Accuracy Sens. Spec.

5 0.84 +0.02 2.36 77.3 90.9 63.6
8 0.80 ±0.0 3.13 77.3 81.8 72.7
10 0.80 ±0.0 4.19 77.3 59.1 95.5

Table 6.9: Maximum AUC values for the two-class problem separated by classifier,
for motion corrected and SUV inter-dataset normalized PET. The Optimal Threshold
(achieving highest accuracy) is listed in units of the feature. Sensitivity and Specificity
are in %. Diff. contains the AUC difference of motion corrected and non-motion
corrected PET. Feature denotes the index of the feature set. The name and type of
the feature set can be found in Tables A.3, A.4 and for indices 51-62 in Table A.5.
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6.5 Choice of Classifier
The current section aims to elaborate the suitability of the different machine classi-
fiers for the task of glioma classification.
For this reason, Table 6.10 lists the overview of the classifiers’ performance for the
patient subset SUB44 and two-class classification. Table 6.11 contains the results for
patient subsets SUB32 and four-class classification.
In both tables, the classifiers are sorted by the mean rank of a Friedman test that
was carried out on the classification rates of all 62 feature sets. One asterisk (*) in-
dicates that the classifier achieved significantly higher (p < 0.05) classification rates
compared to its directly preceding, lower-ranked classifier in a two-sided Wilcoxon
signed-rank test. Additionally, the maximum accuracies, the mean accuracies and
the standard deviations of the mean accuracies of classification accuracies of the 62
feature sets for the respective classifier values are listed.

Two-Class Classification

Classifier Max. Acc. Mean Acc. ± SD. Mean Rank
[%] [%]

LDA 75.0 42.3± 22.3 2.19
NaiveBayes 72.7 49.6± 15.8 2.95*
SVM (Poly.) 81.8 41.7± 26.5 2.96*
NearestNeighbor 86.4 57.2± 9.8 4.10*
AdaBoost 79.6 59.4± 9.2 4.81*
NeuralNetworks 86.4 59.8± 10.0 4.98
SVM (RBF.) 84.1 63.4± 7.4 6.00*

Table 6.10: Maximum (Max. Acc.), mean (Mean Acc.) and standard deviation
(SD.) of classification accuracies of all 62 feature sets for two classes, separated by
classifier. Mean Rank denotes the rank of the respective classifier in a Friedman test.
A higher rank reflects higher classification accuracies. An asterisk (*) indicates that
the classifier achieved significantly higher (p < 0.05) classification rates compared to
its directly preceding, lower-ranked classifier, using a two-sided Wilcoxon signed-rank
test.
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Four-Class Classification

Classifier Max. Acc. Mean Acc. ± SD. Mean Rank
[%] [%]

LDA 62.5 22.1± 15.1 2.13
SVM (Poly.) 65.6 19.7± 17.6 2.15
NaiveBayes 56.3 29.4± 11.1 3.13*
NearestNeighbor 62.5 37.6± 10.6 4.37*
AdaBoost 65.6 40.6± 10.9 4.99*
SVM (RBF.) 62.5 41.1± 12.1 5.16
NeuralNetworks 68.8 45.2± 11.1 6.07*

Table 6.11: Maximum (Max. Acc.), mean (Mean Acc.) and standard deviation
(SD.) of classification accuracies of all 62 feature sets for four-classes, separated by
classifier. Mean Rank denotes the rank of the respective classifier in a Friedman test.
A higher rank reflects higher classification accuracies. An asterisk (*) indicates that
the classifier achieved significantly higher (p < 0.05) classification rates compared to
its directly preceding, lower-ranked classifier, using a two-sided Wilcoxon signed-rank
test.
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6.6 Classification Accuracy of Medical Reports
For the majority of the patients in our experiments, several medical reports were
available. In the ideal case, three reports would be available, one for the MRI, one
for the PET and the third for the biopsy/surgery. The latter provides the ground
truth diagnosis in the form of the results of the histology. Consequently, the diagnosis
of the MRI and PET reports can be compared to the histology and by this, one can
find an approximate classification accuracy of the medical reports. The MRI and
PET reports were created earlier than the histological reports and therefore are not
biased towards the ground truth. The written reports were available to us in 16 of 48
(33%) patients in the case of MRI and for 48 of 48 (100%) patients in the case of PET.
The limited number of MRI reports was due to the fact that the primary purpose of
the MRI images was the co-registration of the PET or simply that the report was not
available as the MRIs were performed at some remote clinic practice. Additionally,
we found that it was very uncommon for the medical reports to contain the naming
of the exact glioma grade (WHO1-WHO4). Still, a differentiation between low- and
high-grade gliomas was made in 13 (27%) of the MRI reports and 44 (94%) of the
PET reports. Due to the low case number for MRI, we do not report a classification
accuracy for this modality.
Accordingly, we calculated the confusion matrix for SUB44 (two-class problem) and
PET (see Figure 6.12), based on the medical reports: We found a classification
accuracy of 75.6%. Please note that for three low-grade patients of SUB44, no
evidence of a glioma was reported in PET, although later a glioma was evidenced
by histology. We decided to exclude these patients from the results in this section,
which explains the imbalance between low- and high- tumor grade in the confusion
matrix.

Classified as -> Low-grade High-grade

Low-grade 26.8 19.5
High-grade 4.9 48.8

Table 6.12: Confusion matrix for the glioma classification based on the PET reports.
Ground truth classification was provided by histology of the tumors. This corresponds
to a correct classification rate of 75.6%. All values in the confusion matrix are in %.
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Discussion

7.1 Influence of Feature Normalization Technique

When comparing the mean performance of the two feature normalization methods,
linear scaling to range and linear scaling to unit variance, we found only minor dif-
ferences. The mean classification accuracies of all classifiers on the two-class problem
were 78.6% for LSR and 79.6% for LSUV. Even in the four-class problem, the means
from the two scaling approaches did not differ (58.5%).
Significant differences arise when testing the classification results of all feature sets
for the two scaling methods: For two classes, the SVM with polynomial kernel classi-
fies significantly better with LSR and the neural networks classify significantly better
with LSUV. These minor differences lead to a higher maximum classification accuracy
for LSUV at two classes (86.4% vs. 84.1%). For four classes, the LSR normalization
results in significantly better classification accuracies for the Naive Bayes classifier
only. The maximum achieved classification rates for four classes are equal for LSR
and LSUV (both 68.8%).
Besides the presented two approaches, other feature normalization methods exist:
These are e. g. fitting to an appropriate distribution. For this method, a sufficient
number of subjects in the patient population is needed as the underlying feature dis-
tributions have to be analyzed. Our patient population currently is limited in this
regard, however, if a higher subject number is available, one should reconsider this
method. Also, we did not test normalization methods which distribute the features
evenly over a certain range, like rank normalization. In fact, Aksoy et al. [Akso 00] re-
port that they found better classification results with rank normalization, compared
to LSR and LSUV.
In general, when comparing the numeric range of the feature normalization tech-
niques (Figures 4.19 and 4.19), we found only little differences between LSR and
LSUV. As a consequence and in line with our expectations, both scaling methods
performed equally well and we found only little differences in the classification accu-
racy. Nevertheless, for some classifiers differences existed and we decided to include
both normalization methods in our further analyses.
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7.2 Accuracy of Classification for Different Imaging
Modalities

It was indicated from the literature that the modalities that we used provide different
amounts of information for revealing the underlying tumor grade. For analyzing this,
we evaluated the modality wise classification rates. We found distinct differences in
the classification rates of the imaging modalities, for two as well as for four tumor
classes.

Two Classes
Table 6.3 lists the means and the maxima of the achieved classification accuracies
over all classifiers: We found the multimodal approach (86.4%) to be superior to
PET (84.1%) and T2- (77.3%), and T1-MRI (75%). In the following, our results are
compared to the state of the art from the literature:
Our MRI only based classification rates are higher than those reported by Haegler
et al. [Haeg 12]. They performed a manual grading by consensus of two medical ex-
perts and achieved an accuracy of 64.9% on 37 patients with pre- and post-contrast
T1-, T2-FLAIR-, and proton density MRI. In a study of Riemann et al. [Riem02], a
relatively high classification accuracy of 88% is reported for a visual assessment on
pre- and post-contrast T1- and T2-MRI images . Their high accuracy for separating
low and high tumor grades might be explained by the lack of WHO3 tumors in their
patient population (24 WHO1+WHO2, 0 WHO3, 24 WHO4). In a large study (160
patients) Law et al. [Law 03] report an accuracy of 70.6% on grading by consensus of
two medical experts on pre- and post-contrast T1- and T2-FLAIR-MRI. In a study
with machine classifiers on MRI data, Zacharaki et al. achieved 87.8% accuracy for
98 patients [Zach 09] and reported 94.5% accuracy for the same two-class problem
in a later publication [Zach 11]. There were some differences in comparison to our
studies: First of all, our patient population is more heterogeneous with regard to
the imaging parameters, e. g. one MRI system and three sequence variants vs. six
systems and 28 sequence variants in our setup. Additionally, their approach relied
on four different manually defined VOIs covering various regions of the same tumor
(enhancing, non-enhancing, necrotic, edematous), as opposed to only 1 VOI covering
the whole tumor in our case. This might introduce a significant amount of prior
knowledge when compared to our approach. Li et al. [Li 06] report on two classes an
accuracy of 89% with an SVM classifier for 154 patients. On the contrary to our
study, their features were manually extracted, as medical experts had to rate e. g.
the amount and heterogeneity of contrast agent, the amount of hemorrhage or the
amount of necrosis.
For PET, various reports for the accuracy of differentiation between low- and high-
grade gliomas exist: Pöpperl et al. report a rather high accuracy of 96% for a ROC
analysis (AUC 0.967) based on dynamic PET of 54 patients [Popp 06]. So far, other
groups were unable to reproduce these results with their patient populations even if
using the same methods. Our lower classification results might also be due to the
fact that the PET images for our patient population stem from two different PET
scanners using three different image reconstruction methods, compared to 1 system
and 1 reconstruction method. Even though the calibration methods that we applied
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should have prevented significant inter-device deviations, these methods might not
be sufficient. A recent study on a large patient population (n=143) of Rapp et al.
[Rapp 13] achieved 74% accuracy for a ROC analysis (AUC 0.77) on dynamic PET
data, which is slightly less compared to our results.
When comparing the machine classifiers to the accuracy of the medical records, we
achieved a absolute classification rate that is 10-15% higher for the machine classi-
fiers.
Even though the heterogeneity of study setups and patient populations make it hard
to compare the achieved classification rates, the results from our own methods and
those from the literature emphasize that PET is superior to MRI modalities in dif-
ferentiating low-grade and high-grade tumors.
For the multimodal approach, we find that a combination of features from PET and
MRI leads to higher classification rates than features from single modalities. To the
best of our knowledge, no systematic study in literature exists on the classification
accuracy of the exactly same multimodal features. On a similar note, Floeth et al.
[Floe 05] assess increased diagnostic abilities of the multimodal (PET+MRI) approach
over single modalities for the differentiation of brain tumors and non-neoplastic le-
sions. Similar results were reported from Pauleit et al. [Paul 05], which confirm an
increased accuracy of the multimodal approach.

Four Classes
Compared to the two-class problem, the order for the achieved mean classification
rates of the four-class task differed: T1-MRI: 52.5%, T2-MRI: 54.9%, PET: 50.0%,
Multimodality: 61.2%. PET was no longer superior compared to the MRI modali-
ties. The classification rates of the single modalities were very similar to each other.
Still, we found multimodal features to achieve better classification rates. Our highest
classification rate for differentiating the four WHO grades was 68.8%.
To the best of our knowledge, results in literature for differentiating each of the
four WHO grades on basis of medical imaging are still lacking. For reference, we
report results on similar topics: Zacharaki et al. [Zach 09] achieved an accuracy of
63% for differentiating WHO2, WHO3, WHO4, and metastases of other tumors on
98 patients. They derived features from four manually defined VOIs from MRI and
classified using support vector machines. In a later publication of the same group
[Zach 11], they were able to improve their classification rates on the same task to
76.3% by feature selection with a wrapper and the best-first search strategy. When
comparing to our study, some differences arise: they used unbalanced classes with 22
WHO2, 18 WHO3, 34 WHO4 and 24 cases of metastases of other tumors, whereas we
had a smaller patient population with balanced classes. Additionally, the previously
listed (see Two Classes) differences still apply: They had a more homogenous study
setup in terms of imaging modalities and probably introduced more prior knowledge
by defining manual VOIs covering multiple tumor aspects.

ADC-MRI and CT
Our results for diffusion-based (ADC) MRI and X-ray CT were derived from smaller
subsets of our patient collective (ADC-MRI: 22 patients, CT: 14 patients) when com-
pared to T1-MRI, T2-MRI and PET (44 patients). ADC-MRI achieved a highest
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classification rate of 86.4%, CT of 78.6%. Due to the limited patient number, results
for four class classification were not calculated and the accuracies should not be com-
pared to the classification rates of the other modalities.
Nevertheless, our results indicate that the classification rates for these modalities
were significantly better than random prediction. An information of the tumor grade
can be derived from diffusion MRI and X-ray CT. Especially the high classification
rates for ADC-MRI indicate the potential of this modality.
Our findings are supported by several studies from literature. For diffusion MRI,
Arvinda et al. [Arvi 09] report a ROC analysis with an accuracy of 88.2% on 51
patients with low- and high-grade gliomas. They achieve even better results (94%
accuracy) for the classification based on the relative cerebral blood volume (rCBV),
which was not available for our patients. On the same topic, Hilario et al. [Hila 12]
reached an accuracy of 88.8% for a ROC analysis of ADC features and 85.6% for
rCBV features of 162 patients.

ROC Analysis
The main purpose of the ROC analysis was to provide numbers for reference and
for estimating how “good” our patient population can be classified when compared
to other populations from literature, where results are often reported in the form of
ROC.
For all modalities, the linear decision boundary (threshold) of the ROC is not suf-
ficient to achieve a significant classification rate. The only exceptions from this are
features derived from PET. All of the listed PET features with the highest AUC have
a classification performance that is significantly better than random prediction.
In order to agree with the results from literature, we used the ROC analysis on one
dimensional features only, which might explain why the classification rates of the
ROC are lower than those of the machine classifiers.
In general, our results for ROC analyses are poor, especially when taking into account
the substantial ROC accuracies reported from literature. As most of these studies
feature very homogenous study setups and imaging data, this indicates that our more
realistic, yet more heterogeneous patient database inhibited higher classification ac-
curacies.

7.3 Effect of Inter-Dataset Normalization on Classi-
fication Accuracy and Class Overlap

Physicians deal with very heterogeneous image data which often stem from a variety
of MRI, PET and CT scanners. Especially in MRI, an inter-device and inter-patient
normalization is still not an established method. For this reason, we examined the
influence of simple normalization methods like histogram matching and SUV tech-
nique on the distribution of pixel intensities. As seen in Figure 4.5, the variances
of the mean gray-level values are reduced for all modalities and across all subgroups
(low-grade, high-grade, reference region). This indicates that the applied methods
successfully reduced the intra-class and inter-patient variance. However, it was not
clear how this affected the achieved classification results for the differentiation of low-
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and high-grade tumors. The changes in classification accuracy were as follows:
We achieved a modest increase in the mean accuracy over all classifiers for T1- (+2.3%)
and T2-MRI (+2.9%). This leaded to a maximum accuracy of 90.9% for inter-dataset
normalized T2-MRI features. The mean classification accuracy for multimodal fea-
tures from MRI and PET was increased as well by +2.0%. It was superior to the
single modalities, as in the case of non-normalized datasets.
Not all modalities showed increased classification performance. For ADC-MRI, the
histogram matching decreased the accuracy by −1.3% on average, which might be
due to the very limited number of patients in that subgroup.
In general, we found inconsistencies in the changes of classification accuracy when
comparing results of normalized and non-normalized data for some classifiers. This
might indicate that the patient population was to low for achieving more stable re-
sults.
The results for the ROC analysis on normalized data pointed in the same direction as
the machine classifiers. The area under the curve was increased for T1- and T2-MRI
and decreased for ADC-MRI when compared to their non-normalized counterparts.
However, this difference was not significant based on the 95% confidence intervals of
the AUC.
In PET, normalization techniques like scanner-calibration to radioactive reference
sources (inter-device normalization) and the SUV technique (inter-patient normal-
ization) are well established and commonly applied. For our study, these methods
did not change the classification rates significantly (mean accuracy normalized PET/
PET, 76.3%/76.6%) for all but one classifier. For the LDA classifier, the SUV nor-
malized results showed a significantly lower maximum classification rate (70.5%) than
the non-normalized version (77.3%).
The comparison of the ROC analysis leaded to ambivalent results. The AUC for the
SUV-normalized PET was slightly higher than for the non-normalized PET, but the
accuracy at the optimal separating point of the ROC-curve was lower for the SUV-
normalized PET. Again, those difference did not fulfill the required significance level.

In conclusion, the normalization methods that we applied yielded an improvement
in the classification performance. The high variance in the achieved improvements
by inter-dataset normalization might indicate an insufficient amount of patient data
and probably prevents more significant results. Furthermore, it is not clear how the
more complex features like PCA features, texture features or contextual features are
influenced by that normalization techniques. More work should be carried out on this
topic, e. g. by implementing other normalization techniques like non-rigid histogram
registration [Jage 09] and examining the effects of normalization on other features.

7.4 Effect of PET Motion Correction

A noticeable part of the dynamic PET datasets of our study was affected by patient
motion (∼ 93%). As already shown in Section 4.5, we were able to reduce the extent
of motion in those datasets in significant manner by a rigid registration of the differ-
ent time frame images. However, it was unclear if this reduction in patient motion
translates to better classification results.
We did not find any significant differences for the classification rates for our two-
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class problem. The mean classification rates of all machine classifiers was 76.3% for
motion-corrected as well as for uncorrected PET images. Similarly, the ROC analysis
did not reveal significant differences.
Consequently, the features that we used for the classification in PET might be sta-
ble to a certain amount of motion, especially considering the rather large size of the
tumor VOIs (mean value ∼ 43 ml). Additionally, since it is based on reconstructed
images, we are not able to correct for intra-frame motion with our method. The
heads of the patients in our study were fixed with the help of proper cushioning.
Other setups that do not apply proper immobilization might suffer from an increased
amount of motion. For these studies, the presented correction method could lead to
improvements that affect classification accuracy as well.
Our results showed that the motion correction helped to increase the visual appear-
ance of dynamic PET images significantly. To our knowledge, studies employing
motion correction for cerebral gliomas are lacking so far. On a similar note, Ikari
et al. [Ikar 12] report on the influence of their motion correction method on FDG-
PET of 172 patients suspected of Alzheimer’s disease. They found very little differ-
ences for larger (> 20 ml) VOIs and increased influence for small VOIs. In a small
study (phantom experiment and three patients), Zanotti-Fregonara et al. [Zano 12]
elaborate that the effect of motion and motion correction for the kinetic modeling in
C-11-(R)-rolipram was below 10%, which they consider clinically irrelevant for this
application. In contrast, Mourik et al. [Mour 09] conclude from simulations and data
of 6 patients that motion correction “...provides major improvements in accuracy of
pharmacokinetic analyses over non-motion-corrected data...”.

7.5 Optimal Choice of the Machine Classifier

Depending upon the calculated metric (mean, max, rank) the ranking of the classi-
fiers changes. When ranked according to the Friedman test, the SVM classifier with
RBF kernel (mean acc. 63.4%), the neural network (mean acc. 59.8%) and adaptive
boosting (mean acc. 59.4%) achieve the best classification results for the two-class
problem. The other machine classifiers perform worse. The performance of the LDA
classifier resembled those of the ROC analysis.
For four classes, when ranked according to the Friedman test, the neural network
(mean acc. 45.2%), the SVM with RBF kernel (mean acc. 41.1%) and the AdaBoost
classifier (mean acc. 40.6%) perform best.
Ranking the classifiers by the maximum classification rates changes their sequence.
The neural networks (max acc. 86.4%), the nearest neighbor classifier (max acc.
86.4%) and SVM with RBF kernel (max acc. 84.1%) achieve the highest classifica-
tion rates for two classes.
For four classes, the neural networks (max acc. 68.8%), the AdaBoost classifier (max
acc. 65.6%) and the SVM with polynomial kernel (max acc. 65.6%) achieve the
highest rates.
In general, we found that classifiers which are able to learn more complex decision
boundaries perform better than classifiers that provide only simple boundaries. This
indicates that similar tumor grades could lie rather in disconnected clusters in the
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feature space.
Similar results are reported from literature: Zacharaki et al. [Zach 09] compared LDA,
nearest neighbor, and SVM (RBF) classifiers in a similar study than ours and con-
cluded that the SVM with radial basis function is superior in terms of maximum
classification accuracy. In their later study [Zach 11], they found that the nearest
neighbor classifier was superior for two classes and the voting feature intervals clas-
sifier was superior for four classes. Those results are in line with ours if assessing the
classifiers by the maximum classification accuracies. The nearest neighbor classifier
is ranked on top for two classes and falls back for four classes. In a report by Devos
et al. [Devo 05], the SVM with RBF kernel was superior (AUC: 0.87 vs. 0.74) com-
pared to LDA for differentiating the low- and high-grade tumors of 21 patients.
From our results and the literature, we recommend the application of either neural
networks or SVM with RBF kernel for classification tasks similar to our problem.
Especially SVM classifiers are easily applied and promise high classification results.

Classified as -> WHO1 WHO2 WHO3 WHO4

WHO1 21.9 0.0 3.1 0.0
WHO2 0.0 18.6 3.1 3.1
WHO3 0.0 6.3 15.6 3.1
WHO4 0.0 3.1 9.4 12.5

Table 7.1: Example confusion matrix for four-class problem. The matrix corresponds
to a classification accuracy of 68.8% and was obtained by neural networks classifying
on T2-MRI features. All values are in %.

7.6 Limitations of Our Study

One limitation of our study was the lesser number of patient datasets which we had
available for analysis. The requirements for this kind of study are high: No prior
treatment is allowed, a bioptically confirmed tumor is mandatory and dynamic PET
and various MRI sequences need to be acquired. For our patient population, gather-
ing the data was a process of several years. Nevertheless, studies with larger patient
populations in all subgroups would be beneficial. A higher patient number than ours
is especially necessary for the differentiation of the four WHO grades and the evalu-
ation of the potential benefit of diffusion weighted MRI and X-ray CT.
The achieved maximum classification performance of 90.9% for the differentiation of
low and high tumor grades and 68.8% for the four WHO grades was limited. We
found a considerable amount of misclassification between the groups WHO2/WHO3
and WHO3/WHO4 (Figure 7.1).
Furthermore, our simple inter-dataset normalization and feature selection and feature
reduction methods might have led to suboptimal results. Consequently, more studies
should be carried out in order to test more advanced normalization and feature se-
lection methods and to investigate the clinical relevance of the limited classification
results.
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When comparing the classification results based on medical image data to the tumor
grades diagnosed by histology, one has to keep in mind that histological grades rep-
resent the tumor in the exact area where the biopsy was taken. It is well known that
gliomas should be seen as heterogeneous formations which incorporate regions with
varying tumor grade. Additionally, the inter-rater variability in the process of histo-
logical grading is not negligible. It is reported to be as high as 20% for glial tumors
[Bent 10]. This variability could be reduced by a consensus agreement of independent
histopathologic examinations of multiple experts.



Chapter 8

Summary and Outlook

8.1 Summary

We presented methodologies and techniques that show that a machine classification
of cerebral gliomas is feasible. In general, our classification results were in line with
those provided in literature and 10 − 15% higher than those of the written medical
reports, which is noteworthy when one takes into account our heterogeneous study
setup which reflects true clinical applicability.
As expected, the two-class differentiation of low and high tumor grades achieved bet-
ter classification results compared to the differentiation of the four individual WHO
grades. Nevertheless, our results underline that the differentiation of the four WHO
grades is feasible within certain limitations. Especially the WHO grades 3/4 and 2/3
had a significant overlap in our study.
When it comes to the value of the single modalities in differentiating between low and
high-grade tumors, PET using FET as a tracer offers the most valuable information
among the available modalities. This benefit was lost for the four-class differentia-
tion, where MRI offered better classification accuracies.
In general, the multimodal approach with combined features from MRI and PET
offered the best overall classification results. This is comparable with the clinical
routine where examinations from nuclear medicine (PET) and radiology (MRI) are
performed separately but interpreted in conjunction.
Within the limitations of our study, namely a lower number of datasets, diffusion-
weighted MRI and CT offer potentially beneficial information on the tumor grade.
We showed, that the presented inter-dataset normalization techniques improved the
classification accuracy for most modalities. The highest improvements were achieved
through MRI normalization. The significance of the PET calibration and SUV nor-
malization for the classification were ambiguous.
In our patient population, the application of motion correction by registration of
subsequent reconstructed frames did not lead to an improved classification accuracy.
This might be due to the fact that the features are stable to the amount of motion
that we encountered in our study. Nevertheless, the presented motion correction
technique improved the visual appearance of the PET images in significant manner
and might be of importance for studies with more patient motion.
In general, for two classes as well as for four classes, the C-SVM classifier with radial
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basis function or neural networks are recommended. For complex problems in this
field (class number > 2), the AdaBoost classifier is a promising alternative to the
aforementioned methods. It features an easy application with only 1 free parameter
and fast computation.

8.2 Future Work and Outlook
With the advent of combined PET and, MRI scanners [Jude 08], the incorporation of
multimodal features for the differentiation between tumor types and grades will be-
come easier. Not only is the number of examinations reduced, but also the synergistic
effects of the system can be exploited. The motion correction of the PET acquisi-
tion by the help of MRI is seen as one of the hot topics in the field of MR-PET
[Grav 13, Ouya 13]. Furthermore, additional work should be carried out for incor-
porating diffusion-, perfusion-weighted, and spectroscopic MRI into a multimodal
classification scheme. The accuracy for the differentiation of tumor grades from our
own work as well as from literature [Bepp 11] promise improved diagnostic abilities of
such a setup, especially when using MRI spectroscopy. A combined MR-PET scan-
ner could facilitate such acquisitions [Neun 12]. Dynamic FET-PET is acquired over
a lengthy time period anyways, which leaves plenty of time for sophisticated MRI
sequences beyond simple T1-, or T2- weighting.
We see a lot of potential in the field of the MRI inter-dataset normalization. It should
be tested if other methods like the one proposed by Jäger et al. [Jage 09] can help
to achieve better normalization results and eventually lead to higher classification
results.
Results from literature indicate [Zach 09, Zach 11] that more sophisticated feature
reduction and selection approaches, like recursive feature elimination, sequential for-
ward selection, could lead to improved classification accuracy and clarify the varying
importance of the individual features on the classification process.
When comparing to the literature, we noticed a high heterogeneity in study setups
and patient databases. A freely-accessible glioma database featuring imaging data
from PET and MRI should be established.
The field of computer aided diagnoses (CAD), which we consider this current work
to be a part of, is emerging as it proves its value and abilities in a growing field of
applications. CAD will not replace the need for well-educated physicians but support
their work by gathering and summarizing information from multimodal imaging data,
helping to prevent false diagnoses, and reducing time-consuming procedures.
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Additional Tables and Figures

Patient
#

Sex Age
[a]

Weight
[kg]

Tumor
WHO
Grade

Tumor
Entity

Time betw.
PET &
MRI [d]

Time betw.
PET &
Biopsy [d]

Inj. FET
Activity
[MBq]

1 M 65.7 90 4 GBM 2 8 207
2 F 63.4 74 3 AO 0 59 198
3 M 46.2 76 2 DA 1 31 345
4 M 22.3 71 1 GG 11 156 152
5 F 41.8 70 4 GBM 11 35 213
6 M 30.1 95 1 GG 49 142 190
7 F 35.9 69 3 AOA 49 17 274
8 M 18.1 85 1 GG 35 113 240
9 F 23.9 59 1 PA 1 2 178
10 F 54.6 73 1 GG 77 7 193
11 M 38.6 73 1 PGT 70 188 199
12 M 45.1 86 1 DNT 70 247 205
13 M 63.6 71 3 AOA 14 95 148
14 F 68.6 68 4 GBM 1 10 205
15 F 22.6 56 1 GG 1 67 167
16 F 72.5 100 4 GBM 38 2 275
17 F 29.9 72 2 DA 2 2 185
18 F 41.0 77 2 DA 0 6 200
19 M 24.3 65 2 DA 16 7 219
20 M 29.9 72 3 AA 0 19 215
21 M 44.3 82 4 GBM 0 1 239
22 M 12.4 45 3 AA 14 4 110
23 M 49.9 94 4 GBM 23 30 259
24 M 54.8 105 3 AA 0 5 278
25 M 54.2 80 3 AA 0 13 236
26 F 41.4 62 2 DA 0 13 179
27 M 33.6 87 3 AA 0 7 180
28 M 27.6 98 2 DA 0 140 238
29 F 46.9 91 2 DA 40 112 250
30 F 35.6 85 2 DA 69 31 175
31 F 66.1 55 2 O 77 36 209
32 F 48.8 68 2 DA 6 21 240
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Patient
#

Sex Age
[a]

Weight
[kg]

Tumor
WHO
Grade

Tumor
Entity

Time betw.
PET &
MRI [d]

Time betw.
PET &
Biopsy [d]

Inj. FET
Activity
[MBq]

33 M 25.9 75 2 DA 1 2 211
34 M 39.2 80 2 DA 0 7 220
35 M 41.6 93 2 O 41 61 250
36 F 49.1 59 3 AA 7 11 183
37 M 52.7 77 3 AA 7 74 212
38 M 44.6 102 2 DA 8 22 256
39 F 66.3 90 3 AO 0 52 256
40 F 23.1 60 2 DA 0 37 217
41 F 67.6 73 4 GBM 4 2 215
42 M 41.7 89 3 AO 0 14 243
43 F 67.7 70 2 DA 30 31 218
44 M 54.1 75 2 DA 0 6 235
45 F 43.4 59 3 AO 7 84 232
46 F 32.3 54 3 AO 7 14 214
47 M 45.9 85 4 GBM 0 13 238
48 M 55.4 77 3 A 56 51 243

22
F

Mean:
43.8

Mean:
77

8/17/15/8 Mean: 17.6 Mean: 43.9 Mean:
218

26
M

Min:
12.4

Min:
45

I/II/III/IV Min: 0 Min: 1 Min: 110

Max:
72.5

Max:
105

Max: 77 Max: 247 Max: 345

Table A.1: Overview on relevant parameters of the patient population in
our study. Abbreviations: AA: Anaplastic astrocytoma; DA: Diffuse Astro-
cytoma; PA: Pilocytic Astrocytoma; O: Oligodendroglioma; AO: Anaplastic
oligodendroglioma; AOA: Anaplastic oligoastrocytoma; GG: Ganglioglioma;
GBM: Glioblastoma; PGT: Papillary glioneural tumor; DNT: Dysembry-
oplastic neuroepithelial tumor.
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Patient
#

T2 Flair
Seq. #

Contrast.
T1 Seq.
#

ADC
Seq. #

PET
Protocol
#

CT SUB44 SUB32 SUB22 SUB14

1 14 3 24 1
√ √ √ √ √

2 14 3 24 1
√

- -
√ √

3 14 3 24 1
√ √ √ √ √

4 14 3 24 1
√ √ √ √ √

5 15 2 23 1
√ √ √ √ √

6 14 3 24 1
√ √ √ √ √

7 14 3 24 1
√ √ √ √ √

8 14 3 24 1
√ √ √ √ √

9 15 2 23 1
√ √ √ √ √

10 14 3 24 1
√ √ √ √ √

11 14 3 - 1
√ √ √

-
√

12 15 2 - 1 -
√ √

- -
13 14 3 24 1

√ √ √ √ √

14 14 1 24 1
√ √ √ √ √

15 12 2 - 1
√ √ √

-
√

16 14 3 24 1 -
√ √ √

-
17 16 6 25 3 - - -

√
-

18 17 5 - 3 -
√

- - -
19 16 6 25 2 -

√
-

√
-

20 17 5 - 3 -
√

- - -
21 17 5 - 3 -

√ √
- -

22 16 6 25 2 -
√ √ √

-
23 18 7 - 3 -

√ √
- -

24 19 8 - 3 -
√ √

- -
25 17 5 - 3 -

√ √
- -

26 17 5 - 3 -
√ √

- -
27 17 5 - 3 -

√ √
- -

28 17 5 - 3 -
√ √

- -
29 20 9 - 3 -

√ √
- -

30 20 9 - 3 -
√ √

- -
31 17 5 26 3 - - -

√
-

32 13 4 27 3 -
√ √ √

-
33 16 6 - 3 -

√ √
- -

34 17 5 - 3 -
√ √

- -
35 20 9 28 3 - - -

√
-

36 21 10 - 2 -
√ √

- -
37 20 9 - 3 -

√ √
- -

38 22 11 - 3 -
√

- - -
39 17 5 - 3 -

√
- - -

40 17 5 - 3 -
√

- - -
41 16 6 25 4 -

√ √ √
-

42 17 5 - 4 -
√

- - -
43 16 6 - 4 -

√
- - -

44 17 5 - 4 -
√

- - -
45 13 4 27 4 -

√
-

√
-

46 20 9 - 4 -
√

- - -
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Patient
#

T2 Flair
Seq. #

Contrast.
T1 Seq.
#

ADC
Seq. #

PET
Protocol
#

CT SUB44 SUB32 SUB22 SUB14

47 17 5 - 4 -
√ √

- -
48 20 9 28 4 -

√
-

√
-

Table A.2: List of the assignment of various MRI, PET and CT sequences to
the individuals in our patient population. The parameters of the according
MRI sequences can be found in Table A.7. The parameters of the PET
acquisition protocols can be found in Table A.8. “-” denotes that the dataset
was not acquired/ not available or was not used in our study. “

√
” indicates

that this patient underwent a CT examination with the parameters described
in Section 3.2.1, which was used in the study.
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# Feature Type of Feature

1 Mean Intensity Value Statistical
2 Minimum Intensity Value Statistical
3 Maximum Intensity Value Statistical
4 95%-Quantile of Intensity (PDF) Statistical
5 Position of Peak in Ref.VOI in Intensity (PDF) Statistical
6 Height of Peak in Ref.VOI in Intensity (PDF) Statistical
7 Proportion of Iso-intense Voxels Contextual
8 Proportion of Hypo-intense Voxels Contextual
9 Proportion of Hyper-intense Voxels Contextual
10 Effective KL Divergence (PDF) Contextual
11 Quotient Mean Prim. to Mean Ref. VOI Contextual
12 Quotient Maximum Prim. to Mean Ref. VOI Contextual
13 Quotient Minimum Prim. to Mean Ref. VOI Contextual
14 Texture Energy Texture
15 Texture Entropy Texture
16 Texture Local Homogeneity Texture
17 Texture Inertia Texture
18 Texture Cluster Shade Texture
19 Texture Cluster Prominence Texture

Table A.3: List of the extracted features for every static (T2 FLAIR MRI, T1 MRI,
ADC MRI, and CT) dataset. In Section 4.6 in detail information about the calcula-
tion of every feature can be found.

# Feature Type of Feature

1 Slope of Mean Intensity Value Curve Statistical
2 Slope of Maximum Intensity Value Curve Statistical
3 Slope of Minimum Intensity Value Curve Statistical
4 Intercept of Mean Intensity Value Curve Statistical
5 Intercept of Maximum Intensity Value Curve Statistical
6 Intercept of Minimum Intensity Value Curve Statistical
7 Mean Intensity Value (Dynamic) Statistical
8 Maximum Intensity Value (Dyn) Statistical
9 Minimum Intensity Value (Dyn) Statistical
10 Quotient Maximum Prim. to Mean Ref. VOI (Dyn) Contextual
11 Quotient Mean Prim. to Mean Ref. VOI (Dyn) Contextual
12 Quotient Minimum Prim. to Mean Ref. VOI (Dyn) Contextual

Table A.4: List of the extracted features for the dynamic PET dataset. In Section
4.6 in detail information about the calculation of every feature can be found.
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Feature (-set) # Contained features in the set

1-50 Individual features
51 All features of all modalities
52 All features obtained from the T2-Flair MRI
53 All features obtained from the contrasted T1 MRI
54 All features obtained from the dynamic PET
55 All features obtained from the MRI (T1+T2)
56 All texture features
57 Transformed feature of the first PCA component
58 Transformed features of the PCA components 1-3
59 Transformed features of the PCA components 1-5
60 Transformed features of the PCA components 1-7
61 Transformed features of the PCA components 1-10
62 Transformed features of the PCA components 1-15

Table A.5: List of the Features and Feature sets for T1-MRI, T2-MRI, and FET-PET.
An explanation which features are included in each set is given as well. The features
1-50 correspond to the features listed in Table A.3 for T2-FLAIR MRI and contrasted
T1-MRI (2× 19 features) plus the features listed in Table A.4 for the dynamic PET
(12 features).

Feature (-set) # Contained features in the set

1-19 Individual features
20 All features of the modality
21 All texture features

Table A.6: List of the Features and Feature sets for ADC-MRI and CT. An expla-
nation which features are included in each set is given as well. The features 1-19
correspond to the features listed in Table A.3 for ADC-MRI and X-ray CT.
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Patient # Uncorrected Corrected Corrected Better?

1 1 1 1
2 2 1 1
3 2 2 −1
4 2 1 1
5 0 0 0
6 0 0 0
7 1 1 1
8 2 2 −1
9 2 1 1
10 1 1 1
11 2 2 1
12 1 1 −1
13 2 1 1
14 2 0 1
15 2 1 1
16 3 1 1
17 1 1 −1
18 2 2 1
19 1 1 −1
20 2 2 1
21 2 2 0
22 2 2 1
23 1 1 0
24 1 1 0
25 1 1 1
26 1 1 0
27 2 1 1

Mean: Mean: Better/Equal/Worse
1.52 1.15 16/6/5

Table A.9: Subjective rating of the amount of motion in PET images before and after
the application of motion correction. In general, the study was carried out blinded,
for the last column the images were shown side-by-side (unblinded). For the first two
columns, amount of motion: 0 = not visible, 1 = small, 2 = distinct, 3 = substantial.
Last column, larger amount of motion in: −1 = corrected image, 0 = both images
equal, 1 = uncorrected image.
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SUB44
Component # Loading Feature Name

1 +0.31 MRIT2FlairQuantile
2 +0.30 MRIT2FlairMax
3 +0.30 MRIT2FlairMean
4 +0.27 MRIT1EnhancedRefPeakPosition
5 +0.27 MRIT2FlairRefPeakPosition
6 +0.26 MRIT1EnhancedMean
7 +0.25 MRIT1EnhancedQuantile
8 +0.25 MRIT2FlairMin
9 +0.24 MRIT1EnhancedMax
10 −0.21 MRIT1EnhancedRefPeakHeight

SUB32
Component # Loading Feature Name

1 +0.28 MRIT1EnhancedMax
2 +0.28 MRIT1EnhancedQuantile
3 +0.26 MRIT1EnhancedMean
4 +0.25 MRIT2FlairMax
5 +0.24 MRIT2FlairQuantile
6 +0.23 MRIT1EnhancedRefPeakPosition
7 +0.23 MRIT2FlairMean
8 −0.22 MRIT1EnhancedRefPeakHeight
9 +0.20 MRIT2FlairRefPeakPosition
10 +0.18 PETDynVOIMax

Table A.10: The ten largest loadings (coefficients) of the second Eigenvector of the
principal component analysis for the features of patient subset SUB44 and SUB32.
The transformed feature vectors are to a large degree formed by a linear combination
of feature from T2-MRI, T1-MRI, and PET.
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SUB44
Component # Loading Feature Name

1 +0.32 PETInterceptMax
2 +0.32 PETDynVOIMax
3 +0.31 PETQuotMeanVOIMeanRef
4 +0.30 PETInterceptMean
5 +0.29 PETDynVOIMean
6 +0.28 PETQuotMaxVOIMeanRef
7 +0.22 MRIT1EnhancedHyperDensePixels
8 −0.19 MRIT2FlairTFLocalHomog
9 −0.19 MRIT2FlairTFEnergy
10 +0.17 MRIT1EnhancedQuotMeanMeanRefVOI

SUB32
Component # Loading Feature Name

1 +0.14 MRIT2FlairRefPeakPosition
2 +0.12 MRIT2FlairMean
3 +0.12 MRIT2FlairQuantile
4 +0.11 MRIT2FlairMax
5 −0.11 MRIT1EnhancedTFInertia
6 −0.10 MRIT1EnhancedQuotMaxMeanRefVOI
7 +0.10 MRIT2FlairMin
8 −0.10 MRIT1EnhancedTFClusterShade
9 −0.09 MRIT1EnhancedTFClusterProm
10 −0.09 MRIT2FlairRefPeakHeight

Table A.11: The ten largest loadings (coefficients) of the third Eigenvector of the
principal component analysis for the features of patient subset SUB44 and SUB32.
The transformed feature vectors are to a large degree formed by a linear combination
of feature from T2-MRI, T1-MRI, and PET.
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Figure A.1: ROC curve for non-normalized T1-MRI. The 3 features with the highest
area under the curve are plotted.
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Figure A.2: ROC curve for non-normalized T2-MRI. The 3 features with the highest
area under the curve are plotted.
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Figure A.3: ROC curve for SUV normalized PET. The 3 features with the highest
area under the curve are plotted.
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ADC Apparent Diffucion Coefficient
A→P Anterior-to-Posterior
ATP Adenosine Triphosphate
AUC Area Under The Curve

CBF Cerebral Blood Flow
CBV Cerebral Blood Volume
CT X-Ray Computed Tomography
CTDI Computed Tomography Dose Index

DCE-MRI Dynamic Contrast-Enhanced MRI
DLP Dose-Length-Product
DPD TC-99m 2,3-dicarboxypropane-1, 1-diphosphonate

ECG Electrocardiography
ECT Emission Computed Tomography
EEG Electroencephalography

FBP Filtered Backprojection
FDG [18F] Fluoro-D-Glucose
FET [18F]-Fluor-Ethyl-Tyrosine
FLAIR Fluid Attenuated Inversion Recovery
FLT [18F] Fluorothymidine
FOV Field Of View
FWHM Full Width at Half Maximum

GABA Gamma-Aminobutyric Acid
GRE Gradient-Echo

H→F Head-to-Feet
HU Hounsfield Unit

ITK Insight Toolkit

LOO-CV Leave-One-Out Cross-Validation
LOPO-CV Leave-One-Patient-Out Cross-Validation
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LOR Line Of Response

MET Methyl-[11C]-Methionine
MLEM Maximum Likelihood Expectation Maximization
MRI Magnetic Resonance Imaging
MRS Magnetic Resonance Spectroscopy
MTT Mean Time-to-Transit

OSEM Ordered Subset Expectation Maximization

PCA Principal Component Analysis
PDF Probability Density Function
PET Positron Emission Tomography
Poly Polynomial

RBF Radial Basis Function
RF Radio Frequency
R→L Right-to-Left
ROC Receiver Operating Characteristic

SD Standard Deviation
SE Spin-Echo
SPECT Single Photon Emission Computed Tomography
SUV Standardized Uptake Value
SVM Support Vector Machine

TE Time-to-Echo
TR Time-to-Repeat

US Ultrasound

VOI Volume Of Interest

WHO World Health Organization
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